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ABSTRACT

With the advent of artificial intelligence (AI) in biostatistical analysis and modeling, machine learning can potentially be 
applied into developing diagnostic models for interstitial cystitis (IC). In the current clinical setting, urologists are depen-
dent on cystoscopy and questionnaire-based decisions to diagnose IC. This is a result of a lack of objective diagnostic 
molecular biomarkers. The purpose of this study was to develop a machine learning-based method for diagnosing IC 
and assess its performance using metabolomics profiles obtained from a prior study. To develop the machine learning 
algorithm, two classification methods, support vector machine (SVM) and logistic regression (LR), set at various pa-
rameters, were applied to 43 IC patients and 16 healthy controls. There were 3 measures used in this study, accuracy, 
precision (positive predictive value), and recall (sensitivity). Individual precision and recall (PR) curves were drafted. Since 
the sample size was relatively small, complicated deep learning could not be done. We achieved a 76%–86% accuracy 
with leave-one-out cross validation depending on the method and parameters set. The highest accuracy achieved was 
86.4% using SVM with a polynomial kernel degree set to 5, but a larger area under the curve (AUC) from the PR curve 
was achieved using LR with a l1-norm regularizer. The AUC was greater than 0.9 in its ability to discriminate IC patients 
from controls, suggesting that the algorithm works well in identifying IC, even when there is a class distribution imbal-
ance between the IC and control samples. This finding provides further insight into utilizing previously identified urinary 
metabolic biomarkers in developing machine learning algorithms that can be applied in the clinical setting.
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INTRODUCTION

Interstitial cystitis (IC), also known as painful bladder syndrome 
or bladder pain syndrome, is a chronic visceral pain syndrome of 
unknown etiology that presents itself as a constellation of symptoms, 
including bladder pain, urinary frequency, urgency, and small voided 
volumes, in the absence of other identifiable diseases [1-3]. Urine is 
in direct contact with the bladder epithelial cells that could be giving 

rise to IC; as a result, metabolites released from bladder cells may be 
enriched in urine [4].

The urinary metabolome was previously investigated by our group 
for potential IC diagnostic biomarkers [5-7]. We attempted to identify 
IC-associated metabolites from urine specimens obtained from IC 
patients and controls using nuclear magnetic resonance (NMR). Our 
findings provided preliminary evidence that metabolomics analysis of 
urine can potentially segregate IC patients from controls. We sought to 
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capture the most differentially detected NMR peaks and discern if there 
was a significant difference in the peak distribution between IC and 
control specimens. Based on multivariate statistical analysis, principal 
component analysis (PCA) suggested that the urinary metabolome of 
IC patients and controls were clearly different; 140 NMR peaks were 
significantly altered in IC patients (FDR < 0.05) compared to controls [5].

Machine learning (ML), originally described as a program that 
learns to perform a task or make decisions based on data, is a valuable 
and increasingly necessary tool for modern healthcare [8]. However, 
this definition is broad and could cover nearly any form of data-driven 
needs. ML is not a magical approach that can turn data in immediate 
benefits, even though many news outlets imply that it can. Rather, it 
is natural extension to traditional statistical approaches. In our present 
study, we utilized ML and automated performance metrics to evaluate the 
clinical value of our 140 identified NMR peaks. We used ML algorithms 
examine the relationship between metabolic expression and disease. 
We applied logistic regression (LR) [9] and support vector machine 
(SVM) [10,11], which are traditionally known to work well even with 
small sample sizes, to our metabolomics signatures and used this data 
together with patient clinicopathological features to diagnose IC. We 
used our dataset of 59 cases to train, test, and validate the model. The 
results showed that our ML-based algorithms were able to successfully 
identify IC patients from healthy subjects.

This study aimed to address the question of, “Does utilizing metabolic 
data in ML play a role in diagnosing IC?”. ML is a form of artificial 
intelligence (AI) and learns from past data in order to predict the future. 
Our NMR-based ML algorithm was able to collectively distinguish the 
IC patient urinary profile from that of controls.

MATERIALS AND METHODS

Ethics statement
For this paper, we used the deposited dataset derived from the pub-

lished data. This study used the publicly deposited data, which does 
not need IRB approval.

Dataset
There are 59 samples in total in the IC dataset. In order to acquire 

IC-associated metabolites, urine samples were collected from 43 IC 
patient group and 16 healthy control group. Each urine specimen was 
analyzed using NMR and biomarkers were identified with 140 NMR 
peaks. The 140 NMR peak feature was utilized to apply the dataset to 
ML algorithms for classification of IC patients in this paper [5].

