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Abstract Formosan subterranean termites, Coptotermes
formosanus, tend to avoid pathogen odors when tested in Y-
tube olfactometers, but approach and groom exposed
nestmates to remove pathogens from their cuticle and main-
tain a healthy population. To better understand their differen-
tial reaction to pathogens and their odors, the relationship
between odor cues and direction of motion was examined with
the fungus Isaria fumosorosea K3 strain. The results indicate
that nestmate odor was strongly attractive only in tests where
fungal odors were present in both branches of the olfactome-
ter. Termites generally avoid fungal odors when offered a
choice without fungal odor. We also tested termite aversion
to 3-octanone and 1-octen-3-ol, major surface chemical com-
pounds of 1. fumosorosea K3, and estimated the total mass of
these compounds present on the conidial surface by direct
extraction method. The total quantity of these chemicals on
the surface of fungal conidia was estimated to be approximate-
ly 0.01 ng per 107 conidia. This study demonstrates a context
dependent behavioral change in termites in response to the
odors of pathogenic fungi.
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Introduction

Many insects have evolved behavioral immunity to path-
ogens, and either avoid or remove disease causing agents.
At the same time, entomopathogenic microbes like fungi
may have developed novel surface compounds to counter-
act behavioral immunity of their host insects (Roode and
Lefévre 2012). Since entomopathogenic fungi vary great-
ly with regard to competitive strength, attachment pattern,
germination ability, and environmental adaptability
(Clarkson and Charnley 1996), the cues that lead insects
to detect the presence of pathogens are not yet clear. Fur-
thermore, insect behavior often is focused on obtaining
environmental information more than responding to stim-
uli. Important signals often are concealed in the high level
of background noise in insect habitats (Schroeder and
Hilker 2008). Neural circuits perceive, transmit, interpret,
and relay feedback messages. There also is fine tuning
and signal reduction at the periphery of the nervous sys-
tem (Webb 2012), which sometimes bring behavioral
changes in response to external signals. The interactions
between olfactory perception and behavior are still
unclear.

The Formosan subterrancan termite, Coptotermes
formosanus Shiraki (Blattodea: Rhinotermidae), is one of
the most destructive insects in homes and other wooden
structures (Lax and Osbrink 2003; Mulrooney et al.
2007). Various pesticides have been used for termite con-
trol, but their extensive use represents a significant envi-
ronmental hazard (de Faria and Wraight 2007; Zoberi
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1995). Entomopathogenic fungi have been proposed as an
alternative agent for termite control (Culliney and Grace
2000; Rath 2000; Sun et al. 2008; Verma et al. 2009), but
fungal pathogens have not always been as successful as
chemical controls (Chouvenc et al. 2011). It is important
to learn how termites avoid and remove microbial biolog-
ical control agents in their natural habitat in order to devel-
op reliable biocontrol applications. Coptotermes
formosanus tends to avoid pathogen odors, yet the termites
approach and groom exposed nestmates to remove patho-
gens from their bodies (Yanagawa et al. 2012). Recent
studies show that termite grooming is a context-
dependent behavior, as the frequency of grooming reflects
the termites’ ability to identify the microbial contamination
of their nestmates (Yanagawa et al. 2010, 2011a). The co-
nidia of the K3 strain are removed effectively from the
termite cuticle via mutual grooming (Yanagawa et al.
2008) even though conidial odors elicit clear avoidance
behavior in C. formosanus (Yanagawa et al. 2012).

There are several reports describing insect attraction and
aversion to fungal odors (Cornelius et al. 2004; Mburu et al.
2009, 2013; Stamets 2012), but little is known about insect-
pathogen interactions from the perspective of insect behavior
(Jackson et al. 2010). Previous analysis of the chemical con-
stituents of the odors found in 1. fumosorosea (including the
K3 strain) detected an average of 3.2 ng/ml 3-octanone and
1.2 ng/ml 1-octen-3-ol in (Yanagawa et al. 2012). These
chemicals are major surface components of this strain, and
our previous analyses with solid phase microextraction
(SPME) fibers and monolithic material sorptive extraction
(MMSE) disks could provide only indirect estimations of
chemical quantity, as the fungal volatiles were collected from
the air overnight (Yanagawa et al. 2011b, 2012, respectively).
Despite our indirect estimations of chemical quantities, the
activity of these fungal odors is clear.

