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Abstract

Background: Cluster randomized trials (CRTs) are increasingly used to assess the effectiveness of interventions to
improve health outcomes or prevent diseases. However, the efficiency and consistency of using different analytical
methods in the analysis of binary outcome have received little attention. We described and compared various statistical
approaches in the analysis of CRTs using the Community Hypertension Assessment Trial (CHAT) as an example. The
CHAT study was a cluster randomized controlled trial aimed at investigating the effectiveness of pharmacy-based blood
pressure clinics led by peer health educators, with feedback to family physicians (CHAT intervention) against Usual
Practice model (Control), on the monitoring and management of BP among older adults.

Methods: We compared three cluster-level and six individual-level statistical analysis methods in the analysis of binary
outcomes from the CHAT study. The three cluster-level analysis methods were: i) un-weighted linear regression, ii)
weighted linear regression, and iii) random-effects meta-regression. The six individual level analysis methods were: i)
standard logistic regression, ii) robust standard errors approach, iii) generalized estimating equations, iv) random-effects
meta-analytic approach, v) random-effects logistic regression, and vi) Bayesian random-effects regression. We also
investigated the robustness of the estimates after the adjustment for the cluster and individual level covariates.

Results: Among all the statistical methods assessed, the Bayesian random-effects logistic regression method yielded the
widest 95% interval estimate for the odds ratio and consequently led to the most conservative conclusion. However, the
results remained robust under all methods — showing sufficient evidence in support of the hypothesis of no effect for the
CHAT intervention against Usual Practice control model for management of blood pressure among seniors in primary
care. The individual-level standard logistic regression is the least appropriate method in the analysis of CRTs because it
ignores the correlation of the outcomes for the individuals within the same cluster.

Conclusion: We used data from the CHAT trial to compare different methods for analysing data from CRTs. Using
different methods to analyse CRTs provides a good approach to assess the sensitivity of the results to enhance
interpretation.
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Background

Cluster randomized trials (CRTs) are increasingly used in
the assessment of the effectiveness of interventions to
improve health outcomes or prevent diseases [1]|. The
units of randomization for such trials are groups or clus-
ters such as family practices, families, hospitals, or entire
communities rather than individuals themselves. CRT
designs are used to evaluate the effectiveness of not only
group interventions but also individual interventions
where group-level effects are relevant. CRTs may also lead
to substantially reduced statistical efficiency compared to
trials that randomize the same number of individuals [2].
They may also produce selection bias since the allocation
arm that the subject receives is often known in advance
[3]- However, in practice, CRT designs have several attrac-
tive features that may outweigh these disadvantages. Clus-
ter randomization minimizes the likelihood of
contamination between the intervention and the control
arms. In addition, the nature of the intervention itself may
dictate its application as the optimal strategy [4].

The main consequence of a cluster design is that the out-
comes for subjects within the same cluster can not be
assumed to be independent. This is because the subjects
within the same cluster are more likely to be similar to
each other than those from different clusters. This leads to
a reduction in statistical efficiency due to clustering, i.e.
the design effect. The design effect is a function of the var-
iance inflation factor (VIF), given by 1 + (m - 1)p, where
m denotes the average cluster size and p is a measure of
intra-cluster correlation - interpretable as the correlation
between any two responses in the same cluster [2,5]. Con-
sidering the two components of the variation in the out-
come, between-cluster and within-cluster variations, o
may also be interpreted as the proportion of overall varia-
tion in outcome that can be accounted for by the between-
cluster variation.

These principles are well established in the design of
CRTs, especially when there are implications for the sam-
ple size planning. In statistical analysis, it has long been
recognized that ignoring the clustering effect will increase
the chance of obtaining statistically significant but spuri-
ous findings [6]. Although many papers have compared
analytical methods for CRTs with binary outcomes over
the last decade, none have investigated the Bayesian
model in the analysis of CRT in detail. In particular, com-
parison of random-effects meta analytic approach with
other methods for the analysis of matched pair CRTs [7]
has not been done. In this paper, we compare various sta-
tistical approaches in the analysis of CRTs using the Com-
munity Hypertension Assessment Trial (CHAT) as an
example. The CHAT study is a multi-centre randomized
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controlled trial using blocked stratified, matched-pair
cluster randomization. We also explored in much detail
the application of the Bayesian random-effects model in
the analysis of CRTs. In particular, we investigated the
impact of different prior distributions on the estimate of
the treatment effect.