Method
Due to limited sample size, we adopted two machine learning algo-

rithms, i.e., support vector machine (SVM) [10,11] and LR [9], that are 
traditional but work well even with small number of samples. These are 
supervised learning algorithms, where each data sample is represented 
by a number of features and comes with a label that tells which group 
the sample belongs to.

When data is represented as scattered data points in a feature space 
that consists of two clusters representing individual groups, SVM finds 
a decision boundary (either linear or non-linear) that separates the 
different groups. Training an SVM optimizes the decision boundary 
to maximize the margin between the clusters, and it requires a kernel 

function train a kernel SVM that learns a non-linear decision boundary, 
i.e., a non-linear classifier [12]. The model contains a user parameter 
known as “slack variable” that controls the width of the margin.

LR is also a classifier that learns via a linear model. By feeding 
a set of training samples with a number of features, it learns specific 
weights associated with features. When a data sample is input into to a 
LR model, a classification is made by a linear combination between the 
weights and the data; together with a sigmoid function, the combined 
value is mapped to a probability between 0 and 1. The predicted label is 
assigned according to the probability, and by minimizing the classification 
error (usually formulated using cross-entropy) in the training dataset, 
the weights are learned. One can add additional regularization terms in 
the model, such as l1 or l2-norm of the weights, where l1-norm controls 
the sparsity of the weights [13], which will select the most important 
features, while l2-norm controls the smoothness of the weights to make 
the model more robust [13,14]. Both SVM and LR were implemented 
using the sklearn package in Python.

Training
Because the sample size was very small, the leave-one-out cross 

validation (CV) [15] method was utilized to make full use of the data 
set and to obtain unbiased result from the classifiers. With leave-one-out, 
we picked one sample as a testing set while using the rest of samples as 
a training set to train and test the model. The same process was iterated 
for every sample in the dataset. An illustration of the leave-one-out CV 
workflow is given in the Figure 1.

For SVM, we performed a set of experiments with a linear model, 
radial basis function (RBF) kernel, polynomial kernel with degree 
being 3, 5 and 7. The slack variable was set to 1 for all cases. For LR, 
we tried l1 and l2 penalties with different strengths; i.e., the inverse of 
regularization strength C was set to 1, 5, and 10.

Evaluation
After repeating training and testing the model 59 times with leave-

one-out CV, each sample was assigned a predicted label. By comparing 
these 59 predicted labels with the true labels, we constructed a confu-
sion matrix by counting numbers of true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN). From these numbers, 
accuracy, precision and recall were calculated to evaluate the perfor-
mances of the models. Receiver operating characteristic (ROC) curve 
and precision and recall (PR) curve were plotted, and their area under 
the curve (AUC) are reported in the result section. Especially when 
the distribution of labels in the dataset is skewed, the AUC of the PR 
curve is a suitable measure for evaluating to account for the imbalance.

RESULTS

Classification of IC samples with SVM
SVM was applied to the IC dataset with the leave-one-out CV scheme 

to classify IC samples from controls. The result varied depending on 
user parameters (i.e., kernel type and kernel parameters) as shown in 
Figure 2 and Table 1. Comparing the numbers, it was found that SVM 
with polynomial kernel resulted in the best performance when the degree 
of the polynomial kernel was 3 with 86.4% accuracy, 0.88 AUC of PR 
curve, and 0.85 AUC of ROC curve. Although the accuracy was the 
highest when the degree was 5, the AUCs of ROC and PR curves with 
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degrees set to 3 was the highest. Moreover, the degree equal to 3 has less chance of overfitting than a degree of 5.

Figure 1. IC classification experimental scheme with leave-one-out cross validation.

Figure 2. Classification result evaluation curves using SVM. A. Precision-Recall curve. B. ROC curve. The values of AUC are calculated for each 
curve and larger values indicate better performance.
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Here, the usage of linear kernel did not perform well. It may be 
because the data were not linearly separable or simply the sample size 
(N = 59) was too small compared to the dimension of the data (i.e., 
140 features). Performance of RBF kernel was also poor; looking at the 
accuracy using RBF kernel with SVM shown in Table 1 (i.e., 72.9%), 
it was the same as the proportion of IC samples in the dataset (i.e., 43 
IC subjects out of 59 subjects) and its recall was 1. This means that the 
classifier was simply predicting that all the samples belong to IC group 
and was not able to handle the class distribution imbalance problem.

Classification of IC samples with LR
In addition to SVM experiment, LR was used to classify IC samples 

and the results are shown in Figure 3 and Table 2 with different user 
parameter settings. LR with l1-penalty yielded the best performance 
when its penalty parameter was set to 10 with 84.7% accuracy, 0.91 
for AUC of PR curve and 0.86 for the AUC of ROC curve, which was 
slight better than the results from SVM. These numbers are the best 
among several trials because of its randomness with the initial weights 
being trained, and the results from other trials did not differ much from 
those reported in Figure 3 and Table 2.

