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Abstract

Whole slide imaging (WSI) has the potential to be utilized in telepathology, 
teleconsultation, quality assurance, clinical education, and digital image analysis to aid 
pathologists. In this paper, the potential added benefits of computer‑assisted image 
analysis in breast pathology are reviewed and discussed. One of the major advantages 
of WSI systems is the possibility of doing computer‑based image analysis on the 
digital slides. The purpose of computer‑assisted analysis of breast virtual slides can 
be (i) segmentation of desired regions or objects such as diagnostically relevant areas, 
epithelial nuclei, lymphocyte cells, tubules, and mitotic figures, (ii) classification of breast 
slides based on breast cancer (BCa) grades, the invasive potential of tumors, or cancer 
subtypes, (iii) prognosis of BCa, or (iv) immunohistochemical quantification. While 
encouraging results have been achieved in this area, further progress is still required 
to make computer‑based image analysis of breast virtual slides acceptable for clinical 
practice.
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INTRODUCTION

Whole slide imaging (WSI) has the potential to be utilized 
in telepathology, clinical education, and digital image 
analysis to aid pathologists. As different types of specimen 
have different specifications, comprehensive studies 
should be carried out in each pathology subspecialty to 
assess the extent of added benefits of WSI in that field. 
A large proportion of the pathology slides are related to 
breast tissue; for example, in the United States, 1.6 million 
breast biopsies are assessed by the pathologists each year.
[1] Recent studies suggested that WSI can be adopted in 
breast pathology as pathologists’ performance in reading 
breast slides while using WSI platforms was comparable to 
conventional microscopy in breast pathology.[2]

One of the major advantages of WSI systems compared 
to conventional microscopy is the possibility of doing 
computer‑based image analysis on the digital slides. 

Recently, many researchers and slide scanner vendors 
have started developing automated methods to facilitate 
pathologists’ tasks in breast pathology. This review 
is restricted to the computer‑based image analysis in 
breast pathology and aimed at discussing the previous 
studies, summarizing their results, and identifying the 
remaining challenges and areas where further studies are 
required.
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It should be noted that image analysis done in other 
pathology subspecialties or animals’ tissue might be 
extendable to breast pathology; however, discussion 
about the potentials for extending these ideas to breast 
pathology is out of the scope of this review. For a broader 
review on digital pathology in general, please refer to the 
studies by Pantanowitz et al. and Ghaznavi et al.[3,4]

SEARCH STRATEGY

Three different databases, namely Scopus, PubMed, 
and IEEEXplore, were searched to find relevant studies 
published after 1995. Our overall search strategy 
included terms for digital slides (e.g., whole slide, digital 
pathology, virtual slide) and breast and was limited 
to English‑language, original, human studies. We also 
searched references of the retrieved articles. The exact 
search statement for each database can be found in 
Appendix 1. For studies where the methodology evolved 
in two or more papers with considerable amount of 
overlap, only the most expanded version was included in 
the review.

Studies focusing on the application of WSI or 
computer‑aided analysis to multispectral images 
or quantification of biomarkers other than four 
clinically important immunohistochemical (IHC) 
stains (i.e., estrogen receptor (ER), progesterone 
receptor (PR), Ki‑67, and human epidermal growth factor 
receptor [HER2]) have been excluded as they are not 
currently widely used in the clinical practice.

CLASSIFICATION OF THE REVIEWED 
STUDIES

The primary purpose of the reviewed studies can be 
classified into four categories: (i) segmentation of desired 
regions or objects in the slide, (ii) classification of breast 
slides, (iii) prognosis of breast cancer (BCa), and (iv) IHC 
quantification. Most of the reviewed studies had a block 
diagram similar to the one shown in Figure 1. Some of 
the methods may not include one or more of the steps 

illustrated in Figure 1. Moreover, multiple steps may have 
been merged in some studies. As shown, features could 
be extracted from a segmented object or tissue texture. 
Each group of studies is discussed in this section.

Before processing the slides, preprocessing steps can 
be performed to eliminate the background,[5] segment 
diagnostically relevant area (DRA),[6,7] standardize the 
color,[6] or separate stain.[8] Color deconvolution is a 
commonly used preprocessing step to separate the 
H channel. Ruifrok and Johnston[9] proposed a formulation 
based on the Beer–Lambert law to map the red, green, and 
blue (RGB) color space to a set of three stains using color 
deconvolution. It should be noted that color deconvolution 
needs prior knowledge about the color vector of each 
stain (stain matrix). Standard stain matrix for a wide range 
of stain combinations is provided in a study by Ruifrok 
and Johnston.[9] However, use of image‑specific stain 
matrix is more accurate. This motivated the development 
of an image‑specific stain normalization algorithm to 
automatically estimate stain matrix for each slide, such 
as the one presented in a study by Khan et al.[10] As an 
alternative solution to overcome color variations due to 
dyeing, in a study by Ali et al.,[11] stain separation was 
done adaptively in cyan, magenta, and yellow color space 
rather than RGB. In addition, the RGB color space is not 
perceptually uniform. To overcome this problem, in the 
studies by Dundar et al.[12] and Basavanhally et al.,[13] lab 
color space which is a perceptually uniform color space 
was used. Finally, the color deconvolution assumes that 
the relation between spectral absorbance of a stain mixture 
and the concentrations of the pure stains is linear. This 
assumption is valid under monochromatic conditions; 
however, it introduces an error under nonmonochromatic 
conditions.[14]

Segmentation of Desired Regions or Objects in 
the Slide
A wide range of image processing methods has been used 
for segmenting objects in breast virtual slides. Accurate 
segmentation is important as it is an intermediate 
step of studies with various purposes. Because of its 

Figure 1: The common steps in the reviewed studies
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importance, only proposing a segmentation method to 
handle difficulties in breast slides has been main subject 
of 25 reviewed studies. The studies are summarized in 

Table 1. In this section, methods proposed for segmenting 
DRAs,[31‑34] epithelial nuclei,[5,15‑19,35] lymphocyte cells,[7,13,20] 
tubule,[21‑25] and mitotic figures[6,8,26‑30] are discussed.