Methods

Overview of the CHAT study

The CHAT study was a cluster randomized controlled trial
aimed at investigating the effectiveness of pharmacy-
based blood pressure (BP) clinics led by peer health edu-
cators, with feedback to family physicians (FP) on the
monitoring and management of BP among older adults
[8]. The participants of the trial included the FP practices,
patients, pharmacies and peer health educators. Eligible
FPs were non-academic, full-time practitioners with regu-
lar family practices in terms of size and case-mix, and were
able to provide an electronic roster that included a mail-
ing address of their patients 65 years and older. FPs who
worked in walk-in clinics or emergency departments, were
about to retire or worked part-time, had fewer than 50
patients 65 years or older, or had a specialized practice
profile were excluded from the study. Eligible patients
were 65 years or older at the beginning of the study, con-
sidered by their FPs to be regular patients, community-
dwelling and able to leave their homes to attend the com-
munity-based pharmacy sessions. To ensure that the
results would be generalizable to patients in other FP prac-
tices, the trial had very few exclusion criteria for patients.

The study design was a multi-centre randomized control-
led trial using blocked stratified, matched-pair cluster ran-
domization. Family practices were the wunit of
randomization. Eligible practices were stratified according
to (1) the median number of patients in the practice with
adequate BP control and (2) the median number of
patients aged 65 years and older, and matched according
to centers. The trial started in 2003 with 28 FPs practising
in Ottawa and Hamilton randomly selected from the eli-
gible FPs. Fourteen were randomly allocated to the inter-
vention (pharmacy BP clinics) and 14 to the control group
(no BP clinics offered). Fifty-five eligible patients were
randomly selected from each FP roster. Therefore, 1540
patients participated in the study.

All eligible patients in both the intervention or control
group got usual health service at their FP's office. Patients
in the practices allocated to the intervention group were
invited to visit the community BP clinics. Peer health edu-
cators assisted patients to measure their BP and record
their readings on a form that also asked about cardiovas-
cular risk factors. Research nurses, assisted by the FP office
staff, conducted the baseline and end-of-trial (12 months
after the randomization) audits of the health records of
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the 1540 patients (55 per practice) who participated in the
study. These data were collected to determine the effect of
the intervention.

Outcomes

The primary outcome of the CHAT study was a binary out-
come with "1" indicating the patient's BP was controlled
at the end of the trial and "0" otherwise. We defined that
the patient's BP was controlled as follows:

¢ if the BP reading was available in the patient's chart
at the end of the trial and the systolic BP < 140 mmHg
and diastolic BP < 90 mmHg for patient without dia-
betes or target organ damage, or

e the systolic BP < 130 mmHg and diastolic BP < 80
mmHg for patient with diabetes or target organ dam-
age.

Secondary outcomes of the CHAT study included 'BP
monitored', frequency of BP monitoring, systolic BP read-
ing, and diastolic BP reading. The analyses presented in
this paper are based on the primary outcome only. The
analysis of secondary outcomes will be the subject of
another paper reporting the trial results.

Statistical methods

The analysis of CRTs may be based on the analysis of
aggregated data from each cluster or based on individual
level data, which correspond to the cluster-level and the
individual-level analysis methods, respectively. The
adjustment for individual-level covariates may be applied
only for the individual level analysis. While the adjust-
ment for the cluster-level covariates may be applied for
both the cluster-level and the individual-level analysis. In
this paper, the random-effects meta-regression method
was performed using STATA Version 8.2 (College Station,
TX). Other standard analyses were performed using SAS
Version 9.0 (Cary, NC). The Bayesian analysis was per-
formed using WinBugs Version 1.4. The results from clas-
sical analyses for binary outcomes are reported as odds
ratio (OR) and corresponding 95% confidence interval
(CI). The results from the Bayesian method are reported as
posterior estimate and corresponding 95% credible inter-
val (Crl). Crls are the Bayesian analog of confidence inter-
vals. The reporting of the results follows the CONSORT
(Consolidated Standards of Reporting Trials) statement
guidelines for reporting cluster-randomized trials [9] and
ROBUST guideline [10] for reporting Bayesian analysis.

