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Prevalence of fungal diseases has increased globally in recent years, which often
associated with increased immunocompromised patients, aging populations, and the
novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal
agents mortality and morbidity rates of invasion fungal disease remain stubbornly high,
and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal
pathogenicity and interactions between fungi and host have been the focus of many
studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been
identified. Mass spectrometry (MS)-based proteomics is a novel approach to better
understand fungal pathogenicities and host–pathogen interactions at protein and protein
posttranslational modification (PTM) levels. The approach has successfully elucidated
interactions between pathogens and hosts by examining, for example, samples of fungal
cells under different conditions, body fluids from infected patients, and exosomes. Many
studies conclude that protein and PTM levels in both pathogens and hosts play important
roles in progression of fungal diseases. This review summarizes mass spectrometry
studies of protein and PTM levels from perspectives of both pathogens and hosts and
provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents
development, and host–pathogen interactions.

Keywords: fungal pathogens, proteome, mass spectrometry, virulence factors, host–pathogen interaction,
posttranslational modification
INTRODUCTION

Fungal pathogenic diseases that cause high mortality and morbidity are increasing in prevalence
globally, coincident with accelerating numbers of patients with COVID-19, HIV infection, and
organ transplants (Hurtado et al., 2019; Stone et al., 2019; Heard et al., 2020; Hoving et al., 2020;
Song G. et al., 2020; Yoon et al., 2020; Rawson et al., 2021). Furthermore, invasive fungal infections
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are intractable because of long treatment cycles and high
probability of relapse (Ecevit et al., 2006). Common human
pathogenic fungi, including Candida albicans, Aspergillus
fumigatus, and Cryptococcus neoformans, are opportunistic
pathogens that are always associated with host immune status
(Alhumaid et al., 2021; Pasquier et al., 2021; Singh et al., 2021).
To invade a host and replicate and spread, pathogens need to
obtain host resources, such as a carbon source, proteins, and
lipids, and avoid or take advantage of host defense mechanisms.
Pathogens have evolved a variety of virulence factors, such as
biofilms, capsules, morphologic transformations, and kinase
systems, to facilitate infection (Ding and Butler, 2007; Wang
et al., 2012; Do et al., 2018; Suo et al., 2018; Lee et al., 2019; Vu
et al., 2019). In response to fungal attack, hosts alter the
microenvironment and activate the immune system by
modifying body temperature, oxidation levels, and metal
contents, limiting nutrients, and increasing levels of
inflammatory factors and immune cells (Hu et al., 2008; Butler
et al., 2009; Kronstad et al., 2011; Kronstad et al., 2012; Saikia
et al., 2014; Rohatgi and Pirofski, 2015; Hole andWormley, 2016;
Ballou and Johnston, 2017; Hansakon et al., 2019; Sun
et al., 2019).

Pathogens and hosts require rapid modulation of virulence
and defense mechanisms, which is a conclusion validated by
many different biological technologies (Butler et al., 2009;
Kronstad et al., 2011; Kronstad et al., 2012). For example,
alterations at the C. neoformans and host (mouse and Macaca
fascicularis) axis were monitored with transcriptome technology
(Li H. L. et al., 2019). Genes were expressed to counter fungal
invasion that were involved in immune and inflammatory
responses, osteoclastogenesis (in particular, osteoclastogenesis-
associated gene (OC-STAMP)), and insulin signaling. The fungus
responded rapidly by activating metal sequestration, dampening
sugar metabolism, and changing cell morphology to increase its
survival in the host (Li H. L. et al., 2019). However, important
aspects of complex host–pathogen interactions are addressed
differently by different techniques (Jacobsen et al., 2018; Li H. L.
et al., 2019; Li et al., 2020).

Over past decades, application of MS-based proteomics has
expanded rapidly, especially in studies of proteomes and
posttranslational modifications (PTMs), such as acetylation,
phosphorylation, succinylation, and crotonylation (Figure 1A)
(Aggarwal et al., 2021). Application in studies of microbiological
pathogenesis and interactions between pathogens and hosts has
led to the discovery of many novel mechanisms of host–
fungus interactions (Toor et al., 2018; Khan et al., 2019; Li Y.
et al., 2019; Zamith-Miranda et al., 2019; Bruno et al., 2020;
Machata et al., 2020; Thak et al., 2020; Zhou et al., 2021).
Establishing connections between proteomic profiles and
fungal infection processes is critical in characterizing disease
pathophysiology, developing candidate therapies, and predicting
clinical outcomes.