Table 1: Summary of the studies aimed at segmentation of structures in breast virtual slides

Reference Initialization/seed 
detection

Segmentation Features; classifier Result

Epithelial 
nuclei

[15] Color deconvolution, 
morphological operation; 
fast radial symmetry 
transform

Multi‑scale 
marker‑controlled watershed

Morphology; 
rule‑based discarding

TPR: 0.86
Specificity: 0.89

[16] Adaptive thresholding 
of sequentially filtered 
image; distance transform 
of overlapped cells

Gaussian mixture modeling 
of distance transform; cluster 
validation; occluded contour 
reconstruction

‑ TPR: 0.97 (combined 
for cervical and BCa 
cells)

[17] Morphological 
reconstruction; adaptive 
thresholding

Marker extraction based on 
optimal H‑minima transform; 
Marker‑controlled watershed

‑ ACC: 
0.96 (combined for 
cervical and BCa 
cells)

[5] Background removal 
by graphcuts‑based 
binarization; 
distance‑constrained 
multiscale LoG filtering

Graphcuts‑based method 
with combination of alpha 
expansion and graph 
coloring

‑ ACC>0.94

[18] Color deconvolution, 
Calculating local features 
based on laws’ texture

Probability map generation; 
ACM including shape priors

‑ ‑

[19] Color deconvolution 
by singular value 
decomposition

Clustering; ACM Intensity, 
morphology, texture; 
AdaBoost

ACC: 0.95

Lymphocyte [20] Constructing the shape 
priors

watershed; ACM combined 
with shape priors

Morphology; SVM TPR: 0.86
PPV: 0.67

[7] Expectation maximization 
based segmentation of 
object classes

Geodesic ACM; Concavity 
detection; edge‑path 
algorithm

Intensity, k‑means 
clustering

TPR: 0.91
PPV: 0.78

[13] Thresholding luminance 
channel

Region growing Size, luminance, 
proximity; Bayesian 
modeling and 
Markov random field

ACC: 0.9

Tubule [21] Color swatch definition 
by the user

Normalized cuts on 
weighted mean shift reduced 
color space; Color gradient 
based geodesic ACM

‑ TPR: 0.86
PPV: 0.80

[22] Color deconvolution Lumen detection by 
hierarchical normalized cut 
initialized color gradient 
based ACM

AF based on 
O’Callaghan 
neighborhood; RF

TPR: 0.86
PPV: 0.89

[23] K‑means; identifying the 
nuclei nearer to each 
white region

Contour detection of the 
nuclei near‑lumen using level 
set

Surrounding cell 
evenness; rule‑based 
discarding

ACC: 0.9

[24] Nuclei detection by radial 
symmetry based method; 
classification of nuclei as 
normal/tumor

Lumen detection by 
thresholding

Morphology, texture, 
surrounding nuclei 
distribution

ACC: 0.91

[25] Super pixel 
generation; forming 
spatio‑color‑texture map 
using texton representation

Normalized graph cuts ‑ TPR: 0.88
Specificity: 0.92

Contd...
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Diagnostically relevant areas
In pathology slides, large areas are empty. As stated, 
segmenting DRAs could be used as a preprocessing step 
to reduce the computational cost[6,7] or to avoid storage 
of non‑DRAs with high magnification.[36] Due to its 
significance, there are studies aimed only at improving 
the accuracy of DRAs segmentation.

In the earliest method,[34] thresholding of gray‑level 
image was used to segment DRAs. However, many 
important features of breast tissues are coded in the color 
and texture. Therefore, in a study by Mercan et al.,[32] 
a texton‑based approach was proposed to distinguish 
between DRAs and irrelevant patches. In another study 
by Khan et al.,[31] Gabor‑based texture features were used 
to differentiate hypocellular from hypercellular stroma. 
Gabor filters are extensively used in image analysis as 
they resemble the human visual system.

In a study by Peikari et al.,[33] the areas that attracted 
pathologists’ attention were found using eye tracking 
data obtained from pathologists while assessing digital 
breast slides. The visual bag‑of‑words model with texture 
and color features was used to describe DRAs and train a 
logistic regression and a support vector machine (SVM) 
to predict DRAs in testing slides.

Epithelial cells
As shown in Figure 1, the segmentation procedure 
of epithelial cells included seed detection, initial 
segmentation, splitting, and false positive (FP) 
reduction. In one of the earliest studies by Dalle et al.,[37] 
gamma‑corrected red channel was used to segment the 
epithelial cells. K‑means clustering in RGB space was 
also utilized to detect cells.[38] However, in more recent 
studies, epithelial cells were mostly segmented from the 
H channel.[15,35,39,40] Thresholding the H channel followed 
by morphological operation is a low‑computational 
cost approach to detect epithelial cells. Nonetheless, 
thresholding is sensitive to variations of stain and 
cannot handle overlapping cells. Hough transform as 
well as Laplacian of Gaussian (LoG) filtering[41] and its 
approximation, which is difference of Gaussian (DoG), are 
also popular tools to detect blob‑like objects and are utilized 
to detect nuclei in breast tissue. They are more robust to 
the staining variations; however, the Hough transform is a 
computationally expensive approach and DoG should be 
deployed in a multi‑resolution scheme to address cells with 
different sizes. The fast radial symmetry transform, which 
is a computationally efficient, noniterative procedure for 
localizing radial symmetry objects, has also been utilized 
for candidate nuclei locations detection.[15]

Table 1: Contd...

