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Background: Multiple myeloma (MM) is a hematological malignancy in which

plasma cells proliferate abnormally. 5-methylcytosine (m5C) methylation

modification is the primary epigenetic modification and is involved in

regulating the occurrence, development, invasion, and metastasis of various

tumors; however, its immunological functions have not been systematically

described in MM. Thus, this study aimed to clarify the significance of m5C

modifications and how the immune microenvironment is linked to m5C

methylation in MM.

Method: A total of 483 samples (60 healthy samples, 423 MM samples) from the

Gene Expression Omnibus dataset were acquired to assess the expression of

m5C regulators. A nomogrammodel was established to predict the occurrence

of MM. We investigated the impact of m5C modification on immune

microenvironment characteristics, such as the infiltration of immunocytes

and immune response reactions. We then systematically evaluated three

different m5C expression patterns to assess immune characteristics and

metabolic functional pathways and established m5C-related differentially

expressed genes (DEGs). In addition, biological process analysis was

performed and an m5C score was constructed to identify potentially

significant immunological functions in MM.

Result: Differential expressions of m5C regulators were identified between

healthy and MM samples. The nomogram revealed that m5C regulators

could predict higher disease occurrence of MM. We identified three distinct

m5C clusters with unique immunological and metabolic characteristics. Among

the three differentm5C clusters, cluster C hadmore immune characteristics and

more metabolism-related pathways than clusters A and B. We analyzed

256 m5C-related DEGs and classified the samples into three different m5C

gene clusters. Based on the m5C and m5C gene clusters, we calculated m5C

scores and classified each patient into high- and low-m5C score groups.
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Conclusion: Our study demonstrated that m5C modification is involved in and

contributes to the diversity and complexity of the immune microenvironment,

which offers promise for the development of accurate therapeutic strategies.

KEYWORDS

multiple myeloma, 5-methylcytosine, immune microenvironment, immune therapy,
biological function

1 Introduction

Multiple myeloma (MM) is a malignant proliferative

hematological disease that originates from the hematopoietic

system and is caused by the abnormal proliferation of plasma

cells (Cowan et al., 2022). The disease can affect any organ of the

human body, with the most frequently involved organs being the

bone and bone marrow. MM accounts for 10% of the total

number of patients with hematological tumors and is the

second most common type of hematological malignancy

globally (Allegra et al., 2022). Monoclonal immunoglobulins

appear in the blood and urine of MM patients, which results

in functional damage to related target organs, such as bone

marrow hematopoiesis, kidneys, and bone. MM manifests

clinically with anemia, bone pain and osteolytic destruction,

renal failure, and repeated infections (Wang et al., 2021).

Because MM tumor cells are derived from immune cells, they

can affect the humoral and cellular immunity of MM patients

(Jadoon and Siddiqui, 2021). In the early monoclonal

gammopathy of undetermined significance (MGUS) stage of

the disease, an average of 1.0–1.5% of MGUS patients per

year progress to active myeloma, which indicates that the

interaction between the immune system and tumor cells

determines the final evolution of MM (Nakamura et al.,

2020). Abnormal plasma cells in MGUS can affect various

biological processes in the bone marrow microenvironment,

such as cell homing, cytokine secretion, immune cell function,

and angiogenesis. The homeostasis of the tumor immune

microenvironment can also further promote the malignant

proliferation of plasma cells. Therefore, a detailed

understanding concerning the biological characteristics and

immunoregulatory mechanisms of MM cells will be crucial for

the discovery of new diagnostic biomarkers and possible drug

targets as well as the exploration of new immunotherapy

methods for MM.