This review will focus on the applications of MS-based
proteomics to examine protein and PTM levels from
perspectives of both pathogens and hosts, give a comprehensive
opinion and novel outlook on fungal pathogenesis, antifungal
therapy, and host–pathogen interactions.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
PROTEOMIC PROFILES OF FUNGAL
PATHOGEN RESPONSES TO STRESS

Proteomics can contribute to understanding variations in global
protein expression in fungal pathogens under stress. Plasticity in
fungal pathogen response to different host microenvironments is
FIGURE 1 | Pathogen–host interaction repertoire at proteome and
posttranslational modification levels during fungal infections. (A) Posttranslational
modifications in fungal pathogenesis. (B) In Cryptococcus neoformans,
deacetylases Sir2, Hst3, Hst4, Dac2, Dac6, Dac4, Dac5, and Dac11 are all
essential for pathogenesis. Knockout of PMT4 decreases protein mannosylation
inefficiency. In the PGAL7::PKA1 strain, expression of 61 secretome proteins
changes, including that of Cig1, a-amylase, glyoxal oxidase, Aph1, and
CNAG_05312. (C) In Aspergillus fumigatus, SakAHOG1, MpkC, and MpkA are
phosphorylated. sakAD andmpkCDsakAD are more sensitive to caspofungin and
nikkomycin Z, congo red, and sodium dodecyl sulfonate (SDS). InmpkAD and
sakAD treated with high doses of caspofungin, decreases occur in DNA/RNA
binding, cell cycle control, and DNA processing pathways. (D) Top: In response
to fluconazole, inCryptococcus neoformans, ribosomal proteins decrease and
heat shock proteins, plasma membrane proteins, and proteins involved in
glucose metabolism, ATP synthesis, and mitochondrial respiratory chains
increase over time. Left: When Candida albicans is treated with fluconazole,
mitochondrial membrane potential, endogenous reactive oxidative species
production, and Aco1 Idp2 are up-regulated. Right: When Aspergillus fumigatus
is exposed to itraconazole, 14a-sterol demethylases and transmembrane
proteins are up-regulated, and G-protein complex, glucan modifying enzyme,
glucanosyltransferase, and glucan synthase are down-regulated. (E) In Candida
albicans, MA inhibits hyphae, biofilm matrix, secreted hydrolases, air–liquid biofilm
formation, and ergosterol constituents by regulating Erg9, Erg10, Erg11, Sit4,
Mts1, Sod3, Sap6, Cht3, Cht4, Als1, Sap2, Hwp1, Upc2, Cst20, Ras1, Cph1,
Mrr2, and Atg15. (F) In the intracellular proteome and secretome of 13 fungi, cell
extracts consist of EF-1, GpdA, and Aspf22. Secretion consists of 1,3-beta
glucanosyltransferases, including Gel1, Gel2, Gel3, Gel4, Bgt1, Crf1, Ecm33,
EglC, Sed2, Asp f15, ALP2, and carboxypeptidase S1. Gel1 and Crf1 screen as
promising vaccine candidates. (G) ATP-binding proteins are enriched in
macrophages infected with Candida albicans. Anti-apoptotic proteins PRDX5,
SLC25A24, and ADT2 increase, whereas pro-apoptotic proteins NDKA, ACTN4,
and ST3 decrease. Ribosomal proteins RPL9, RPS26, and RPL3 increase.
Proteolysis-associated proteins MMP9, DPP7, LAP3, and DLD decrease. In
addition, secretion of TNF-a, IL-12 and IL-1b increase. (H) Deletion of AMPKa1 in
monocytes leads to resistance to Cryptococcus neoformans colonization in mice.
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important for successful infection. Maintaining oxidative
homeostasis is a critical strategy as fungal pathogens adapt to
their hosts (Table 1). Aspergillus fumigatus tolerates hypoxic
conditions in lung infections, and therefore, differentially
expressed proteins under hypoxic treatment can reflect fungal
virulence performance (Warn et al., 2004; Tarrand et al., 2005;
Willger et al., 2008). Proteins involved in glycolysis, tricarboxylic
acid(TCA) cycle, oxidative phosphorylation, ergosterol
biosynthesis, metals metabolism, secondary metabolism, and
generation of nitrosative stress are differentially expressed
under hypoxic conditions in A. fumigatus (Vodisch et al., 2011;
Barker et al., 2012). Metals are widely known to participate in
stress resistance in fungi (Ding et al., 2011; Samanovic et al.,
2012; Ding et al., 2013; Ding et al., 2014a; Ding et al., 2014b; Sun
et al., 2014; Do et al., 2018; Li et al., 2019a). In A. fumigatus,
additional oxidative stress response is related to iron availability
(Kurucz et al., 2018). Furthermore, starvation and high
concentrations of metal ions, such as iron and copper, are
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
challenges from the natural environment and host (Ding et al.,
2014a; Sun et al., 2014; Li et al., 2019b). In microsomal proteome
analysis of A. fumigatus, 231 proteins were significantly
differentially expressed between iron-rich and iron-depleted
conditions, which included siderophore transporters, indicating
that microsomal proteins were associated with iron-depleted
conditions (Moloney et al., 2016). In another study, iron-
responsive microsomal protein MirC was associated with
maintenance of iron homeostasis in A. fumigatus, which was
consistent with the increased abundance of siderophore
biosynthetic enzymes in mirCD (Mulvihill et al., 2017). Protein
phosphatase PpzA, an iron assimilation factor, influences the
pathogenicity of A. fumigatus by reducing secondary metabolites
under iron starvation (Manfiolli et al., 2017). To investigate iron
homeostasis, proteomic analysis based on cross-linked tandem
affinity purification coupled with MS was also performed in C.
albicans, and Fra1, Bol2/Fra, Sfu1, and Hap43 were found to
interact with iron homeostasis regulator monothiol glutaredoxin
TABLE 1 | Summary of proteomic studies in fungal pathogens.