Reference Initialization/seed 
detection

Segmentation Features; classifier Result

Mitotic cell [26] Color channel selection 
in RGB, HSV, lab, and luv 
spaces
LoG on blue ratio 
channel; thresholding

Morphological operation; 
ACM

Intensity, texture, 
morphology; DT

(A* + DT) TPR: 0.74, 
PPV: 0.70
(H** + DT) TPR: 
0.71, PPV: 0.56

[8] ‑ Chan‑Vese level set method Texture, 
morphology; SVM

TPR: 0.56
4.2 FP per high 
power field

[27] ‑ Multi‑resolution graph based 
segmentation

Texture; clustering 
spatial refinement

TPR: 0.70

[6] Stain normalization; DRA 
segmentation

Gamma‑Gaussian mixture 
modeling using expectation 
maximization

Texture; SVM TPR: 0.72; PPV: 0.70

[28] ‑ Building an optimal training 
set

Deep neural 
network

TPR: 0.70; PPV: 0.88

[29] PCA analysis of RGB 
space

Adaptive thresholding and 
morphological operation

Intensity, texture, 
morphology, features 
extracted by 
convolutional neural 
networks; SVM

(A*) TPR: 0.59, PPV: 
0.74
(H*) TPR: 0.44, PPV: 
0.76

[30] LoG on blue ratio 
channel; thresholding

Morphological operation Texture; DT, linear 
and nonlinear SVM

Selected features + 
SVM: TPR: 0.88, PPV: 
0.60

*A: Aperio Scanscope CS (Aperio Technologies, Vista, California), **H: Hamamatsu NanoZoomer 2.0 HT (Hamamatsu Photonics, Bridgewater NJ). ACC: Accuracy, TPR: True 
positive rate, PPV: Positive predictive value, SVM: Support vector machine, PCA: Principal component analysis, DRA: Diagnostically relevant area, ACM: Active contour model, BCa: 
Breast cancer, DT: Decision tree, AF: Architectural features, RF: Random Forest, HSV: Hue‑Saturation‑Value color space
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The initial seeds could be used for further 
fine segmentation using active contour models 
(ACMs),[18,19,37,39,40] Graphcuts,[5] or marker‑controlled 
watershed.[15,35] Conventionally, the ACM relies on 
gray‑level image, but breast slides are colored. To address 
this issue, in a study by Basavanhally et al.,[39] color 
gradient‑based ACM was used. In addition, ACM cannot 
handle overlapping cells as they rely only on intensity 
information and do not incorporate knowledge about the 
nucleus shape. In a study by Veillard et al.,[18] a nucleic 
shape prior was included to deal with this issue. In a 
study by Al‑Kofahi et al.,[5] Graphcuts could partially 
handle the segmentation the overlapping cells when 
combined with distance map constrained multi‑scale 
LoG for initial seed detection. However, Graphcuts led 
to over‑segmentation in enlarged highly textured nuclei 
and under‑segmentation in partially broken or weakly 
stained touching cells. Marker‑controlled watershed is 
a robust approach for separating the overlapping cells 
when the initial seeds are correctly localized. However, 
in case of severely overlapping cells, spurious initial seeds 
are inevitable. The adaptive H‑minima transform[17] and 
Bayesian classification[16] scheme were proposed to handle 
severely touching cells.

In the studies by Veta et al.[35] and Vink et al.,[19] an extra FP 
reduction step was added to improve positive prediction 
value (PPV). In a study by Veta et al.,[35] morphological 
features were extracted from each segmented area and 
rule‑based discarding was used to eliminate FPs. In a 
study by Vink et al.,[19] a more comprehensive feature 
set including intensity‑based features, morphological 
and textural features was extracted from each segmented 
area and modified AdaBoost was used for classification 
of areas as true nuclei or FPs. Further investigations are 
still required to eliminate FPs and handle overlapping, 
enlarged, and broken cells.

Lymphocytes
Lymphocytic infiltration is a prognostic indicator; 
therefore, recently, researchers worked on the automatic 
segmentation of lymphocytes. In a study by Basavanhally 
et al.,[13] lymphocytes were initially segmented using region 
growing, which resulted in a large number of epithelial 
nuclei being detected as well. Bayesian modeling of size 
and luminance of lymphocytes and proximity modeling 
using Markov random field were used to eliminate nuclei. 
However, region growing cannot handle overlapping 
cells. To address this, a concavity detection scheme was 
proposed in a study by Fatakdawala.[7] The expectation 
maximization‑based method was used to initialize the 
ACM and then overlapping cells were split. Despite 
achieving a true positive rate (TPR) of 86%, PPV was only 
64%. In a study by Ali and Madabhushi,[20] shape priors 
were incorporated in ACM to handle overlapped cells 
and the watershed algorithm was used to initialize the 

ACM. Similarly, high TPR (86%) and low PPV (67%) were 
achieved. Therefore, it seems that adding an FP reduction 
module is required to eliminate epithelial nuclei.