As a groundbreaking and emerging area of epigenetic

research, 5-methylcytosine (m5C) epigenetic modification has

received increased attention in recent years. m5C methylation

modification is a methylation of the fifth carbon atom on the

DNA cytosine (C), in the context of cytosine-guanine

dinucleotides (CpG) through the action of the DNMTs

(Bestor, 1988). m5C modification occurs frequently in cells

and plays an essential role in maintaining gene expression and

genomic stability in cells. m5C is modified primarily by

methyltransferases (“writers”), demethylases (“erasers”), and

binding proteins (“readers”). A range of biological functions

are exerted on determining cell differentiation state, selecting

cell identity, mitochondrial activity, and immunoregulatory

mechanisms. m5C methylation modification is a dynamic and

reversible process; m5C “writers” catalyze the formation of m5C,

“readers” function by recognizing and binding to m5C

methylation sites, and “erasers” catalyze the demethylation of

m5C (Hu et al., 2021). Several studies have suggested that m5C

regulation contributes to underlying immune-regulating

mechanisms (Wang et al., 2017; Guo et al., 2020). The

abnormal expression of m5C regulators may represent a good

candidate for modifying m5C in systemic lupus erythematosus

CD4+ T cells. Moreover, in rat T lymphocytes, m5C writers

promote the translation of interleukin 17A by methylating the

C466 site.

Despite the growing evidence that m5C regulation plays a

regulatory role in immune responses, no studies have been

conducted to demonstrate the role m5C regulation plays in

the pathogenesis of MM. Such in-depth studies of m5C

regulators and immune characteristics between healthy and

MM samples, as well as the possible influence of different

m5C patterns, have important implications for understanding

the immunoregulatory mechanisms of MM. Thus, in this study,

m5C regulator expression analysis was systematically conducted

in 60 healthy samples and 423 MM samples to examine

correlations with immune characteristics. We identified m5C

modification clusters and developed an m5C scoring system to

predict and guide immunotherapy.

2 Materials and methods

2.1 Dataset collection and preparation

All gene expression profiles for samples were obtained from

the Gene Expression Omnibus (GEO) database (https://www.

ncbi.nlm.nih.gov/geo). Normative transformations and

log2 transformations were applied to preprocess the raw data.

A total of 483 samples (60 healthy samples and 423 MM samples)

were obtained in the analysis, which included those from the

GSE5900 (N = 22), GSE6477 (N = 81), GSE13591 (N = 138),

GSE39754 (N = 176), GSE47552 (N = 46), and GSE80608 (N =

20). The array data of GSE5900 were obtained using the

GPL570 platform (HG-U133_Plus_2 Affymetrix Human

Genome U133 Plus 2.0 Array). GSE6477 and GSE13591 were
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obtained using the GPL96 platform (HG-U133A Affymetrix

Human Genome U133A Array). GSE39754 was obtained

using the GPL5175 platform (HuEx-1_0-st Affymetrix Human

Exon 1.0 ST Array transcript (gene) version). GSE47552 was

obtained using the GPL6244 platform (HuGene-1_0-st

Affymetrix Human Gene 1.0 ST Array transcript [gene]

version). Multiple probes were assigned to the same gene

symbol, and median gene expression was calculated as the

average expression level. “ComBat Batch correction” was

applied to preprocess the value of the expression using the R

package “sva” to remove batch effects (Leek et al., 2012).

2.2 m5C methylation regulator detection

The list of m5C regulators we used was derived from

previously published data, and a total of 16 acknowledged

m5C regulator genes were curated and analyzed to identify

distinct m5C methylation modification patterns (Huang et al.,

2021; Lv et al., 2021; Pan et al., 2021; Yu et al., 2021). The 16 m5C

regulators included five writers (DNMT3A, DNMT3B, DNMT1,

TRDMT1, and NSUN5), nine readers (MBD1, MBD2, MBD3,

MBD4, MECP2, NTHL1, SMUG1, UNG, and YBX1), and two

erasers (TET3 and TDG). The STRING (www.string-db.org)

online database was used to build the protein–protein

interaction (PPI) network among the m5C regulatory genes.

Pearson’s correlation analysis was performed to examine the

association among different m5C-related genes. Significant

correlations were signified by a correlation coefficient r-value

between −1 and +1. Visualization of the correlation matrix was

performed using the “corrplot” package. We then performed

expression analysis of m5C regulators between healthy and MM

samples using the package “limma.” The boxplot and heatmap

were generated using the “ggpubr” package and the “pheatmap”

package, respectively.