In this study, the associations between olfactory perception
and termite hygiene behavior were examined by using
C. formosanus and the fungus Isaria fumosorosea Wize
(Hypocreales: Cordycipita- ceae), which is a well-known
agent for the biological control of pest insects (Ferron 1981;
Vega et al. 2009). We used Y-tube olgactometers to examine
termite context-dependent behavioral change in response to
fungal odors. We estimated the chemical quantity on the co-
nidium surface directly by a hexane extraction using the two
indicator chemicals, 3-octanone and 1-octen-3-ol, which are
the main surface volatiles of /. fumosorosea K3. Additionally,
electron microscopic observation was conducted on antennal
sensilla trichodeum I and basiconica, which have
chemosensillum external structures (Yanagawa et al. 2009b).
Our study demonstrated that the termites carefully approach
the pathogen under several conditions and provide a novel
perspective for investigating the behavioral resistance of ter-
mites to fungi in nature.

Methods and Materials

Insects Mature workers of Coptotermes formosanus were ob-
tained from a laboratory colony that was maintained in the
dark at 28 °C and at more than 85 % R.H. at the Deterioration
Organism Laboratory (DOL) of the Research Institute for Sus-
tainable Humanosphere, Kyoto University, Japan. In this
study, the largest colony (from Okayama, Japan) in DOL
was used since individuals from three DOL colonies showed
no significant difference in aversion to the odor of
1 fumosorosea K3 (Yanagawa et al. 2012).

Worker termites were separated into two groups, [ and 11, to
visualize the treatment on each termite. They were placed in
Petri dishes (90 x 15 mm) that held a filter paper (about 90 mm
diam., Whatman No 1) impregnated with distilled water
(group I) or an aqueous solution of 0.05 % (wt/wt) Nile blue
A (group II). Treating termites with Nile blue A is known not
to cause any significant influence on termite behaviors
(Yanagawa et al. 2011a). After treatment, the insects were kept
at 25 °C for 1-2 weeks before use in the bioassay. This treat-
ment stained all of the termites in group II blue.

Fungus Preparation Isaria fumosorosea K3 was maintained
on L-broth agar (1 % polypeptone, 0.3 % yeast extract, 2.0 %
sucrose, 0.5 % NaCl, 2.0 % agar) at 25 °C. Conidia were
harvested with a brush from 10 to 15-days-old cultures and
suspended in a 0.025 % aqueous solution of Tween 20 for the
behavioral tests and in distilled water for the odor analysis.

Conidia in suspensions were counted with a Thoma hemo-
cytometer (Erma INC. Tokyo) and adjusted to a concentration
of 1.0x107 conidia/ml. To investigate concentration-
dependent behaviors, they were diluted 10°-, 10'-, 102—, 10°-
and 10*-fold.

Grooming Induces Movement Towards the Pathogen Five
termites were place into a petri dish to measure grooming in
the presence of fungal conidia. Individual fungus-treated
nestmates from group II (stained blue) were treated and mixed
with four untreated nestmates from group 1. Termites from
group II were treated with conidia by submerging them in
107 conidia/ml suspension in a microcentrifuge tube, gently
swirling them for 5 s, and then placing them on a filter paper to
dry. Those from group Iwere treated identically with 0.025 %
Tween 20 solution without conidia. All termites were placed
in a Petri dish (3515 mm) and covered with an open lid
cardboard box during the experiments to maintain dim light-
ing while still allowing photographs to be taken without
disturbing the termites. The number of mutual contacts be-
tween termites was counted to estimate grooming because
the duration of grooming behavior varied, and it was difficult
to classify this behavior (Yanagawa et al. 2010, 2011a). After
a 15-min interval to acclimate termites, the number whose
mouth parts contacted other individuals was counted every
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30s for 15 min by using digital photographs. The total number
of contacts recorded every 5 min was calculated for the data
analysis. As a control, this procedure was repeated using ter-
mites from both groups that had been submerged only in
0.025 % Tween 20 solution. Data were collected from 20
replicates.