Tubules
Tubules are characterized by a white region called lumen, 
surrounded by a single layer of nuclei in normal breast 
histopathology. Dalle et al.[42] utilized thresholding 
followed by morphological operations to segment lumen 
areas. However, thresholding was not robust to stain 
variation. Xu et al.[21] proposed a color gradient‑based 
geodesic ACM which was initialized by weighted 
mean shift clustering and normalized cuts for lumen 
segmentation. Later, in a study by Basavanhally et al.,[22] 
domain knowledge was incorporated into method 
proposed in a study by Xu et al.[21] and each segmented 
area was classified either as true or false based on 
architectural features and an accuracy of 86% in detection 
of true lumen was achieved. Maqlin et al.[23] used 
heuristic rules based on evenness and closeness of strings 
of surrounding nuclei to eliminate lumen‑like areas and 
achieved an accuracy of 90%.

The above‑mentioned methods associated only the 
closest nuclei to the lumen. However, it could be 
surrounded by multiple layers of nuclei. Therefore, in 
a study by Nguyen et al.,[24] the global distribution of 
the nuclei and lumina were considered. Furthermore, 
a comprehensive feature set containing architectural, 
morphological, intensity‑based, and textural features were 
used to distinguish true lumina from artifacts. Finally, the 
discussed methods focus on lumen detection; however, 
nuclear arrangement in tubules could be with a lumen 
or in solid islands without a lumen. Belsare et al.[25] 
proposed a novel integrated spatio‑color‑texture‑based 
graph partitioning method to address this issue and 
achieved a correct classification rate (CCR) of 92% for 
segmentation.

Mitotic figures
Mitosis counting is tedious and subject to inter‑observer 
variation. The automatic detection of mitosis could 
potentially address these problems. Roullier et al.[27] 
proposed a multi‑resolution image analysis strategy 
for detection of mitotic figures based on Graph‑based 
regularization. The method was analyzed WSI at 
different levels and segmented the relevant areas and 
detected the mitoses in the highest magnification, and it 
was completely unsupervised. However, the detection rate 
was 70% and no FP reduction step was adopted; hence, 
further improvement was required for deploying the 
method in a clinical setting.

In a study by Khan et al.,[6] the pixel intensities of 
mitotic and nonmitotic areas were modeled by a 
Gamma‑Gaussian mixture. A set of textural and 
intensity‑based features were extracted from each region 
labeled as mitosis by the first module. The features fed 
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into an SVM classifier which detects FP instances. The 
obtained TPR and PPV were 72% and 70%. Irshad et al.[30] 
detected the candidate region in the blue ratio image 
using thresholding followed by morphological operations 
and extracted a patch of size 80 pixel × 80 pixel from 
blue ratio and red and blue channels of RGB color space. 
A wide range of textural features including Haralick 
textural, gray‑level run length, scale invariant feature 
transform, and Gabor‑based features was extracted 
from each patch. The principal component analysis was 
used for dimension reduction. The features were fed 
into decision tree, linear SVM, and nonlinear SVM. It 
was shown that a decision tree achieved to the highest 
performance with a TPR of 76% and a PPV of 75%. Later, 
Irshad[26] investigated the added value of morphological 
features and features from other color spaces to the FP 
reduction step, but the result did not improve.

One of the difficulties in the detection of mitotic figure 
is its wide range of appearances. To handle this issue, in 
the studies by Cireşan et al. and Malon and Cosatto,[28,29] 
the learned features extracted by convolutional neural 
networks were utilized. Malon and Cosatto[29] achieved 
a TPR of 59% and a PPV of 75% while in a study by 
Cireşan et al.,[28] the PPV and TPR were improved 
to 80% and 70% using an optimized approach for 
sampling nonmitosis pixels in the training set. Further 
investigations are still required in mitotic detection filed 
to improve TPR and PVP and also deal with the wide 
range of variability in the appearance of mitotic figures.

Classification
Computer‑based image analysis of breast slides may aim 
at classifying the virtual slide into different categories. 
The classification could be done based on the grade of 
BCa, the invasive potential of tumors, or cancer subtypes. 
Table 2 summarizes the purposes and methods of the 
reviewed studies aimed at classification of breast slides.

Cancer grading
Scarff‑Bloom‑Richardson grading system is a well‑known 
grading system relying on magnitude of tubule formation, 
nuclear pleomorphism, and mitotic count. Segmenting 
the mitotic figures (which leads to the mitotic count) has 
been discussed in sections 1–5. The discussed studies in 
this section aimed at classifying the slides according to 
nuclear pleomorphism[37,43,44] or all three factors.[39,45]

The earliest reviewed study by Weyn et al.[44] applied 
wavelet transform in four levels on the segmented 
nuclei and the energy of filtered images in each scale 
was calculated. In addition to wavelet‑based, Haralick, 
intensity‑based, and morphological features were 
extracted and fed into a K‑nearest neighbor classifier 
to separate individual nuclei and also each case in four 
categories (normal, nuclear atypia Grade I, II, III). A CCR 
of 64% for classification of individual nuclei and a CCR 

of 79% for case‑based classification were observed. It was 
shown that textural features (wavelet‑based and Haralick 
features) had a high additive value to intensity‑based 
features. The dataset used in the study was highly 
imbalance (21 normal vs. eight Grade III cases) and the 
segmentation method was required further refinement.

In a study by Doyle et al.,[45] the centers of nuclei were 
manually segmented and a range of intensity‑based 
and textural (Gabor‑based and Haralick) features were 
extracted from each nucleus. The mean, standard 
deviation, minimum‑to‑maximum ratio, and mode of 
these features over all cells in each slide were calculated 
and formed the feature vector. The architectural features 
were also extracted from Voronoi diagram, Delaunay 
triangulation, minimum spanning tree, and nuclei 
density function. The architectural features resulted in 
the highest CCR for low‑ versus high‑grade classification 
while the textural features resulted in a significantly 
lower CCR (73 vs. 93%). Despite the encouraging CCR, 
the fact that the segmentation was done manually 
limits generalizability of the study. In a study by Dalle 
et al.,[37] the nuclei segmentation was done automatically 
using polar transform, and area, compactness, and mean 
intensity were extracted from each segmented nuclei. 
A high value for CCR (92%) was achieved for scoring 
nuclear pleomorphism of 2396 region of interests (ROIs). 
However, the result could be biased as the dataset 
contained images from only six patients and did not 
include any patient with Grade I.