2.3 Generation of the random forest
algorithm for the m5C regulator and
establishment of the nomogram

To establish an optimal training model that can predict the

occurrence of MM, we constructed support vector machine

(SVM) and random forest (RF) algorithm models using the

“kernlab” and “DALEX” packages. An evaluation of the model

was conducted using “reverse cumulative distribution of relative

values,” alongside “boxplots of relative values”. We then used

ten-fold cross-validation to validate the RF model. The RF

algorithm was applied to rank the importance of m5C

regulators using the “randomForest” package. A nomogram

model was then built and developed by the “rmda” and “rms”

packages to represent the selected m5C regulators. Furthermore,

calibration curves were used to verify the consistency between

actual and predicted occurrences of MM. We performed a

decision curve analysis (DCA) to analyze the occurrence curve

and evaluate whether the model offered beneficial decisions for

MM patients (Iasonos et al., 2008). DCA is a method to evaluate

clinical predictive models, diagnostic tests and molecular

markers.

2.4 Correlation between m5C regulators
and immune characteristics

Single-sample gene set enrichment analysis (ssGSEA) was

performed to calculate an enrichment score, which estimates the

relative abundance of each immune characteristic in each sample

(Zhao et al., 2022). Immune characteristics consist of infiltrating

immune cells (Zhang et al., 2020) and response reactions. The

immune response reaction and related gene sets were accessed

via ImmPort (http://www.immport.org). We derived enrichment

correlations of differentially m5C regulators using the ssGSEA

function to map the abundance of infiltrating immune cells and

response reactions using the “GSEABase” package. Pearson’s

correlation analysis was then used in order to calculate the

correlation coefficient between m5C regulators and immune

characteristics.

2.5 Consistent cluster analysis of m5C
regulators

Based on the differential m5C regulators, unsupervised

classification of the m5C dataset was performed for cluster

analysis. Distinct m5C patterns were determined using

“ConsensusClusterPlus” package in R, and the robustness of

clustering was further systematically evaluated using a

consensus clustering algorithm with 1,000 iterations

(Wilkerson and Hayes, 2010). m5C regulator expression

clusters were generated using principal component analysis

(PCA). We subsequently evaluated the complex association

between immune characteristics and different m5C clusters.

2.6 Pathway enrichment analysis of m5C
clusters

Gene set variation analysis (GSVA) is a functional analysis to

evaluate the enrichment of gene profiles through the expression

dataset (Hänzelmann et al., 2013). The pathway gene sets,

“h.all.v7.5.1 symbols” and “c2. cp.kegg.v7.5.1 symbols,” were

obtained from the MSigDB database (http://www.gsea-msigdb.

org/gsea/msigdb/index.jsp) and performed GSVA using the

“GSVA” package to analyze pathway enrichment.

Additionally, gene set enrichment analysis (GSEA) was

applied to rank genes according to expression level, and we
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FIGURE 1
Landscape of m5C methylation regulators for healthy and MM samples. (A) The biological functions of m5C regulators, which are regulated by
“writers,” “readers,” and “erasers” in the immunemicroenvironment. The diagramwas drawn using Figdraw (https://www.figdraw.com). (B)Overview
of the composition of m5C regulators and the PPI network among 16 m5C regulators in the STRING online database. (C) Correlation analysis of the
m5C regulators. The size of each circle represents the correlation coefficient (negative values in blue and positive values in red). ***p < 0.001.
Scatterplots show significant correlations between DNMT3A andMBD1, DNMT3A andMBD2, and DNMT3A andMBD4. (D,E) Boxplot and heatmap of
the expression level of the m5C regulators for the healthy and MM samples.
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tested whether the gene set was enriched at the top or bottom of

the ranking list (Subramanian et al., 2005). A normalized

enrichment score (NES) was calculated as the primary statistic

of GSEA. GSEA was conducted with the GSEA software (version

4.2.3) using the above official gene sets for enrichment.

2.7 Identification of m5C-related
differentially expressed genes among
three m5C clusters and biological function
enrichment analysis

DEGs were screened among three distinct m5C clusters using

the “limma” package, and m5C cluster-related genes were

obtained by overlapping DEGs. Gene Ontology (GO)

biological enrichment and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment were visualized using a

bar plot and bubble plot. To further investigate m5C methylation

modification in MM patients, an m5C score was calculated using

the following formula (Zhang et al., 2020):

m5C score � ∑(PC1i + PC2i) (1)

Where PC represents the principal component, and i

represents the DEG expression.

2.8 Statistical analysis

Statistical analyses were performed using R x64–4.1.3.