Cluster-level analyses methods

Following Peters et al [11], we assume that the number of
patients in cluster/FP i (i = 1 to 28) with BP controlled and
the total number of patients in the cluster/FP are denoted
by r; and n; respectively. For the FP i, the log odds of
number of patients with BP controlled is estimated as
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logodd; = log[ d ],

ni—rj

and its variance is

1 1
var; = — + .
i nj—Tj

Un-weighted linear regression

Considering log odds for each cluster as the dependent
variable, the un-weighted linear regression model [12]
can be expressed as:

logodd; = Bx; +u;,

where x; denotes the vector of covariates (intervention
groups and centers), S represents the effect of the covari-
ates in the log odds scale, and u; represents the cluster level
random effect. The u; here is assumed to follow normal
distribution with a zero mean and a constant variance. In
this method, each cluster/FP is given equal weight when
estimating the regression coefficient 5. We implemented
this model using SAS proc glm.

Weighted linear regression

The weighted linear regression method [12] has the same
model expression as the un-weighted linear regression
method. It treats the log odds estimated from each cluster
as the outcome, and treatment group as one of the explan-
atory variables. The weight was defined as the inverse var-
iance of the log odds, i.e. w; = 1/var; for FP i. Compared to
the un-weighted linear regression - in which all cluster
estimates are weighed equally - the weighted linear
regression gave clusters with higher precision more
weight, and therefore more contribution in estimating the
treatment effect. We implemented this model using SAS
proc glm.

Random-effects meta-regression
The random-effects meta-regression model [13] is similar
to the un-weighted linear regression model:

logodd; = Bx; + u;.

However, the u; here is assumed to follow a normal distri-
bution on the log odds scale with a zero mean and an
uncertain variance, which represents the between cluster
variance and can be estimated when fitting the model. We
implemented this model using STATA metareg.

Individual-level analyses

We used six individual-level statistical methods that
extend the standard logistic regression methods by adding
specific strategies to handle the clustering of the data, and
therefore are valid for analyzing clustering data.
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Standard logistic regression
The standard logistic regression model [14,15] can be
expressed as:

logit(z;) = Bx;,

where x; denotes the vector of covariates (BP controlled at
baseline, intervention groups etc.) for patient j in the clus-
ter/FP i; y; is the binary outcome indicating if the BP is
controlled for patient j in the cluster/FP i; and 7z;= Pr(y; =

1x;).

The standard logistic model assumes that data from differ-
ent patients are independent. Since this assumption is not
valid for the correlated data, it is not valid for analyzing
cluster randomized trials. We implemented this model
using SAS proc genmod.

Robust standard errors

Like the standard logistic regression, the robust standard
error method [14,16] gives the same estimates since both
of them assume independent data to get the estimate of
the treatment effect. However, in the robust standard
errors method, the standard errors for all the estimates are
obtained using 'Huber sandwich estimator' which can be
used to estimate the variance of the maximum likelihood
estimate when the underlying model is incorrect or the
model assumption is wrong [17]. It is often used for clus-
tered data [18]. We implemented this model using SAS
proc genmod.

Generdlized estimating equations

The generalized estimating equations (GEE) [14,19,20]
method permits the specification of a working correlation
matrix that accounts for the form of within-cluster corre-
lation of the outcomes. In the analysis of CRTSs, we gener-
ally assume that there is no logical ordering for
individuals within a cluster, i.e. the individuals within the
same cluster are equally correlated. In this case, an
exchangeable correlation matrix should be used. We
implemented this model using SAS proc genmod.