Table 1. The comparison of results from SVM with different set of parameters.

Parameters TP TN FP FN Accuracy Precision Recall AUC of PR AUC of ROC

Kernel = linear 36 9 7 7 0.763 0.837 0.837 0.82 0.76

Kernel = poly, 
degree = 3

39 11 5 4 0.847 0.886 0.907 0.88 0.85

Kernel = poly, 
degree = 5

39 12 4 4 0.864 0.907 0.907 0.88 0.84

Kernel = poly, 
degree = 7

39 11 5 4 0.847 0.886 0.907 0.87 0.83

Kernel = RBF 43 0 16 0 0.729 0.729 1.000 0.36 0.00

Table 2. The comparison of results from LR with different set of parameters.

LR TP TN FP FN Accuracy Precision Recall AUC of PR AUC of ROC

Penalty = l1, C = 1 39 9 7 4 0.814 0.848 0.907 0.82 0.75

Penalty = l1, C = 5 39 10 6 4 0.831 0.867 0.907 0.88 0.84

Penalty = l1, C = 10 38 12 4 5 0.847 0.905 0.884 0.91 0.86

Penalty = l2, C = 5 38 7 9 5 0.763 0.809 0.884 0.82 0.75

Penalty = l2, C = 10 38 7 9 5 0.763 0.809 0.884 0.82 0.75

It was observed that LR worked well despite being a linear model. 
Notice that the performance of linear SVM was poor in Table 1; this is 
because of the l1-norm penalty applied to the trained parameter imposing 
sparsity and behaving as a natural feature selector. When we checked 
the trained weight of features, most of the weights converged to 0 (a 
very small number on average of absolute values across the leave-one-
out process). When the penalty parameter was 10, the average weights 
of 133 features was less than or equal to 0.1. This means that we only 
need a few critical features to predict correct label. In our experiment, 
feature ID = 73, 4, 129, and 35 were the most dominant features with 
the highest weights regardless of the random initialization. In other 
words, they were the four most useful NMR features. We have per-
formed further statistical group analysis on these four NMR peaks using 
two-sample t-test, which resulted in P-values of 0.003, 0.001, 0.057, 
and 0.036 respectively. It was interesting to see that there were many 
other NMR peaks with even lower P-values and the peak ID = 129 had 
a P-value greater than 0.05. While these statistical tests are performed 
independently, our classification results were derived by taking all 
the peaks at the same time for the analysis and it demonstrates that a 
linear combination of the features can be more powerful to distinguish 
IC from controls.

The l2-norm constraint did not contribute much in these experiments. 
This is because the model can robustly operate even without the l2-

norm regularizer, which typically degrades performance of models in 
exchange for model robustness. Especially with the l1-norm regularizer 
significantly lowering the dimension of the data (with 133 redundant 
features), the sample size (N = 59) was sufficient to make robust and 
correct predictions for IC samples.

DISCUSSION

It comes with no surprise that medicine is awash with claims that ML 
applications into big healthcare data will create extraordinary revolutions 
[8,16,17]. Recent examples have demonstrated how big data and ML 
can create algorithms that can perform on par with human physicians. 
AI is one ML approach without prerequisites. Various AI techniques 
already exist, and successful metabolomics analysis has been reported in 
previous studies [18-20]. Conventional statistical analysis and AI-based 
methods were used to assess the discrimination capability of quantified 
metabolites. A multiple logistic regression (MLR) model, alternative 
decision tree (ADTree), neurofuzzy modelling (NFM), artificial neural 
network (ANN), and SVM machine learning methods were used [21,22].

Modern advancements in computational and data science, with its 
most popular implementation in ML, has facilitated novel complex 
data-driven research approaches. Combined with biostatistics, ML 
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aims at learning from data. It accomplishes this by optimizing the per-
formance of algorithms with immediate previous knowledge. ML can 
be applied in either a supervised or unsupervised fashion. Supervised 
learning entails monitoring of the algorithm while it is being trained to 
learn a correct class assignment from a set of parameters, such as how to 
make a correct diagnosis from clinical and laboratory information [18].

Current biomarkers for IC diagnosis and prognosis are insufficiently 
robust for clinical practice using AI. Instead, we used AI to identify IC-re-
lated metabolites in an NMR metabolomics dataset from our previous 
study [5], which was able to collectively distinguish IC patient urinary 
profiles from that of healthy controls. The development of diagnostic 
tools using ML may be useful for more accurately identifying IC patients. 