Quantitative data and normally distributed variables were

compared using t-tests, and non-normally distributed

variables were compared using the Wilcoxon rank-sum test.

Comparisons of more than two groups of variables were

performed using a one-way analysis of variance or the

Kruskal–Wallis test. Pearson’s correlation analysis was used

for the correlation analysis. A p < 0.05 was considered

statistically significant. To control for false discovery rate

(FDR), Benjamini–Hochberg was employed for multiple

hypothesis testing. All statistical tests were two-sided.

3 Results

3.1 Landscape ofm5C regulators in healthy
and multiple myeloma samples

We investigated 16 m5C methylation regulators, which

included five writers (DNMT3A, DNMT3B, DNMT1,

TRDMT1, and NSUN5), nine readers (MBD1, MBD2, MBD3,

MBD4, MECP2, NTHL1, SMUG1, UNG, and YBX1), and two

erasers (TET3 and TDG) (Figure 1A). The m5C regulators

showed regular interactions via a PPI network (Figure 1B).

The correlation analysis of the m5C regulators showed a close

relationship between the m5C regulators, which suggested they

function together (Figure 1C). The scatterplots between

DNMT3A and MBD1 (r = −0.12), DNMT3A and MBD2

(r = −0.14), and DNMT3A and MBD4 (r = −0.14) showed

significant negative correlations. Furthermore, the boxplot and

the heatmap revealed that the expression of six significant m5C

regulators in the MM samples compared to healthy samples

(Figures 1D,E). Of all the 16 m5C regulators, we found that the

expression of NSUN5, MBD3, MECP2, NTHL1, and TET3 was

significantly upregulated, whereas DNMT3A was significantly

downregulated in MM samples.