Functions Pathogens Description Reference

Proteomic Profiles of
Fungal Pathogen
Responses to Stress

A. fumigatus Proteomic studies have found that some key pathways differ under
stresses, including hypoxic conditions, oxidative stress, iron-rich
conditions, iron-depleted conditions, and osmotic stress.

(Vodisch et al., 2011; Barker et al., 2012; Ding et al.,
2014a; Sun et al., 2014; Moloney et al., 2016; Manfiolli
et al., 2017; Li et al., 2019a; Silva et al., 2020)

C. albicans Proteomic analysis was performed to identify the special role of
monothiol glutaredoxin 3 in iron homeostasis regulation.

(Alkafeef et al., 2020)

C. neoformans Studies have used proteomics to examine pathway responses to
copper stress and high-temperature stress.

(Martinez Barrera et al., 2020; Sun et al., 2021)

Proteomic Profiles of
Virulence Gene-Edited
Fungal Strains

C. albicans Proteomic analysis was used to identify protein components of
plasma, and specific functions of regulator involved in cell wall
formation, morphogenesis, cell differentiation, and pathogenicity.

(Cabezon et al., 2009; Lee et al., 2010; Santi et al.,
2014)

C. neoformans Proteomic profiles were performed to analyze biofilm, capsule
formation and cell growth.

(Olson et al., 2007; Santi et al., 2014; Geddes et al.,
2016; Bruni et al., 2017)

Posttranslational
Modifications in
Fungal Pathogenesis

C. neoformans Kinases involved in the cell cycle, metabolic processes, and
virulence adjustment were detected in phosphoproteomic analysis.

(Selvan et al., 2014)

A. fumigatus Phosphorylation modified proteins were detected under Congo red
and sorbitol induce and caspofungin treatment.

(Mattos et al., 2020a; Mattos et al., 2020b)

C. neoformans,
C. albicans

Large abundant of ubiquitin proteasome pathway (UPP)-related
proteins were identified by proteomic studies.

(Atir-Lande et al., 2005; Liu and Xue, 2014; Geddes
et al., 2016)

C. neoformans,
C. albicans, and
A. fumigatus

Function of histone deacetylases were analyzed by proteomic
studies and acetylomes of baker’s yeast and three human fungal
pathogens were compared.

(Arras et al., 2017; Li Y. et al., 2019)

Secretomic Profiles of
Fungal Pathogens

C. neoformans Main component proteins of extracellular vesicles and extracellular
proteome were analyzed by MS.

(Rodrigues et al., 2008; Vu et al., 2014; Wolf et al.,
2014; Vargas et al., 2015; Bielska and May, 2019)

C. albicans Protein composition of EVs is associated with pathogenesis, cell
organization, carbohydrate and lipid metabolism, branching and
biofilm formation.