AI has the potential to manage the imprecision and uncertainty that is 
common in clinical and biological data. AI or ML-based algorithms 
can take several different forms. The icons in the presented figures 
in this paper represent typical ML methods. These include multilayer 
neuronal networks, decision tree-based algorithms, SVM, and related 
algorithms that separate classes by placing hyperplanes between them, 
and prototype-based algorithms, such as k-nearest neighbors that com-
pare feature vectors carried by a case with those carried by other cases 
and assign classes based on similarities. ML-based algorithms are not 
being actively applied to IC research. Such applications could lead to 
a better understanding and deeper knowledge of metabolomics data, 
which would then provide insights into biomarker discovery.

Figure 3. Classification result evaluation curves using LR. A. Precision-Recall curve. B. ROC curve. The values of AUC are calculated for each 
curve and larger values indicate better performance.
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Although this is out of scope for this study, AI algorithms can be used 
to predict IC progression or therapeutic responses, too [23,24]. Patient 
clinicopathological features are commonly used to train AI algorithms 
to predict patient outcomes in other diseases, such as cancer [25-27]. For 
instance, Wong et al. developed a prostate cancer patient-specific ML 
algorithm based on clinicopathological data to predict early biochemical 
recurrence after prostatectomy [28]. The resulting 3 ML algorithms 
were trained using 338 patients and achieved an accuracy of 95%–98% 
and AUC of 0.9–0.94. When compared to traditional Cox regression 
analysis, the 3 ML algorithms had superior prediction performance. This 
study demonstrated how AI algorithms, trained with clinicopathological 
data, imaging radiomic features, and genomic profiling, outperformed 
the prediction accuracy of D’Amico risk stratification, single clinico-
pathological features, and multiple discriminant analysis, a type of 
conventional multivariate statistics [28]. There is also a role for AI in 
selecting effective drugs for cancer treatment [29]. Using an ML-based 
algorithm, Saeed et al. quantified the phenotypes of castration-resistant 
prostate cancer cells and tested their response to over 300 emerging 
and established clinical cancer drugs [30].

We are aware that one of the limitations of this study includes the 
novelty of using crowdsourcing in medical biomarker development. 
To our knowledge, there is no previous reference for comparison. 
Additionally, this study was limited to participants in South Korea 
and to a 1-time point collection. A major problem associated with 
medical datasets is a small sample size [5]. Given that sufficiently 
large datasets are important when creating classification schemes for 
disease modeling, a relatively larger dataset can result in reasonable 
validation due to sufficient partitioning of training and testing sets. On 
the contrary, a smaller training dataset can lead to misclassifications 
and may result in unstable or biased models. For our study, a major 
problem was the small sample size. However, the reason for this is that 
it takes an immense amount of time, effort, and cost to collect a larger 
amount of medical research data. Furthermore, medical research data 
is often inconsistent, incomplete, or noisy in nature; thereby, reducing 
sample sizes even more. Such small sample size for high-dimensional 
data often leads to “curse of dimensionality”, i.e., failing to properly 
estimate necessary parameters due to lack of samples, which we also 
faced with only 59 samples for 140 NMR features. For the SVM used 
in this study, when casting its objective function as a dual form using 
Lagrangian multiplier, the optimization problem seeks for a sparse solu-
tion that identifies a few “support vectors” and thus greatly reduces the 
dimension of problem. For the LR, we used two different regularizers 
on the parameters to estimate, i.e., l1 and l2-norms, to avoid curse of 
dimensionality and obtain feasible solutions. As demonstrated in the 
results, as l1-norm constraint behaved as a data-driven feature selector 
reducing the dimension of the problem, the classifier avoided the curse 
of dimensionality. Although we were able to stay away from the curse of 
dimensionality in this study, poor analysis may lead to data overfitting 
and irreproducible results. ML-based algorithms may be manipulated 
by datasets containing dominant but irrelevant features when the sample 
number is limited. Also, AI cannot be used as an end-all solution to any 
question. There are instances where traditional statistics has outperformed 
AI or where additional AI does not improve results.

In summary, we have found that ML-based algorithms can be ap-
plied to developing diagnostic models for IC patients. In the current 
clinical setting, urologists are generally dependent on cystoscopy and 
questionnaire-based decisions to diagnose IC due to a lack of objective 

molecular biomarkers. The purpose of this study was to develop machine 
learning methods for diagnosing IC and assess their performance using 
metabolomics data. Considering how ML techniques for analyzing omics 
data can play a role in predicting the diagnosis and prognosis of diseases, 
future studies should integrate use of a larger multidimensional and 
heterogenous dataset, application of more accurate validation results, 
and use of different techniques for classifying and selecting features 
to pave a promising way toward clinical applications.
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