3.2 Construction of a nomogram to
predict the occurrence of multiple
myeloma

Based on 16 m5C regulators adopted in this study, we

constructed SVM and RF models to predict the risk of

developing MM. According to the “reverse cumulative

distribution of the residual” (Figure 2A) and the “boxplots of

the residual” (Figure 2B), the RF model provided the minimal

residuals. Most samples in RF model have relatively small

residuals, indicating that the RF model is better. Ten-fold

cross-validation was applied to evaluate the accuracy of the

RF model (Figure 2C). The curve indicated that when more

than two genes were included in the RF model, the accuracy

remained stable above 0.85. This led to the RF model being

considered an accurate predictor of MM. Based on the

differentially expressed m5C regulators, we then built and

developed a nomogram to evaluate the risk of developing MM

(Figure 2D). The nomogram indicated that higher expression of

NTHL1, MECP2, MBD3, NSUN5, and TET3 would result in a

higher probability of the occurrence of MM. Calibration curves

were used to determine the accuracy of the nomogram model

(Figure 2E). The DCA curve also suggested that the nomogram

was beneficial to MM patients (Figure 2F). The abscissa of DCA

curve is Threshold Probability. When the probability of a patient

being diagnosed with MM reaches a certain threshold, it is

defined as positive and treatment measures are taken. At this

time, there will be benefits for treatment patient and losses for

untreated patients. The net benefit on the ordinate is the result of

the benefits minus the losses. For example, in Figure 2F,

assuming that we choose a diagnosis of MM with a predicted

probability of 0.8, then for every 100 patients predicted via “m5C

genes”, about 50 would benefit from it. For every 100 patients

predicted using “all genes”, 40 patients benefit from it.We can see

that in the threshold probability range (0–1), the net benefit of

m5C genes is higher than all genes. Furthermore, the clinical

impact curve indicated that the nomogram model had

remarkably high predictive power (Figure 2G).
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FIGURE 2
Construction of the nomogram to predict the occurrence of MM. (A) The RF model and SVM residual distributions were plotted using the
reverse cumulative distribution of the residual. (B) Boxplots of the residual plot were obtained to test the residual distributions of the SVM and RF
models. (C) Ten-fold cross-validation curve to assess the quality of MM prediction in the RF model. (D) Establishment of a nomogram model
according to six differentially expressed m5C regulators. (E) The predictive ability of the nomogram model was evaluated and validated using a
calibration curve. (F) Decision curves of the RF model of the m5C regulators. (G) Calibration curve of the nomogram for evaluating the occurrence
of MM.
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FIGURE 3
Relationship between m5C regulators and immune characteristics of MM. (A) Boxplot of the abundance of 22 immunocytes in the healthy and
MM samples. (B) Boxplot of the abundance of 17 immune response reactions in the healthy and MM samples. (C) Heatmap showing correlations
between the six m5C regulators and 22 immunocytes. The scatterplots showed the positive and negative correlations between m5C regulators and
immunocytes. The expression data were presented in a violin box plot (right panel). (D) Heatmap showing correlations between the six m5C
regulators and 17 immune response reactions. The scatterplots showed the positive and negative correlations between the m5C regulators and
immune response reactions. The expression data were presented in a violin box plot (right panel).
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3.3 Relationship between the m5C
regulators and immune characteristics of
multiple myeloma

Correlations between differentially expressed m5C regulators

and immune cells and immune response reactions provide

additional insight into the relationships between differentially

expressed m5C regulators and immune characteristics. Based on

immune expression profiles, numerous differentially expressed

immune characteristics were identified between healthy and MM

samples (Figures 3A,B). The correlation analysis revealed that

several immune cells were closely associated with differentially

FIGURE 4
Establishment of m5Cmethylationmodification patterns. (A)Consensus clustering of the cumulative distribution function (CDF) for k = 2–9. (B)
Elbow plot showed the relative change in the area under the CDF curve. (C) The consensus heatmap defined three m5C clusters in 423 patients with
MM. (D) PCA of the m5C clusters in MM patients. (E,F) Boxplot and heatmap showed the expression levels of m5C regulators among the three m5C
clusters.
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FIGURE 5
Immune characteristics of the three distinct m5C clusters. (A) Abundance of infiltrating immune cells in the three m5Cmodification clusters. (B)
Differences in the 17 immune response reactions between the three m5C modification clusters. *p < 0.05; **p < 0.01; ***p < 0.001.
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expressed m5C regulators (Figure 3C). Among all the

immunocytes, CD56 (dim) natural killer cells were most

positively correlated to MBD3 (r = 0.38), and immature

B cells were most negatively correlated to NTHL1 (r = −0.38),

which indicated that the number of immune cells inMM patients

is affected by differentially expressed m5C regulators. The

expression level of CD56 (dim) natural killer cells and MBD3,

immature B cells and NTHL1 also differed between healthy and

MM samples. Additionally, the most immune response reactions

were closely related to differentially expressed m5C regulators

according to the correlation (Figure 3D). The transforming

growth factor-β (TGFβ) family member was most positively

correlated to MBD3 (r = 0.43), and the TGFβ family member

receptor was most negatively correlated to NTHL1 (r = −0.4),

which indicated that the number of immune response reactions is

affected by differentially expressed m5C regulators.

3.4 Establishment of the m5C methylation
modification clusters

To establish the methylation modification clusters, a non-

negative matrix factorization was applied based on the MM

samples (Figures 4A–C). Three distinct clusters were classified

as having significant populations in the PCA; namely, m5C

cluster A, m5C cluster B, and m5C cluster C (Figure 4D). The

boxplot and heatmap showed the high NSUN5, MBD3, and

NTHL1 expression in m5C cluster A, high DNMT3A expression

in m5C cluster B, and high MECP2 expression in m5C cluster C

(Figures 4E,F).

3.5 Immune biological functional
characteristics of the three distinct m5C
clusters

To deeply investigate the three m5C clusters, we compared

the abundance of immune cells and immune response reactions.

Results showed that various immunocytes differed in abundance

in the three clusters (Figure 5A). Cluster A had a relatively higher

number of immunocytes of CD56 (dim) natural killer cells and

neutrophils than did clusters B and C. Cluster B had a higher level

of eosinophil and T follicular helper cells, whereas active CD4+

T cells, CD56 (bright) natural killer cells, gamma delta T cells,

immature B cells, natural killer T cells, natural killer cells,

plasmacytoid dendritic cells, type17 T helper cells, and type

2 T helper cells were enriched in cluster C. As for immune

response reactions, the TGFβ family member and tumor

necrosis factor family member receptors were more active in

cluster A than in clusters B and C. Antimicrobials and cytokines

were more active in cluster B than in clusters A and C, and

antigen processing and presentation, the B-cell receptor signaling

pathway, interferon receptors, interleukins, natural killer cell

cytotoxicity, the T-cell receptor signaling pathway, and TGFβ
family member receptors were more active in cluster C than in

clusters A and B (Figure 5B). These results suggested that cluster

C played a more active role in immune characteristics. Taken

together, our findings suggested that the m5C clusters possessed

distinct immune characteristics and that differentially expressed

m5C methylation regulators were critical for the regulation of the

immune microenvironment in MM.