Pathologists implicitly integrate features from multiple 
field‑of‑views (FOVs) of different sizes when grading 
BCa. However, automatically selecting an optimal FOV 
size is not straightforward. In a study by Basavanhally 
et al.,[39] architectural and textural features were extracted 
from a multi‑FOV of varying sizes and important features 
at different FOV sizes were identified to distinguish 
low/high‑, low/intermediate‑, and intermediate/high‑grade 
patients. Unsurprisingly, the highest performance was 
obtained when distinguishing low from high‑grade 
patients. Similar to results obtained in a study by 
Doyle et al.,[45] architectural features performed better 
than textural ones. It was also observed that the most 
discriminating architectural features were different in 
FOVs with various sizes while contrast played a dominant 
role among textural features. It was also shown that the 
multi‑FOV classifier outperformed multi‑scale classifier.

All of the above‑mentioned methods extracted features 
from segmented nuclei only while pathologists rely 
on features from other structures such as tubules. To 
overcome this limitation, in a study by Petushi et al.,[43] 
features were also extracted from the tubule and showed 
that the density of tubule and number of Grade III would 
be useful parameters for BCa grading.
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Benign versus malignant classification and distinguishing 
lesion subtypes
A pathologist usually inspects the breast tissue to 
determine if it is a benign or malignant lesion is present 
and also to identify the cancer type (if appropriate). 
Computer‑aided detection (CAD) tools could help 
the pathologists in this task and make the results less 
susceptible to observer variation.

In the earliest CAD system,[44] it was shown that textural 
features (wavelet‑based and Haralick) outperformed 
morphological and intensity‑based features in 
differentiating benign from malignant cells. Later, 
in a study by Doyle et al.,[45] Gabor‑based features, 
which are also a textural feature, achieved higher CCR 
compared to architectural features, and the diagnostic 
importance of nuclear texture in differentiating normal 

Table 2: Summary of the studies aimed at breast histopathology slides classification

References Purpose Processing/segmentation Features; classifier Result

[37] Classification of BCa slides 
as score 2 or 3 based on 
nuclear Pleomorphism

Color deconvolution; 
thresholding and morphological 
operations; gradient in polar 
space

Morphology, texture; 
Gaussian modeling

CCR: 0.92

[43] Classification of cells 
according to Nottingham 
histologic grade (3‑Class)

Adaptive thresholding; 
morphological operation; 
Nuclei classification; Tubule 
detection

Texture, number of mitotic 
cells and tubules; linear, 
quadratic, ANN and DT

(The best: ANN)
3‑Class CCR: 0.71

[44] Classification of cells as 
benign or malignant (2‑Class)
Classification of cells 
based on nuclear 
pleomorphism (3‑Class)

Thresholding; morphological 
operation; multiscale 
representation using wavelet

Morphology, intensity, 
texture; k‑nearest neighbor

2‑Class CCR: 0.89
3‑Class CCR: 0.80

[39] Classification of BCa 
slides as low (mBR 3‑5), 
intermediate (mBR 6‑7), and 
high (mBR 8‑9) grade classes

Color deconvolution; 
morphological operation; color 
gradient‑based ACM

Architecture, texture; 
boosted multi‑FOV 
classifier

(Low/high) CCR: 0.93
(Low/intermediate) 
CCR: 0.72 (Low/high) 
CCR: 0.74

[45] Classification of cancerous 
and noncancerous slides
Classification of BCa slides as 
low or high grades

Extraction of 3400 features 
from manually segmented 
nuclei; dimension reduction by 
spectral clustering

(The best) Gabor‑based 
texture; SVM
(The best) architecture; 
SVM

CCR: 0.96
CCR: 0.93

[38] Classification of BCa slides as 
benign or malignant

Adaptive thresholding; 
morphological operation; 
multi‑label fast marching; 
watershed

Morphology, intensity, 
texture, architecture; 
k‑nearest neighbor

Sensitivity: 0.97
specificity: 0.94

[12] Classification of intraductal 
breast lesions as 
actionable (ADH and DCIS) 
or nonactionable (UDH)

Marker‑controlled watershed Morphology, intensity; 
multiple instances learning

CCR: 0.88

[46] Classification of BCa slides as 
benign or malignant (2‑Class)
Classification of BCa slides into 
benign and two subtypes of 
cancer (3‑Class classification)

Texton library construction by 
using four different filter banks; 
dimension reduction

Texton histogram; SVM, 
k‑NN, DT, Bayesian, 4 
boosting algorithms

(The best: Gentle 
AdaBoost)
2‑Class CCR: 0.89
3‑Class CCR: 0.80

[40] Classification of nuclei and 
ROI in breast slides as benign 
or malignant

Color deconvolution in CMY; 
difference of Gaussian; Hough 
transform; ACM

Morphology, texture; SVM (Nuclei) TPR: 0.81; 
FPR: 0.30
(ROI) TPR: 0.92; FPR: 
0.20

[42] Classification of BCa slides 
based on overall mBR 
grade (3‑Class)

Cell localization and detection 
of tubular formations in 
low‑resolution global image; 
classifying cells as epithelial/
tumor cells or candidate 
mitotic cells by Gaussian 
modeling