(Thomas et al., 2009; Vargas et al., 2015; Wolf et al.,
2015)

A. fumigatus Proteomic analysis was performed to determine the expression of
secreted proteases in ptrtD, xprgD, and ptrt/xprgD.

(Shemesh et al., 2017)

Drug Action and
Pharmacological
Effects on Proteomic
Profiles

C. gattii In a time-course proteomic analysis was performed during
fluconazole treatment.

(Chong et al., 2012)

C. albicans Proteomic analysis revealed a synergistic mechanism of fluconazole
and berberine against fluconazole-resistance.

(Xu et al., 2009)

A. fumigatus Proteomic analysis was performed in cells treated with itraconazole. (Gautam et al., 2016)
C. glabrata Proteomic analysis was performed in fluconazole-induced resistant

strains.
(Samaranayake et al., 2013)

Vaccine Screening for
Fungal Pathogens

C. neoformans,
A. fumigatus,
C. gattii

Secreted and cell wall-bound proteins were identified by
Immunoblot-MS analyses.

(Eigenheer et al., 2007; Young et al., 2009; Kumar
et al., 2011; Chaturvedi et al., 2013; Martins et al.,
2013; Virginio et al., 2014)

13 fungal
species

Highly conserved secreted and surface proteins from were
identified.

(Champer et al., 2016)
December 2021 | Volume 11 | Article 774340
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3 (Alkafeef et al., 2020). Similarly, proteomics was used to study
the role of copper homeostasis in C. neoformans (Sun et al.,
2021). Under copper stress, the proteasome pathway was up-
regulated and the ribosomal pathway down-regulated. In
addition, the ubiquitination level of whole proteins was up-
regulated under copper stress, and a growth defect could be
restored by inhibiting the proteasome pathway (Sun et al., 2021).

Responses of fungal pathogens to high temperatures and
osmotic pressures are also key factors affecting infection, but
only a few studies have used proteomics to examine those
responses. Potential binding partners of septin Cdc10 in C.
neoformans were scanned using Immunoprecipitation(IP)-
proteome analysis in order to explain the outstanding
protective effect of Cdc10 against high-temperature stress
(Martinez Barrera et al., 2020). In A. fumigatus, Sln1p, Msb2p,
and Opy2p, upstream sensors of the high-osmolarity glycerol
(HOG) pathway, affect osmotic stress response, carbohydrate
metabolism, and protein degradation (Silva et al., 2020).
Additional proteomic analyses investigating fungal pathogen
response to stress should be performed in the future to develop
new clinical treatments for fungal disease.
PROTEOMIC PROFILES OF VIRULENCE
GENE-EDITED FUNGAL STRAINS

Virulence factors such as capsules, melanin, morphology, biofilm
formation, virulence genes, plasma membranes, and cell wall
maintenance have critical roles in fungal pathogen invasion
(Crabtree et al., 2012; Dambuza et al., 2018; Mukaremera et al.,
2018). Proteomics is a reliable approach to explore regulatory
functions of virulence factors (Table 1). For example, in the
yeast-to-hyphal transition factor CaKEM1 mutant strain of C.
albicans, proteomic analysis was used to identify hyphae-specific
genes that were regulated (Lee et al., 2010). Proteomic profiles
were compared between biofilm cells and planktonic cells of C.
neoformans in order to better understand the biofilm lifestyle,
and proteins involved in oxidation–reduction, proteolysis,
transport, translation, and energy acquisition mode were
enriched (Santi et al., 2014). In an analysis of protein
components of plasma membranes in C. albicans, 12
glycosylphosphatidylinositol(GPI)-anchored membrane
proteins were associated with cell wall maintenance and
virulence (Cabezon et al., 2009).

Proteomics can also help detect plasma membrane and cell-
wall regulate genes associated with mutant-specific protein
expression. The protein O-mannosyltransferase (Pmt protein)
is associated with the cell wall and morphogenesis. Knockout of
PMT4 in C. neoformans decreases expression of wall component
proteins and leads to protein mannosylation inefficiency
(Figure 1B) (Olson et al., 2007). Proteomic analysis also
determined that PKA regulates capsule formation through a
ubiquitin–proteasome pathway in C. neoformans (Geddes
et al., 2016) (Figure 1B). Secretomic analysis of a PKA1
expression-suppression strain revealed five biomarkers of
infection, including definitive virulence factors Cig1 and Aph1
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
(Figure 1B) (Geddes et al., 2015). On the basis of proteomics,
the F-box protein Fbp1 affects C. neoformans survival in
macrophages by regulating inositol sphingolipid biosynthesis
(Liu and Xue, 2014). The functions of Gib2 are vital in cell
growth, differentiation, and pathogenicity. A two-dimensional
echocardiography(2DE)-MS analysis of gib2D showed that Gib2
was linked to ribosomal biogenesis, protein translation, and
stress responses in C. neoformans (Bruni et al., 2017).
Virulence factors are potential targets for new antifungal drugs,
and thus, further investigations of virulence genes associated
with cell walls, plasma membranes, and the cell cycle are needed.
POSTTRANSLATIONAL MODIFICATIONS
IN FUNGAL PATHOGENESIS