Aversion to Fungus-related Odor Y-tube tests were conduct-
ed to examine termite olfactory perception to /. fumosorosea
before contact. To estimate the aversion to the fungus-related
odor, the concentration-dependent directional response of ter-
mites to 1. fumosorosea K3 strain was estimated first. One
branch in the Y contained the air from 1 ml of 1.0x10°~10’
/ml of conidial suspension, and the other contained 1 ml of
0.025 % Tween 20 solution as a control. Thirty replicates were
performed at each concentration. To estimate the impact of
additional olfactory cues on the aversive reaction, paper discs
(1x1 cm) and ten nestmates were used. Termites were placed
into a bottle (30 ml) as a source of olfactory stimulus. Five
stimulus combinations with three controls were prepared with
nestmates and filter paper discs, set 1 through set 8. In all Y-
tube tests, branch preference was converted to a percentage.
Thirty individuals were examined for each set. These experi-
ments were carried out in the laboratory at 25 °C under normal
light conditions.

The Y-tube olfactometer was prepared as in Yanagawa
et al. (2012). In brief, the Y-tube olfactometer consisted of a
Y-shaped glass tube with an inner diam of 6 mm. The single
stem branch and two side branches were each 5 cm long and at
an angle of 60°. Stimulus and control air both flowed into the
stem branch from their respective side branches. Fresh air was
pumped into the system using a diaphragm pump (AP-115
Iwaki air pump, IWAKI CO. LTD, Tokyo) and cleaned
through serially connected bottles containing silica gel, 3
and 5 A molecular sieves, and active carbon. The cleaned air
flow was divided into two channels by a Y-shaped connector.
Each air channel was connected to a bottle (30 ml) that
contained stimulus odors, which was then connected to each
branch of the Y-tube olfactometer. The flow in each channel
was regulated to be 400 ml/min by an inline flowmeter. One
termite was placed at the inlet of the stem branch of the Y-tube
and exposed to light illumination from its abdominal side to
drive it to move to the branch point of the Y-tube. To deter-
mine the time required for the termite to choose either of
the two side branches of the Y-tube olfactometer, we mea-
sured termite choice and the time that the termite took to
reach the mid-point of the respective side branch (2.5 cm
from the junction) from the entrance of the stem branch
and from the middle of the stem branch (2.5 cm from the
entrance). A “choice” was made when the sample termite
passed the mid-point of the respective side branch (2.5 cm
from the junction).

@ Springer

Quantity of Odor Compounds on Conidia To directly eval-
uate chemical quantities on the surface of 107 conidia, 3-
octanone and 1-octen-3-ol (Nacalai Tesque, Kyoto, Japan)
were used as indicator chemicals. Conidial suspensions (10’
/ml) were prepared in 1 ml deionized water and freeze-dried in
a glass tube until they became dried-conidia powder. The
compounds on the conidia surface were extracted for 5 min
with 1 ml hexane (Nacalai Tesque, Japan), and conidia were
filtered from hexane solution. In the control, 1 ml deionized
water was freeze-dried in a glass tube, which was then rinsed
with 1 ml hexane. The hexane was concentrated to 200 pl
before analysis. The quantity of adsorbed chemicals was esti-
mated by gas chromatograph-mass spectrometry (GC/MS)
using a Shimadzu QP5000 GC-MS system. El-mass spectra
were obtained at 70 eV. 3-Octanone and 1-octen-3-ol were
identified by comparison of their mass spectra and retention
times to those of the respective authentic compounds, and the
quantity of each chemical in 107 /ml conidia was estimated by
comparison of the peak areas to 10 ng/ ml external standards.
Each determination was repeated five times.

Termite sensitivity to these two chemicals was examined
by Y-tube olfactometer. Y tube tests identical to previous
methods were run to examine the choice between known
quantities of a single chemical suspended in 1 ml deionized
water and 1 ml deionized water alone. Serial dilutions were
made using 1 pl/ml solutions of a single chemical (about
8 ng/ml for both chemicals).

Electron Microscopy of Chemo-sensillum on Antenna of
C. formosanus Termite antennae were examined with a scan-
ning electron microscope (SEM). Sample antenna were fixed
in 4 % (v/v) osminium tetroxide for 2 h and then dehydrated
through a graded acetone series. Samples were air dried and
coated with platinum-palladium. Observation was made with
a Hitachi S-4100 SEM, which was equipped with a field emis-
sion gun. For transmission electron microscopic (TEM) ob-
servation, antennae were double-fixed in 3 % glutaraldehyde
and 2 % osmium tetroxide, dehydrated through graded ethanol
solutions, and embedded in Epon 812. Thin sections were
double-stained with uranyl acetate and lead tartrate, and ob-
served by TEM (JEM-2000 EX II). Chemosensillum identity
was confirmed by series of thin sections.