Though the sandwich standard error estimator is consist-
ent even when the underlying model is specified incor-
rectly, it tends to underestimate the standard error of the
regression coefficient when the number of clusters is not
large enough [21,22]. Furthermore, the estimate of stand-
ard error is highly variable when the number of clusters is
too small. In this paper, we employed two methods pro-
posed by Ukoumunne [23] to correct this bias. Both
methods can be used when there are equal numbers of
clusters in each arm and no covariate adjustment. In the
first method - modified GEE (1), the bias of the sandwich
standard error is corrected by multiplying it by
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JJ/(J —1) , where ] is the number of clusters in each arm.

In the second method - modified GEE (2), the increased
variability of the sandwich standard error estimator was
accounted for by building the confidence interval for the
treatment effect based on the quantiles from the t-distri-
bution with 2(J-1) degree of freedom.

Random-effects meta-analytic approach

This method is appropriate only for CRTs with matched
pair design [2]. If we assume that the data from each
paired cluster are arising from a meta-analysis of inde-
pendent randomized controlled clinical trials, then we
can apply the traditional random-effects meta-analysis
method to pool the results from all the pairs [13]. The ran-
dome-effects meta-analytic approach for analysing CRTs
consists of two steps. First, the treatment effect is esti-
mated for each paired cluster. Second, the overall treat-
ment estimator is calculated as a weighted average of the
paired cluster estimates, where weights are the inverse of
the estimated variances of treatment effects of the paired
clusters. We implemented this model using SAS proc gen-
mod and proc mixed.

Random-effects logistic regression

The random-effects logistic regression [15,19] is a special
kind of hierarchical linear model. Compared to the stand-
ard logistic regression, the random-effects logistic regres-
sion includes a cluster-level random effect in the model
which is assumed to follow a normal distribution with a
zero mean and an unknown variance 2 (the between-
cluster variance); 72 is estimated in the regression. By
allowing for over-dispersion parameter to be estimated,
we adopted the estimating algorithm of pseudo-likeli-
hood function of Wolfinger/O'Connell 1993 [24]. Com-
pared to the Bayesian model, the CI for the treatment
effect from this method is narrower since it is based on
estimated constant variance components without allow-
ance for uncertainty [25]. In practice, it may be difficult to
assess the validity of the model assumption that the clus-
ter-level randome-effects follow a normal distribution. We
implemented this model using SAS macro glimmix.

Bayesian random-effects regression

The Bayesian random-effects regression model [26] has
the same format as the traditional random-effects logistic
regression. However it is based on different assumptions
to the variance of the cluster level random effect. The
Bayesian approach assumes the variance of the random
effect 72 as an unknown parameter while the traditional
regression approach assumes it as a constant. In the Baye-
sian approach, the uncertainty of 72 is taken into account
by assuming a prior distribution which presents the
researcher's pre-belief or external information to 2. The
observed data are presented as a likelihood function,
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which is used to update the researcher's pre-belief and
then obtain the final results. The final results are pre-
sented as the posterior distribution.

When applying the Bayesian model, it is essential to state
in advance the source and structure of the prior distribu-
tions that are proposed for the principal analysis [27,28].
In our Bayesian analysis, we assumed the non-informative
uniform prior distribution with lower and upper bounds
as 0 and 10 respectively to minimize the influence of the
researcher's pre-belief or external information on the
observed data. Consequently, the result from the Bayesian
approach should be comparable to the results from the
classical statistical methods. We also assumed that the
prior distribution for all the coefficients follows a normal
distribution with a mean of zero and precision 1.0E-6.
The total number of iterations to obtain the posterior dis-
tribution for each end point is 500,000, the burned-in
number is 10,000, and the seed is 314159. The non-con-
vergence of the Markov Chain is evaluated by examining
the estimated Monte Carlo error for posterior distribu-
tions and a dynamic trace plots, times series plots, density
plots and autocorrelation plots.

Impact of priors for Bayesian analysis

Even though the researcher's subjective pre-beliefs, which
are expressed as prior distribution functions, can be
updated by the likelihood function of the observed data,
misspecification of priors has an impact on the posterior
in some cases. To verify the robustness of the results from
the Bayesian random-effects logistic regression, we evalu-
ated the impact of different prior distributions of the var-
iance parameter in the analysis of the primary outcome,
BP controlled, without adjustment for any covariates.