To further explore the biological functional characteristics of

the three m5C clusters, we performed GSVA and GSEA to

determine the enrichment of the biological pathways. The

HALLMARK and KEGG pathways were compared between

the clusters. Among the three m5C clusters, cluster C had

more abundant HALLMARK and KEGG pathways, whereas

cluster A had the fewest pathways (Figures 6A,C,E,G,I,K).

Furthermore, the GSEA revealed that cluster A had the most

significantly enriched terms related to the MYC targets V2

(NES = −1.705, p = 0.035, FDR = 0.198), and cluster B had

the most enriched terms related to TGFβ signaling (NES = 1.925,

p < 0.001, FDR = 0.024) in the HALLMARK pathway

(Figure 6B). In the KEGG pathways, alanine aspartate and

glutamate metabolism (NES = −1.746, p = 0.004, FDR =

0.447) were most enriched in cluster A, and pancreatic cancer

(NES = 0.871, p = 0.002, FDR = 0.168) was most enriched in

cluster B (Figure 6D). Similar enrichment pathways were

observed in cluster C versus cluster A (Figures 6F,H) and

cluster C versus cluster B (Figures 6J,L). After comprehensive

GSVA and GSEA, we found that both methods enriched

numerous similar HALLMARK and KEGG pathways.

3.6 Development of the m5C score and its
biological functions

We performed the analysis of the DEGs of the three m5C

clusters to confirm their potential biological functions and

overlapped these DEGs to obtain the m5C cluster-related

genes (Figure 7A). We identified 256 genes as m5C cluster-

related genes, and we subsequently performed enrichment

analysis. GO and KEGG enrichment results demonstrated that

the tumor metabolism and immune-related pathways were

enriched, which suggested that the m5C regulators exert a

non-negligible role in MM (Figures 7B,C). To further examine

the mechanism underlying the relationship between m5C and

MM, we performed another consensus clustering analysis based

on the 256 m5C cluster-related genes, and the samples were

assigned to three distinct genomic patterns, which were named

m5C gene clusters A, B, and C (Figure 7D). The boxplot showed

statistically significant expression differences in the six significant

m5C regulators among the three m5C gene clusters (Figure 7E).

We then compared the abundance of immune cells and immune

response reactions among the three m5C gene clusters. Results

showed that most immunocytes and immune response reactions
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FIGURE 6
Biological functional characteristics of the three distinct m5C clusters. (A–D) HALLMARK pathway and KEGG pathway between m5C clusters A
and B ((A,B) for HALLMARK pathway and (C,D) for KEGG pathway). (E–H)HALLMARK pathway and KEGG pathway betweenm5Cmodification clusters
A and C ((E,F) for HALLMARKS pathway and (G,H) for KEGG pathway). (I–L) HALLMARK pathway and KEGG pathway between m5C modification
clusters B and C ((I,J) for HALLMARKS pathway and (K,L) for KEGG pathway).
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FIGURE 7
Development of the m5C score and its biological functions. (A) Venn diagram showing 256 m5C-related DEGs for the three clusters. (B) GO
enrichment analysis of m5C-related DEGs. (C) KEGG enrichment analysis of m5C-related DEGs. (D) The consensus matrix heatmap defined three
m5C gene clusters. (E) Expression levels of the m5C regulators for each of the three m5C gene clusters. (F) Abundance of infiltrating immune cells in
each of the three gene clusters. (G) Differences in the activity of 17 immune response reactions among the three gene clusters. (H) A Sankey
diagram of the different m5C modification clusters and m5C scores. (I) A Sankey diagram of the different m5C gene clusters and m5C scores. (J)
Differences in the m5C scores among the three m5C modification clusters (p < 0.001). (K) Differences in the m5C scores among the three m5C gene
clusters (p < 0.001). *p < 0.05; **p < 0.01; ***p < 0.001.
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differed among the three clusters (Figures 7F,G). To predict the