Statistical Analysis A Poisson regression was applied to ex-
amine the frequency of mutual-contacts, and then linear re-
gression was applied to see the time-dependent increase of
mutual-contacts. Kruskal-Wallis test was used to analyze all
of the data from the Y-tube test to compare termite reaction
among sets. Linear regression analysis (y: y=1 when the ter-
mite chose a test odor branch, and y=0 when the termite chose
a control solution branch, x: concentration of conidia solution)
was applied to see the concentration dependence in each set.
Concentration-dependent reactions in the Y-tube olfactometer
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also were analyzed by the Wilcoxon test in comparison with
the control choice. For a more detailed analysis of olfactory
responses, multiple pairwise comparisons were employed. To
examine the influence of olfactory cues on termite behavior,
the Tukey-Kramer HSD test was applied. JMP 10.0 software
was used for all analyses.

Results

Grooming Induces Movement Towards the Pathogen Ter-
mites moved toward their fungus-treated nestmates, and re-
moved these pathogenic organisms from other termites. The
frequency of mutual touching for all five termites (one treated
+ four untreated) are shown in Fig. 1a. Mutual contacts were
higher in fungus-treated groups compared to control groups
(P<0.001, x*=28.98 at group parameter in Poisson regres-
sion). Mutual contacts also increased in frequency over time
in the fungus treated group (P<0.001, 7=3.76 at time param-
eter in linear regression) but not in the control group (P=
0.951, T=0.06 at time parameter in linear regression). Contact
directed toward treated blue-termites was significantly greater
than that directed toward control blue-termites (P<0.001, x*=
87.67 at group parameter in Poisson regression, test groups:
P=0.006, T=2.88 and control groups: P=0.784, T=—0.28 at
time parameter in linear regression) (Fig. 1b).

Aversion to the Fungus Odor Termite aversion to the odor of
1 fumosorosea K3 increased significantly with an increase in
concentration (Table 1, P<0.001, x*=23.23 in Kruskal-Wallis
test). At the highest concentration (10’conidia/ml), termites
exhibited an avoidance in a significantly shorter time than
for more dilute conidia of the fungal odors (P=0.026, x*=
4.991 in Wilcoxon test).

Effects of Multiple Olfactory Cues on the Termite Aversive
Reaction Multiple olfactory cues were examined with eight
sets as described in Fig. 2a. These sets were designed to see if
termite aversion to fungus odor could be modulated by other
factors like filter paper discs or presence of nestmates. Sets 1
to 3 were controls. The introduction of additional olfactory
stimuli resulted in context-dependent behavioral change in
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Fig. 1 Grooming behavior as reflected by the frequency of mutual
contact among all five termites observed in a dish for 15 min (a) and
the average number of mutual contacts involving the single fungal treated
or control termite (stained with 0.05 % Nile blue A) during the 15 min
assay (b). Each dish contained five termites (N=20) treated with either
Tween 20 (open circles, white bars) or 107 conidia/ml of Isaria
fumosorosea K3 closed circles, black bars. The vertical bars indicate
standard errors (SE). Significant changes are indicated by asterisks
(Wilcoxon test **: P<0.01, *: P<0.05)

termite directional choice, and in their aversion to the patho-
gen (Table 2, P<0.001, x*=43.9584, Kruskal-Wallis test: set
4 — set 8).

Fungal odors were avoided dramatically by termites com-
pared to Tween 20 (tw) controls, as is seen in set 4 (Fig. 2a)
(P<0.001, x*=12.17, Wilcoxon test: set 1/set 4). There was a
significant difference in termite choice between set 5 and set 6
(P=0.018, x*=5.62, Wilcoxon test) but no significant differ-
ence between set 4 and set 5 (P=0.321, x*=0.985, Wilcoxon

Concentration-dependent avoidance to Isaria fumosorosea K3 conidial suspension. Percent (%) of stimulus odor chosen in Y-maze test.