The commonly used priors for the variance parameter are
uniform (non-informative prior) and inverse gamma
(non-informative and conjugate prior) [29]. The esti-
mates of treatment effect when assuming different prior
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distributions were quite consistent based on the results
presented in Table 1. For uniform priors, the estimates
and the 95% CIs were similar when the upper bound of
the uniform distribution was greater than or equal to 5.
For the inverse-gamma prior, Gelman [29] pointed out
that when 22 is close to zero, the results may be sensitive
to different choices of the parameter &. Since 72 is approx-
imately 0.5 (estimated from random-effects meta regres-
sion, random-effects logistic regression and Bayesian
approaches), which is not close to zero, our results are sta-
ble when using inverse-gamma prior with different
choices of the parameter &.

Results

Since the data collection was based on chart review, there
were very few missing values for the CHAT study. Demo-
graphic information and health conditions were balanced
between the two study arms at baseline. Of the 1540
patients who were included, there were 41% (319/770)
male patients in the control group and 44% (339/769)
male patients in the intervention group. At the beginning
of the trial, the mean age of the patients was 74.36 with a
standard deviation (SD) of 6.22 in the control group, and
74.16 with SD of 6.14 in the intervention group. In the
intervention and control group, 55% (425/770) and 55%
(420/770) of patients had BP controlled at baseline; 57%
(437/770) and 53% (409/770) of patients had BP con-
trolled at the end of the trial.

In analyzing the binary primary outcomes of the CHAT
trial (BP controlled), the results from different statistical
methods were different. However, the estimates obtained
from all of the nine methods showed that there were no
significant differences in improving the patients' BP
between the intervention and the control groups.

For the cluster-level methods, we compared the odds
ratios and 95% confidence interval with and without
adjustment for the stratifying variable, 'centre' (Hamilton

Table I: Comparison of the Impact of Different Priors on Bayesian Model

Prior

Outcome: BP controlled (unadjusted for covariates)

Type of Prior Prior distribution Odds Ratio 95% Cl
Uniform (0, 1) 111 (0.64 1.92)
Uniform (0, 5) 1.09 0.61 1.94)

Non-informative Uniform (0, 10) 1.09 0.61 1.94)
Uniform (0, 50) 1.09 (0.61 1.94)
Uniform (0, 100) 1.09 (0.61 1.94)

Non-informative and Conjugate IGamma (0.001, 0.001) .11 (0.63 1.94)
IGamma (0.01, 0.01) I.11 (0.63 1.95)
IGamma (0,1, 0.1) 1.12 (0.64 1.95)

Cl = confidence interval; BP = Blood pressure; lgamma = Inverse Gamma
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or Ottawa). The variable 'centre' is not significant at & =
0.05 in predicting if the patients' BPs were controlled at
the end of the trial. When adjusting for covariate 'centre’,
the treatment effects were slightly different and the 95%
confidence intervals for the treatment effects were nar-
rower. For individual-level methods, we compared the
results of the analysis with and without adjustment for
patients' characteristics at baseline. These baseline charac-
teristics included diabetes, heart disease, and whether or
not the BP of the patient was controlled at baseline. All of
these covariates were significantly associated with the out-
come at level a = 0.05. When we included some patients'
baseline information as the covariates in the models, the
odds ratios of the treatment effect changed slightly and
the 95% confidence intervals tended to be much narrower
compared to estimates without adjustment for any covari-
ate. The intra-cluster correlation coefficient (ICC) reduced

Methods

Cluster Level
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from 0.077 to 0.054 after adjusting for covariates. The
95% confidence intervals for the treatment effect from the
two modified GEE models became slightly wider after the
bias of sandwich standard error estimator was corrected,
but our conclusions remained robust. The comparison of
the results from different statistical methods is presented
in Table 2 and Figure 1.