Tubules: Area of tubule/
area of slide; rule‑based
Nuclei: Color; Gaussian 
modeling
Mitotic figures: 
Morphology, intensity; 
Gaussian modeling

‑

mBR: Modified Scarff‑Bloom‑Richardson grading system, CCR: Correct classification rate, ROI: Region of interest, BCa: Breast cancer, ACM: Active contour model, UDH: Usual 
ductal hyperplasia; ADH: Atypical ductal hyperplasia, DCIS: Ductal carcinoma in situ, SVM: Support vector machine, TPR: True positive rate, FPR: False positive rate, ANN: Artificial 
neural network, k‑NN: K‑nearest neighbor, DT: Decision tree, FOV: Field‑of‑view
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from cancerous tissue has been shown. However, the 
wavelet‑based, Haralick, and Gabor‑based features are 
not easily interpretable to pathologists. Furthermore, 
the high dimension of feature vector when low number 
of training instances is available increases the chance of 
overfitting of the classifier to in hand data. Therefore, 
in a study by Cosatto et al.,[40] only the median nuclear 
area over an ROI and the number of large well‑formed 
nuclei were utilized to train a linear SVM with a labeled 
dataset of 335 hand‑picked ROIs. A sensitivity of 92% 
and a specificity of 80% were obtained. However, no 
information was provided about number of the patients 
from whom ROIs were picked.

In the real clinical practice, the ultimate goal is 
distinguishing patients with malignancy and not the 
individual ROIs. Pathologists judge each case based on 
multiple ROIs and label it accordingly. In a study by 
Filipczuk et al.,[38] a larger set from fifty patients (nine ROIs 
per patient) were classified as either benign or malignant 
using 84 features (morphological, intensity‑based, and 
textural) extracted from isolated nuclei in each ROI. 
Sequential forward feature selection was used to reduce 
number of features, and a k‑nearest neighbor was used as a 
classifier. The final diagnosis for each patient was obtained 
by a majority voting of the classification of all nine ROIs 
belonging to the same patient. A CCR of 100% was 
achieved. Considering the high CCR obtained in the study, 
a further investigation on this method on a larger data set 
is useful as no information about number of borderline 
cases was provided in the paper. Moreover, using majority 
voting could be questionable as pathologists consider a 
case malignant when at least one of the ROIs in the slide 
is positive. To address this issue, in a study by Dundar 
et al.,[12] learning with multiple instances was used to train 
an SVM classifier. According to the proposed classifier, 
a benign case was misclassified when at least one of the 
ROIs in a slide was classified as malignant, and a malignant 
case was misclassified when all of the ROIs in a slide were 
classified as benign. The method has been tested on a 
dataset of 20 well‑defined ductal carcinoma in situ (DCIS), 
12 borderline DCSI, 24 atypical ductal hyperplasia (ADH), 
and 39 usual ductal hyperplasia (UDH). DCSI and ADH 
cases were grouped as actionable (malignant) while UDH 
cases were considered nonactionable (benign). An overall 
accuracy of 87.9% was obtained while the accuracy on the 
borderline cases was 84.6%, comparable to that of nine 
pathologists on the same set (81.2% average). Despite 
encouraging result, for deploying such a system in clinical 
practice as an aid to pathologists, its additive value to a 
pathologist’s diagnosis should also be assessed. Moreover, 
the proposed method (classification rule and features) is 
not easily interpretable to pathologists.

Unlike the above‑mentioned studies, pathologists do 
not segment each individual nucleus within a slide; 
however, they analyze the scene holistically. In a study 

by Yang et al.,[46] textural features based on texton‑based 
method were extracted without segmenting the structures 
in slides. CCRs of 89% and 80% were achieved in 
benign/malignant and multi‑class (benign and two major 
cancer subtypes) classification.

Prognosis of Breast Cancer
The advent of WSI allows extracting quantitative features 
which could be helpful in predicting prognosis of BCa. In 
a study by Veta et al.,[47] an automatic nuclei segmentation 
algorithm[15] was utilized to extract size‑related nuclear 
morphometric features and their prognostic value in 
male BCa was investigated. The results demonstrated 
that mean nuclear area has a significant prognostic 
value. In another study, Beck et al.[48] showed that 
quantitative stromal features are associated with survival. 
A comprehensive set of quantitative features from the 
BCa epithelium and stroma was extracted by utilizing 
a machine learning method called computational 
pathologist. The prognostic model was based on the 
extracted features and it was shown that the score from 
the model was strongly associated with overall survival. 
In addition, assessing significance of features revealed 
that survival was strongly related to three of the stromal 
features and the magnitude of association was stronger 
than the association of survival with epithelial features.

The presence of lymphocytic infiltration is also a 
prognostic indicator for in HER2 + BCa patients. 
Currently, pathologists do not routinely report the 
presence of LI as quantifying it is a tedious job. As 
discussed in 1–3, recently researchers worked on automatic 
detection of lymphocytes. However, a further step should 
be added to grade the extent of lymphocytic infiltration. 
In a study by Basavanhally et al.,[13] architectural 
features were extracted from Voronoi diagram, Delaunay 
triangulation, and minimum spanning tree using the 
centers of individually detected lymphocytes as vertices. 
A CCR of 90% was achieved in differentiating patients 
with high and low lymphocytic infiltration level. However, 
the dataset contained ROIs only from 12 patients. To 
assess the generalizability of the method, further analysis 
on a larger dataset is recommended.