Number of conidia (/ml) Control 10° 10* 10° 10° 10’
Preference (%) 56.7+9.2 33.3+8.8 **233+7.9 **%13.3+6.3 **%13.3+6.3 ***13.3+6.3
Time taken to pass Y-maze (sec) 28.5+4.6 35.8+6.8 27.4+6.0 30.4+6.5 37.2+6.4 *18.2+34

Significant changes from the control response were examined by Wilcoxon test

(**¥: P<0.001, **: P<0.01, *: P<0.05)
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Fig. 2 Behavioral modification in response to multiple olfactory cues.
Results of two choice olfactometer tests measuring the percentage of
termites choosing bottle 1. The dotted line indicates the control percent
of termites choosing bottle 1 under no cue conditions (N=30, 53.3+
9.26 % individuals chose bottle 1 direction in 10.1+8.45 min when
both bottles 1 and 2 were empty). Lettering indicates the result of the

test), set 5 and set 7 (P=0.264, y>=1.249, Wilcoxon test), or
between set 6 and set 7 (P=0.198, x°=1.655, Wilcoxon test)
(Fig. 2a). This suggests that the aversion to the fungal odor
was not affected by other odors in the source bottle. In addi-
tion, the odor from nestmates did not encourage the individual
choice of direction in comparison with controls (P=0.956,
x*=0.090: set 1, 2, 3 and P=0.965, x*>=0.269, Kruskal-
Wallis test: set 1, 2, 3, 6). However, when the stimulus air
from both branches of the Y-tube olfactometer contained a
fungal odor, termites showed a strong preference for air that
also contained the odor of their nestmates (Choice of test
branch: 90.0+5.6 %, P=0.004, x2:8.381 in set 2/set 8 and
P<0.001, x*=18.067 in set 7/set 8, Wilcoxon test)(Fig. 2a). It
took a similar amount of time for termites to make their choice
in all test sets (Table 3, Tukey-Kramer HSD test).

Quantity of Odor Compounds in Fungus Surface extracts
of I. fumosorosea conidia were screened for 3-octanone and 1-
octen-3-ol by GC/MS. Several compounds were detected at
very low level by 5 min of extraction with hexane, but 3-
octanone and 1-octen-3-ol were sufficiently concentrated for

Tukey-Kramer HSD test. Error bars indicate a standard error (SE) (V=
30). Sets 1-8 were described as: [bottle 1]/[bottle2]. The following
abbreviations are used to describe odor sources used for all
combinations: ‘Tw’ indicates a Tween 20 solution, ‘T’ indicates
termites, ‘fp’ indicates filter paper discs and ‘K3’ indicates a solution of
Isaria fumosorosea K3

successful identification (Fig. S1). 1-Octen-3-ol was detected
in all five replicates, and its concentration was 0.052+
0.049 ng/ml in 107 conidia. On the other hand, 3-octanone
was detected in only one replicate and was at a concentration
0f 0.044 ng/ml.

In Y-tube tests, termites showed concentration-dependent
avoidance of 3-octanone (Fig. 3a). Termites were most strong-
ly affected by 8.2x10~° ng of 3-octanone in 1 ml water. Since
107 conidia contained 0.044 ng 3-octanone, termites could
sense fungus-related chemicals at levels that were much lower
than those in a 107 conidia /ml suspension. No significant
reaction was observed to the solutions of 1-octen-3-ol. There
was no association between the time taken to choose a branch
and concentration of fungal odors (Table 4, 3-octanone:
Pearson’s r=0.65, 1-octen-3-ol: Pearson’s =0.32).

Electron Microscopy of Chemo-sensillum on Antenna of
C. formosanus Several types of chemo-sensilla, sensilla
trichodea, chaetica and basiconica were observed on termite
antennae under SEM, and we identified the sensillum
basiconica as a chemo-sensillum by TEM (Fig. 4).