Discussion

Summary of Key Findings

We applied three cluster-level and five individual-level
approaches to analyse results of the CHAT study. We also
employed two methods to correct the bias of the sand-
wich standard error estimator from the GEE model.
Among all the analytic approaches, only the individual-
level standard logistic regression was inappropriate since
it does not account for the between-cluster variation. This

Odds
Ratio (95% Cl)

Un-weighted Regression
Weighted Regression

Random Effect Meta Regression

Individual Level
Standard Logistic Regression

- 1.05 (0.59, 1.87)

= 1.27 (0.81, 1.99)

- 1.05 (0.60, 1.85)
_—.—

1.14 (0.93, 1.39)

(

Robust Standard Error = 1.14(0.72, 1.80)
zeneralized Estimating Equations = 1.14(0.72, 1.80)
Modified GEE (1) = 1.14(0.71,1.83)
Modified GEE (2) & 1.14(0.71, 1.84)
Random Effect Meta Analysis = 1.09 (068, 1.74)
Random Effect Logistic Regression = 1.10 (0.65, 1.86)
Bayesian Random Effect Regression = 1.12 (0.64, 1.95)

I I I

5 1 2

Favars standard practice

Figure |

Favors CHAT intervention

Forest Plot: Comparison of Methods without Adjustment for Covariates.
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Table 2: Comparison of Nine Methods with and without Adjustment for Covariates

Unit of Analysis Method of Analysis Unadjusted for Covariates Adjusted for Covariates
OR 95% ClI OR 95% ClI
Cluster Un-weighted Regression 1.05 (0.59 1.87) 1.05 (0.60 1.84)
Weighted Regression 1.27 (0.81 1.99) 1.27 (0.82 1.96)
Random-effects Meta Regression 1.05 (0.60 1.85) 1.05 (0.61 1.82)
Individual Standard Logistic Regression 1.14 (0.93 1.39) 1.17 (0.95 1.44)
Robust Standard Error I.14 (0.72 1.80) 1.17 (0.79 1.73)
Generalized Estimating Equations ** 1.14 (0.72 1.80) 1.15 (0.76 1.72)
Modified GEE (1) *** I.14 (0.71 1.83)
Modified GEE (2) *¥#+* I.14 (0.71 1.84)
Random-effects Meta Analysis 1.09 (0.68 1.74) .12 (0.73 1.70)
Random-effects Logistic Regression 1.10 (0.65 1.86) 1.13 (0.71 1.80)
Bayesian Random-effects Regression 1.12 (0.64 1.95) .13 (0.68 1.87)

OR = odds ratio; Cl = confidence interval

* For the cluster level analysis, include 'center' (i.e. Hamilton and Ottawa) as the covariate; for the individual level analysis, include 'diabetes at
baseline', 'heart disease at baseline', and 'BP controlled at baseline' as the covariates.
** The intra-cluster correlation coefficient (ICC) estimated from GEE are 0.077 and 0.054 when unadjusted for covariates and adjusted for

covariates respectively.

*#* The confidence interval was calculated based on the corrected standard error which was equal to the sandwich standard error estimator

multiply by /J /(J —1) , where J is the number of clusters in each arm.

#k The Confidence interval was calculated based on the quantiles from the t-distribution with 2(J-1) degrees of freedom instead of quantiles from

the standard normal distribution.

is because it tends to underestimate the standard error of
the treatment effect and its p-value. Correspondingly, this
method might exaggerate the treatment effect. All the
other methods handle the clustering by different tech-
niques, and therefore were appropriate. All but the
weighted regression method yielded similar point esti-
mates of the treatment effect. This is not surprising since
the weighted regression method can potentially affect the
location of the estimate as well as the precision. The Baye-
sian random-effects logistic regression yielded the widest
confidence interval. This was due to the fact that the Baye-
sian random-effects logistic regression incorporates the
uncertainty of all parameters. The 95% confidence inter-
vals for the treatment effect from the two modified GEE
models are slightly wider than that from the GEE model.
Adjusting for important covariates that are correlated with
the outcome increased the precision and reduced the ICC.
This is consistent with the finding from Campbell for the
analysis of cluster trials in family medicine with a contin-
uous outcome [30]. By adjusting for important covariates,
we are able to control for the effect of imbalances in base-
line risk factors and reduce unexplained variation. In gen-
eral, it is important to note that for logistic regression, the
population averaged model (fitted using GEE) and the
cluster specific method (modelled by random effects
models) are in fact estimating different population mod-
els. This is covered in detail by Campbell [31] and was first
discussed by Neuhaus and Jewell [32]. Thus, we would
not expect the estimates for the GEE and the random-

effects logistic regression to be exactly the same. However,
they are related through the ICC [31]. In our case, the esti-
mates from the two models are similar since the ICC in
the CHAT study is relatively small.