Immunohistochemical Quantification
Currently, the standard procedure in pathology laboratories 
for assessment of IHC is visual examination of samples 
by a pathologist. The pathologist determines the status of 
receptors by counting positively stained cells. Hence, the 
procedure is tedious and prone to inter‑observer variability 
due to subjectiveness. Computer‑assisted methods in 
the field of IHC quantification aim at quantification 
of information extracted from IHC‑stained samples to 
reduce inter‑observer variability and assessment time.

HER2 receptors typically express on the cell membrane. 
Therefore, membrane segmentation is one of the main 
steps of automated methods for quantification of 
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HER2. A color‑based approach,[49] water shedding,[50] and 
skeletonization[51] were used for membrane segmentation. 
After the segmentation stage, a group of features was 
extracted from the membrane and then utilized for 
prediction of HER2 score. The extracted features were 
based on membrane staining intensity,[49,51‑53] membrane 
completeness,[49,53] or membrane color properties.[54,55] 
Instead of restricting the area for feature selection to the 
segmented membrane, Ali et al. utilized an algorithm 
which was previously used for analysis of astronomical 
images and extracted intensity‑based features from the 
entire image without segmentation.[11,56] The agreement 
of the reviewed automated methods with the expert 
scoring is listed in Table 3.

In contrast to HER2 receptors, ER and PR overexpression 
typically results in nuclear immunoreactivity, and 
hence, nuclei segmentation is the first step of some of 
the reviewed methods listed in Table 3. The extracted 
features from segmented nuclei in the reviewed studies 
were based on nuclei staining intensity,[57,58] nuclei 
shape,[52,57] or nuclei color properties.[50,59] Rather than 
segmenting the nuclei, Amaral et al. proposed a method 
for predicting quick score values for receptor assessment 
based on color‑ and intensity‑based features extracted 
from each pixel of test images without segmentation of 
nuclei.[60] As shown in Table 3, the reviewed automated 
methods for ER and PR assessment showed high 
agreement with the expert scoring.

Table 3: Automatic and semi‑automatic methods for immunohistochemical quantification

Method [reference] Number of 
samples

Reference 
scoring

Result

ER and 
PR

Segmentation based
ImmunoRatio[50] 50 S VC r: 0.98 (combined with ki‑67)
NuclearQuant*[57] 195 C

53 ROI
Allred κ: 0.859 ; κ (w): 0.986

κ (w): 0.981
Definiens*
Aperio*[52]

10 S 3‑S a: 100
a: 100

Intensity analysis of segmented cell[58] 743 S P/N ρ: 0.74 (ER) and 0.62 (PR)
Analyzing ratio of color components[59] 134 S P/N a: 85 (ER) and 81 (PR)

Nonsegmentation based
Modified astronomical algorithms[11,56,60] 1769 Allred r: 0.82

Her2 Segmentation based
MembraneQuant*[51] (based on membrane 
intensity)

309 ROI 4‑S κ: 0.872

Definiens*
Aperio*[52] (based on membrane intensity)

23 S 4‑S a: 100
a: 100

Aperio* (based on membrane intensity)
Using normalized color Histogram[55]

77 S 4‑S a: 83.0 (Ha); 73.4 (Tb); 78.0 (CSc)
a: 94.6 (Ha); 92.1 (Tb); 92.5 (CSc)

Using membrane completeness and membrane 
intensity as features and minimum cluster distance 
classifier[49]

64 S 3‑S a: 80

Using normalized color Histogram[54] 77 S 3‑S tb: 0.72
Using membrane completeness and membrane 
intensity as features and minimum cluster distance 
classifier[53]

77 S 3‑S a: 81‑83

ImmunoMembrane[41] 144 S 3‑S κ (w): 0.80
Nonsegmentation based

Intensity‑based thresholding[61] 1648 S a: 87; κ (w): 0.57
Modified astronomical algorithms[11,56,60] 1653 4‑S r: 0.62

Ki‑67 Segmentation based
ImmunoRatio[50] 50 VC r: 0.98 (combined with ER and 

PR)
Nonsegmentation based

Intensity‑based thresholding[61] 1648 S 3‑S a: 87; κ (w): 0.57
aHamamatsu NanoZoomer 2.0 HT (Hamamatsu Photonics, Bridgewater NJ), bAperio ScanScope T2 (Aperio Technologies, Vista, California), cAperio Scanscope CS (Aperio 
Technologies, Vista, California). *Commercial product; S: Slides, C: Cases, ROI: Regions of interest, VC: Visual counting, Allred: 0‑8 grade system, 4‑S: 4 grade system, 3‑S: 3 grade 
system, P/N: Classification as positive or negative, ρ: Correlation coefficient r: R2 for regression; a: Agreement percentage, κ: Cohen’s kappa, κ (w): Weighted Cohen’s kappa, 
tb: Kendall’s coefficient of concordance, ER: Estrogen receptor, PR: Progesterone receptor
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Similar to the methods for ER and PR assessment, 
quantitative assessment of Ki‑67 could be done by 
extracting features based on either the segmented 
cell nuclei[50] or the percentage of stained area.[61] The 
agreement between the automated methods and the 
visual examination done by pathologist is reported in 
Table 3.