Table2 Combinations of set-ups used for Y-maze test to examine the condition of termite aversion to the fungal odor

Odor source/set Set 1 Set 2 Set 3

Set 4

Set 5 Set 6 Set 7 Set 8

Bottle Bottle Bottle Bottle

Bottle 1 Bottle 2 Bottle Bottle Bottle Bottle Bottle Bottle

Bottle Bottle Bottle Bottle

1 2 1 2 1 2 1 2 1 2 1 2 1 2
Fungal conidia X X X X X X X X X
Termites (nestmate) X X X X
Filter paper discs X X X X X X X X X
0.025 % Tween20 x X X X X X X X X X X X X
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Table 3 Time taken to pass Y-tube olfactometer (mean value+SE)

Sets Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Time taken to pass Y tube (sec) 28.5+4.6a 33.8+4.0ab 33.9+6.8a 182+34a 199+32ab 274+4.1ab 25.7£34ab 17.24+2.4ab

Lettering indicates significantly different mean time (sec.) according to the Tukey-Kramer HSD test (P<0.05). Individuals progressed toward bottle 1 in

10.148.45b min when both bottles 1 and 2 were empty

Discussion

This study demonstrates that termites exhibit context-
dependent behaviors in response to the pathogenic fungus
L fumosorosea. To see the effects of other olfactory cues on
their avoidance of fungal odors in Y-tube olfactometers, sev-
eral setups were tested with the pathogen, filter paper discs,
and nestmates. While the experimental setting was simple,
termites strongly avoided the pathogen odors. They showed
clear attraction to nestmate odors only when both choices
contained fungal odors in the Y-tube.

Termites showed a rapid, but brief, increase in their contact
frequency after one fungus-treated nestmate was placed in a
healthy population. The response was likely mediated by ol-
factory perception (Fig. 1 and Yanagawa et al. 2011a). Ter-
mite orientation and movement also changed in relation to
olfactory cues in moving air containing the odor of the path-
ogenic fungus. The Y-tube binary choice test showed that
termites avoided the odor of I fumosorosea K3, and this
effect was clearly concentration-dependent (Table 1). Ter-
mites never moved toward the pathogenic fungus odor if they
could choose another direction without the odor (Fig. 2, set 4,
5, 7). Aversion to pathogen odors was not changed signifi-
cantly by adding other odor sources but was mediated slightly
(Fig. 2, set 4 —set 5 and set 5 - set 7). In contrast, when both
cues contained the fungus odor, termites showed a significant
change in their behavior and chose the cue containing nest-
mate odor (Fig. 2 set 8). These results support the crucial

Fig. 3 Directional choice of 100
termites in response to single
chemical in Y-tube olfactometer.
Significant changes from the
water (control response) are
indicated by asterisk (Wilcoxon
test **: P<0.01, *: P<0.05).
Error bars indicate a standard
error (SE) (N=30).
Concentration-dependent reaction
of m: 3-octanone and o: 1-octen-
3-o0l

Percent of odor chosen (%)

0 (Water)
(Water)

so| ®--

role of olfactory cues in the ability of insects to perceive
foreign organisms and the ability termites to survive and
avoid harmful pathogens (Chouvenc et al. 2011; Staples
and Milner 2000).

The amount of 1-octen-3-ol and 3-octanone detected in a
hexane-extraction of 107 . fumosorosea conidia was around
0.05 ng for both compounds. Y-tube tests with a single chem-
ical demonstrated that the termite olfactory system responds to
8.2x107'? ng/ml of 3-octanone (Fig. 3a). This concentration
of 3-octanone is much less than the amount detected in a
hexane-extraction of 107 I. fumosorosea conidia, and it sug-
gests that the termite olfactory system can distinguish with
very high sensitivity between peripheral inputs. It is reported
that soil in Kenya contains 10°~10* fungus cells per gram
(Varm et al. 1994), and that 10>~10° entomopathogenic fungal
conidia are present per gram of soil in orchards in Japan
(Yaginuma 1990). Therefore, sensitivity could be a necessary
ability for soil-dwelling insects to sense pathogens in nature.
Odors from fungi do not require a specific receptor, as in
pheromone perception, which means they must be classified
as generalist cues such as plant or soil odors (Steinbrecht
1999). Previous studies that investigated host identification
and herbivory in insects revealed that insects tend to perceive
higher concentrations of chemical compounds in their host
plants than those detected by termites in this study (Schmidt-
Biisser et al. 2009; Webster et al. 2010). Webster et al. (2010)
reported that volatile compounds can be perceived differently
depending on situations, with consequent changes in insect