Sensitivity analysis and simulation study

Several sensitivity analyses can be considered for CRTs.
First, since different methods yield different results, and
very few methodological studies provide guidance on
determining which method is the best, comparing the
results from different methods might help researchers to
draw a safer conclusion, though the marginal odds ratio
estimated by the GEE and the conditional odds ratio esti-
mated from random-effect models may be interpreted dif-
ferently [33]. Second, sensitivity analysis can be used to
investigate the sensitivity of the conclusions to different
model assumptions. For example, in the random-effects
model, we assume that the cluster-level random effects
follow a normal distribution on the log odds scale. How-
ever, a sensitivity analysis can be carried out by allowing
empirical investigation on the distribution of the random
effects. Finally, a sensitivity analysis can also indicate
which parameter values are reasonable to use in the
model.

The Bayesian analysis incorporates different sources of
information in the model. However, a disadvantage of
this technique is that the results of the analysis are
dependent on the choice of prior distributions. We per-
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formed more analyses to assess the sensitivity of the
results to different prior distributions representing weak
information (i.e. non-informative prior) relative to the
trial data, and the results remained robust.

A simulation study by Austin [34] suggested that the sta-
tistical power of GEE is the highest among t-test, Wilcoxon
rank sum test, permutation test, adjusted chi-square test
and logistic random-effects model for the analysis of
CRTs. However, researchers should be cautioned about
the limitations of the GEE method. First, when the
number of clusters is small, the estimate of variance pro-
duced under GEE could be biased [21,22], particularly if
the number of clusters is less than 20 [35]. In this case,
correction for the bias would be necessary. Second, the
research on the goodness-of-fit tests to the GEE applica-
tion still faces some challenges [36]. Third, Ukoumunne et
al [23] compared the accuracy of the estimation and the
confidence interval coverage from three cluster-level
methods - the un-weighted cluster-level mean difference,
weighted cluster-level mean difference and cluster-level
randome-effects linear regression - and the GEE model in
the analysis of binary outcome from a CRT. Their results
showed that the cluster-level methods performed well for
trials with sufficiently large number of subjects in each
cluster and a small ICC. The GEE model led to some bias
of the sandwich standard error estimator when the
number of clusters are relatively few. However, this bias
could be corrected by multiplying the sandwich standard

error by /] /(J —1) , where ] is the number of clusters in

each arm, or by building the confidence interval for the
treatment effect based on the quantiles from the t-distri-
bution with 2(J-1) degree of freedom. With these correc-
tions, the GEE was found to have good properties and
would be generally preferred in practice over the cluster-
level methods since both cluster-level and individual-level
confounders can be adjusted for.

Conclusion

We used data from the CHAT trial to compare different
methods for analysing data from CRTs. Among all the sta-
tistical methods, Bayesian analysis gives us the largest
standard error for the treatment effect and the widest 95%
CI and therefore provides the most conservative evidence
to the researchers. However, the results remained robust
under all methods - showing sufficient evidence in sup-
port of the hypothesis of no effect for the CHAT interven-
tion against Usual Practice control model for
management of blood pressure among seniors in primary
care. Our analysis reinforces the importance of building
sensitivity analyses to support primary analysis in analysis

http://www.biomedcentral.com/1471-2288/9/37

of trial data so as to assess impact of different model
assumptions on results. Nonetheless, we cannot infer
from these analyses which method is superior in the anal-
ysis of CRTs with binary outcomes. Further research based
on simulation studies is required to provide better
insights into the comparability of the methods in terms of
statistical power for designing CRTs.
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