ImmunoRatio[50] and ImmunoMembrane[41] are two 
publicly available web‑based applications. ImmunoRatio 
is a tool for quantitative assessment of ER, PR, and 
Ki‑67 while ImmunoMembrane is an HER2 IHC analysis 
software. Both applications were tested and matched well 
with the pathologist’s visual examination.[41,50]

DISCUSSION

The emphasis of this review was discussing the 
computer‑based image analysis in breast pathology. In 
spite of encouraging results achieved by the reviewed 
studies, further progress is still required to make the 
CAD tools acceptable for clinical practice. For example, 
segmentation of severely overlapping and broken cells 
has not been fully addressed yet. Moreover, the low PPV 
of segmentation methods suggests that an FP reduction 
step should follow the initial segmentation. In addition, 
only a few studies focused on automatic segmentation 
and grading of tubule formation as well as distinguishing 
cancer subtypes; hence, further studies in these fields 
are required. Moreover, most of the studies attempted 
to extract features from the segmented objects. Further 
investigation of nonsegmentation‑based methods in 
breast pathology is required as these methods avoid error 
propagation from the segmentation step and also mimic 
the human visual system which captures textural features.

Pathologists extract information from multiple ROIs and 
scales. Using multi‑ROI and multi‑scale approach to 
mimic the perception of pathologists could be a potential 
direction for future studies. Furthermore, clinicians prefer 
a CAD which provides physically interpretable features 
and classification rules; however, most of the current 
tools are “black box” systems.

One of the other major challenges of CAD is variability 
of breast tissue. Although standardization of slide 
preparation protocols, color normalization, noise 
reduction, and quality assurance programs will tackle 
the tissue variability problems to some extent, there is 
an inherent variability in the appearance of the objects 
within the breast tissue, which cannot be compensated. 
For example, the shape of epithelial cancerous nuclei 
may vary from almost normal‑like round structure 
to highly irregularly shaped and enlarged nuclei with 
coarse and marginalized chromatin and prominent 
nucleoli. Moreover, the fact that different structures in 

breast histopathology slides may look similar decreases 
the specificity of CAD in detection of certain features. 
Another difficulty for segmentation‑based CAD is 
separating clustered or overlapping cells. All these factors 
that affect adversely on the performance of CAD systems 
should be addressed to obtain a CAD which is robust 
enough to be used in the clinical practice of pathology.

In evaluation of CAD studies, inherent inter‑pathologist 
variations should be considered. For example, in a study by 
Shaw et al.,[2] it was shown that intra‑ and inter‑pathologist 
agreement for detection of pleomorphism is lower than 
that of IHC quantification. Similarly, automatic IHC 
quantification tools usually achieved higher agreement 
with pathologists’ assessment in comparison with CADs 
aimed BCa grading [Tables 2 and 3].

Moreover, the additive value of CAD to pathologist’s 
opinion should be investigated as CAD could be 
potentially used as “second reader.” Finally, one of the 
major obstacles for researchers working on BCa digital 
slides is lack of publicly available data sets which enable 
them to evaluate the performance and robustness of their 
proposed algorithms. Having such reference databases 
whose ground truth was built based on a panel of expert 
pathologists would provide a unique opportunity for 
comparing different algorithms’ performance against 
each other. Recently, two publicly available databases 
for mitosis detection have been introduced;[62] however, 
more databases containing virtual slides of different BCa 
types, different grades of BCa, and so on from different 
scanners are still required.
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APPENDIX

Appendix 1
The advanced search option of the databases was 
used to find the articles. The search was limited 
to human studies. Endnote was used for reference 
management. After combining all references and 
omitting non‑English references, duplicated studies 
were omitted by using a built‑in function in Endnote. 
Nonoriginal studies (e.g., review paper, abstract paper or 
report), undetected duplicates, and nonrelevant studies 
were excluded based on scanning the article’s title and 
abstracts. Then, included papers are downloaded and 
fully studied and a few of them were further excluded in 
case they were not original or relevant to the topic of the 
review.

The following statement was used to search 
Scopus:
TITLE‑ABS‑KEY (“breast”) AND (TITLE‑ABS‑KEY 
[“virtual slide”] OR TITLE‑ABS‑KEY [“whole 
slide”] OR TITLE‑ABS‑KEY [“digital pathology”] 
OR TITLE‑ABS‑KEY [“digital histopathology”] OR 
TITLE‑ABS‑KEY [“whole‑slide”] OR TITLE‑ABS‑KEY 
[“digitized histopathology”] OR TITLE‑ABS‑KEY 
[“digital slide”] OR TITLE‑ABS‑KEY [“digitized 
slide”] OR TITLE‑ABS‑KEY [“digitized cytology”] 

OR TITLE‑ABS‑KEY [“digital cytology”] OR 
TITLE‑ABS‑KEY [“digital cytopathology”] OR 
TITLE‑ABS‑KEY [“digitized cytopathology”] 
OR TITLE‑ABS‑KEY [“cell segmentation”] OR 
TITLE‑ABS‑KEY [“nuclei segmentation”] OR 
TITLE‑ABS‑KEY [“nucleus segmentation”]).

The following statement was used to search 
IEEEXplore
(QT breast QT) AND ([“QT virtual slide QT”] OR [“QT 
whole slide”] OR [“QT digital pathology”] OR [“QT 
digital histopathology QT”] OR [“QT whole‑slide”] OR 
[“digital slide”] OR [“QT digital cytology QT”] OR [“QT 
cell segmentation QT”] OR [“QT nucleus segmentation 
QT] OR [“QT nuclei segmentation QT”] OR [“QT 
histometry QT”] OR [“QT histology image QT”] OR 
[“QT histopathology image QT”] OR [“QT mitotic QT]).

The following statement was used to search 
PubMed
(“Breast”) AND ([“virtual slide”] OR [“whole slide”] 
OR [“digital pathology”] OR [“digital histopathology”] 
OR [“whole‑slide”] OR [“digital slide”] OR [“digital 
cytology”] OR [“cell segmentation”] OR [“nucleus 
segmentation”] OR [“nuclei segmentation”] 
OR [“histometry”] OR [“histology image”] 
OR [“histopathology image”]).