. .\.T.w*ﬁ ................... p'.«-‘" Lo
O 'y 7O , [ |

\

\\*’* ,'

- **,)
\\‘

(-18) (-15) (-12) (-9) (-6) (3) (0) 3)
(Water)  (Water) (Water) (Water) (Water) (Water) (Water) (Water)

Concentration (8.2 x 10* ng/ ml) in bottle 1
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Table 4 Time taken to pass Y-tube olfactometer (sec)

8.2x10" (ng/ml)  water 1078 0" 10" 107° 10°¢ 1073 10° 10°
3-Octanone 11.1£1.7  #%45.0+50 *%20.1+33  **31.0+3.6 *¥244+24 *22.8+34  *¥30.8+£3.9 *%632+7.2 *229+3.1
1-Octen-3-ol 429435 *%19.0£3.1 *¥243+£24 46560 48548  *¥30.8+44 *¥134+22 *¥11.7+20 *¥11.6+2.0

behavior. For accurate host-recognition in herbivorous insects,
perceiving blends of odors also is important since plants gen-
erally produce a mix of volatile compounds (Bruce and Pickett
2011). In addition, the compounds shared by both host and
non-host plants play an important role in recognition (Cun-
ningham 2012). Thus, it is likely that the relative proportions
of chemical blend are cues for perception. Some blends may
not induce any response in termites but may play a role in
pathogen perception.

The presence of olfactory-receptor-sensilla on termite
antennae was confirmed by an electron microscope. There
are few reports of termite sensory hairs on termite anten-
nae, especially with SEM and TEM observations, despite
the important link between termite habitat/behavior and the
modality and quality of sensory information (Costa-
Leonardo and Soares 1997; Prestage et al. 1963). More-
over, the antennal sensory system of termites may have
various features specific to the group (Ishikawa et al.
2007; Rocha et al. 2007; Ziesmann 1996). As for
C. formosanus, previously. we presumed the functions of
many antennal sensilla from external structures (Yanagawa
et al. 2009b). The work of Tarumingkeng et al. (1976) has
been the only report describing internal structures. Previ-
ously, the role of antennal chemical receptors in grooming
behavior was demonstrated (Yanagawa et al. 2009a), and
the sensillum chaetica was identified as the sensillum that
responds to fungal odor by single sensillum recordings
(SSR). However, in the same study, it was indicated that
there were some other potential sensilla which can perceive
odor (Yanagawa et al. 2010). In the present study, our SEM
and TEM image confirm the sensilla basiconica, which are

Fig. 4 SEM (a) and TEM photo
(b) of chemo-sensillum
basiconica on antenna of
Coptotermes formosanus. a:
Arrows indicate chemo-sensillum
basiconica. Star indicates a
sensillum capitulum. b: 4rrows
indicate tubules typical of
olfactory sensilla
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adjacent to a sensillum capitulum, a chemo-receptor sen-
sillum (Fig. 4). Tarumingkeng et al. (1976) also reported
the precence of sensilla basiconica, but the sensilla here we
report are different from theirs because of their specific
location.

It is important to understand how insects perceive patho-
gens. This knowledge will help develop successful and sus-
tainable pest management. For example, after it was realized
that termites do not avoid the blastospore of 1. fumosorosea,
laboratory tests were begun to develop biological control
methods with blastospors (Dunlap et al. 2005; Jackson
et al. 1997; Wright et al. 2003). Investigation of insect per-
ception of pathogen-related compounds will help identify
compounds that disrupt their behavioral immunity.
Balachander et al. (2013) mixed termite attractants in a fun-
gus conidial bait and enhanced the effect of control. If we
could isolate a fungal isolate that possesses an attractive or
at least indifferent volatile to a target pest, and if it adapts
well in the nature of agricultural region for biocontrol, we
should be able to control the pest more effectively. Further-
more, several reports have mentioned that environmental
factors, such as the soil type, are more important for ento-
mopathogenic fungi than the presence of an insect host
(Bouamama et al. 2010; Jackson et al. 2010). Optimizing
several environmental factors may be important for ensuring
that pathogens persist in the field for sustainable biological
control. It appears as though insects carefully use environ-
mental cues that reflect the composition or concentration of
chemical information in nature. More studies are needed to
clarify the interaction between an odor-cue and insect
perception.
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