patterns of m5C gene clusters in the MM samples and assess the

risk level of these patients, we implemented an m5C scoring

scheme to assess m5C regulator expression patterns in MM

samples and a Sankey plot to depict the score distribution

(Figures 7H,I). Most samples of m5C cluster A are high risk,

and most samples of gene cluster A are low risk; most samples of

m5C cluster C are low risk, andmost samples of gene cluster C are

high risk. We then analyzed the differences in m5C scores among

the m5C and gene clusters. Results revealed notable differences in

m5C scores among the m5C clusters. The median of m5C cluster

C was the lowest, and that of m5C cluster A was the highest,

which indicated that a low m5C score was closely related to

immune characteristics (Figure 7J). The m5C gene cluster C had

the highest median m5C score, and gene cluster A had the lowest

(Figure 7K).

4 Discussion

MM is a malignant tumor derived from terminally

differentiated B lymphocytes and is characterized by the clonal

proliferation of a large number of plasma cells in MM patients’

bone marrow (Das et al., 2022). MM tumor cells can remodel the

tumor microenvironment and establish an immunosuppressive

tumor microenvironment, which promotes the occurrence and

development of MM (Minnie and Hill, 2020; Casey and

Nakamura, 2021). The development of next-generation

sequencing technology has demonstrated that m5C modification

affects various disease processes, such as genomic stability, cancer

cell differentiation, and inflammatory responses (Xue et al., 2020).

Therefore, we believed that similar results of m5C modification

could be observed in the MM immune microenvironment. To test

this hypothesis, we used six GEO databases to obtain 60 healthy

samples and 423 MM samples. Our study is the first study focused

on m5C regulators in MM and shedding light on the links between

m5C regulation and immune characteristics.

Firstly, we assessed the expressed gene profile of m5C

regulators in the healthy and MM samples, and the

differences indicated that m5C regulators were involved in

MM progression. We also identified an RF model and selected

six candidate m5C regulators (NTHL1, MECP2, MBD3, NSUN5,

DNMT3A, and TET3) from the 16 m5C regulators to predict the

occurrence of MM. A nomogram model to accurately predict the

occurrence of MM was constructed, and the DCA curve

demonstrated favorable calibration and benefit to MM

patients when the nomogram was applied. DNMT3A plays a

special role in the initiation of chromatin remodeling and

gene expression regulation and is responsible for methylation

pattern acquisition (Chen and Zhang, 2020). DNMT3Amutation

carriers are characterized by increased expression of the T-cell

alpha receptor constant chain and may be involved in

monocyte-T-cell interactions (Abplanalp et al., 2021). NTHL1,

MECP2, and MBD3 all have a binding domain that specifically

maintain stability (Yano et al., 2006; Senarisoy et al., 2020).

TET3 can catalyze the demethylation of m5C methyl groups

under the synergistic effect of α-ketoglutarate and Fe2+ (Shen

et al., 2021). It has not been reported whether any of the six

differential m5C regulators are associated with MM. In m5C

modifications, a methyl group attached to the fifth carbon of the

cytosine ring in DNA and RNAmolecules. This modification was

first identified on DNA and later on RNA in the 1970s (Dubin

and Stollar, 1975; Zin’kovskaia et al., 1978). For instance, MBDs

could bind m5C and convert the methylation pattern information

into appropriate functional cellular states. Chromosomal binding

experiments indicate MBD-R2 and MECP2 associate on shared

genomic loci (Gupta et al., 2016). All readers that “read” the

information contained in these modifications to maintain

stability and participate in translation and splicing.

We also investigated the correlation between m5C regulators

and immune characteristics. For immunocytes, CD56 (dim)

natural killer cells were most positively correlated with m5C

regulators. The prognosis of MM patients has been shown to be

influenced by CD56 (ElMenshawy et al., 2021), and DNMT3A-

mutated AML patients have higher expression of CD56 (Hájková

et al., 2012). The link between m5C regulation and the immune

system suggests a close relationship between CD56 natural killer

cells and MM. A set of immune reactions was correlated with

m5C regulators, specifically the TGFβ family member and its

receptor. The TGFβ family is a multifunctional cytokine and has

long been recognized as an immune-suppressive factor

(Tschernia and Gulley, 2022). It plays a major role in the

beneficial immunosuppressive microenvironment of MM

patients’ bone marrow niches (Alabanza et al., 2022), which

indicates that m5C regulators are crucial to the progress of MM.

However, there is no clear correlation between immune

characteristics and m5C regulators. This may be due to the

previous detection techniques limitations. For RNA

sequencing, samples contain extremely few immune cells, so

their abundance may not accurately reflect infiltration of

immune cells (Stewart et al., 2020).

Our results further identified three m5C clusters with

different immune characteristics and metabolism-related

pathways. This immune pattern clustering approach can help

us understand the underlying mechanism of immune regulation,

allowing for the application of more precise molecular

therapeutic approaches by clustering MM at the immune

level, rather than simply at the phenotypic level. Various

studies have confirmed that this strategy is feasible. For non-

tumor diseases, several studies have applied this clustering

method to study the impact of the immune

microenvironment on disease (Zhang et al., 2021; Zhao et al.,

2021). For tumors, one study divided gastric cancer into three

patterns and demonstrated the impact of the tumor

microenvironment on the disease, which offered new ideas for

immunotherapy (Zhang et al., 2020). In our study, among the

Frontiers in Genetics frontiersin.org13

Ren et al. 10.3389/fgene.2022.920164

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.920164


three different m5C clusters, cluster C had more immune

characteristics and metabolism-related pathways than did

clusters A and B. For example, cluster C was characterized by a

higher number of immunocytes and immune response reactions,

which included a greater abundance of plasmacytoid dendritic cells

(pDCs) and interferon receptors, the former of which are increased

in MM patients’ bone marrow and play a key role in the

progression of MM (Ray et al., 2015). Moreover, pDCs are

observed in m5C regulators, including the DNMT3A and

NSUN family, and are regulated by interferon receptors (Bi

et al., 2018; Fang et al., 2022). All three m5C clusters may have

abundant metabolism-related pathways, which can help guide the

identification of key m5C regulators and immune characteristics of

MM. It may prove that MM can be classified as an alternate

pathobiology-based classification based on the three distinct m5C

clusters, which is related to clinical symptoms of the disease.

Finally, the m5C cluster-related genes and m5C gene clusters

were identified. Given the need for individualized

immunotherapy strategies for MM patients and improved

understanding of m5C clustering patterns, developing a new

m5C scoring system is urgently needed. We developed a

scoring system to assess m5C regulator expression patterns in

MM patients according to a previous study (Zhang et al., 2020).

Based on the results of the m5C cluster-related genes, MM

patients were divided into three m5C gene clusters. These

genes’ expression may be influenced by m5C modification,

and uncovering their biological functions helps to explain

MM pathogenesis from the perspective of m5C modification.

The m5C gene cluster C had the highest median m5C score. It has

more activation in cytokines, and at the same time more

CD56dim natural killer cells are seen in m5C gene cluster C.

Most differential expressed m5C regulators are also up-regulated

in m5C gene cluster C and MM. These results may suggest m5C

regulators, cytokines, CDR56dim natural killer cells and MM

have correlations. Our study reveals many similar correlations

due to the abundance of results and a major scientific benefit of

our study is helping other researchers identify key immune and

m5C regulator features in MM quickly. Our study has this

significance as one of its most important scientific implications.

However, there are some limitations in our study. More

clinical data for each patient was not available, such as

treatment and prognosis, for the longitudinal analysis.

Correlation analysis of m5C clusters, pathological stages, and

other clinical characteristics could not be performed on all

samples. Besides, our findings were obtained mainly through

bioinformatics analysis and require verification in subsequent

single-cell sequencing and other experiments. Nevertheless, our

findings provide new insights into the relationship between m5C

regulators and the immune microenvironment of MM.

In conclusion, our study identified six differential m5C

regulators and then built a nomogram to precisely predict the

occurrence of MM. The three m5C clusters were shown to

significantly impact the immune microenvironment and

biological functional pathways, and these findings will be

valuable for further progress in immunotherapy.

Comprehensive analyses of m5C regulators in MM may offer

a promising future for effective therapeutic strategies.
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