In evaluating the virulence of fungal pathogens, epigenetic
modifications are a more direct and rapid response to stress.
Epigenetic modifications that have received wide attention
include PTMs, such as phosphorylation, ubiquitination, and
acetylation (Table 1) (Aggarwal et al., 2021; Zhang Y. et al.,
2021). Phosphorylation regulates kinase pathways during fungal
infection. For example, Hog1 is a ubiquitous MAPK enzyme in
fungi that responds to external stimuli such as temperature,
osmotic pressure, and oxidative damage. Hog1 is phosphorylated
in C. neoformans serotype D but is dephosphorylated in serotype
A under stress (Bahn et al., 2006). Forty-five kinases involved in
the cell cycle, metabolic processes, and virulence adjustment
were detected in phosphoproteomic analysis in C. neoformans,
and the kinases included protein kinase C, Bck1, Mkk2, and
Mpl1 (Selvan et al., 2014). Similar studies have been conducted
on A. fumigatus. Knockout of Hog1 homologous genes SAKA
and MPKC in A. fumigatus increased sensitivity to osmotic and
oxidative stress and cell damages. Congo red and sorbitol induce
MpkC phosphorylation modification in A. fumigatus
(Figure 1C) (Bruder Nascimento et al., 2016). Phosphorylation
modification was also detected on p38 (CMGC/MAPK/p38/
Hog) (Mattos et al., 2020b). Low expression of phosphorylase
in sakAD , mpkCD , and mpkC/sakADD indicates that
phosphorylation is essential for MpkA to maintain cell walls
(Figure 1C) (Mattos et al., 2020b). Meanwhile, with caspofungin
treatment, phosphorylated proteins included transcription
factors, protein kinases, and cytoskeletal proteins. In sakAD,
mpkAD, and mpkA/sakADD, phosphorylation levels of metabolic
and transcriptional regulatory proteins, DNA/RNA binding
proteins, and cell cycle control proteins are down-regulated
(Figure 1C). When treated with caspofungin, phosphorylation
levels of protein kinases A (PKA) regulatory subunit, protein
kinases C (PKC phosphorus transcription factor AtfA/AtfB/
AtfD), and transcription factor ZipD were down-regulated
(Mattos et al., 2020a). Therefore, regulation of the MAPK
pathway by affecting posttranslational modifications is a
potential target for new drugs.

As described above, stress response pathways in fungi
facilitate survival and adaptation during infection. Geddes et al.
(2016) used proteomics to identify the effect of PKA1 mutation
December 2021 | Volume 11 | Article 774340
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on intracellular proteins in C. neoformans and 302 differentially
expressed proteins were identified. Ribosome and translation-
related proteins were the most abundant in protein–protein
interactions, whereas ubiquitin proteasome pathway (UPP)-
related proteins were the second most abundant (Geddes et al.,
2016). UPP damage is associated with pathogenesis of a variety
of neurodegenerative diseases, including Alzheimer ’s,
Parkinson’s, and Huntington’s, suggesting that UPP plays a
critical role in maintaining cellular protein homeostasis
(Huang and Figueiredo-Pereira, 2010; Nijholt et al., 2011). The
SCF (Skp1, Cullins, and F-box proteins) E3 ubiquitin ligases are
involved in various biological processes in pathogenic fungi. In
C. neoformans, Liu et al. (2011) demonstrated that SCFFbp1E3
ubiquitin ligase is indispensable during infection. In an FBP1
knockout strain, fungal pulmonary burden and proliferation
ability in macrophages decrease, resulting in inability to
migrate in a host (Liu and Xue, 2014). Fbp1 also helps mediate
sexual reproduction in C. neoformans (Liu et al., 2011). In C.
albicans, SCF E3 ubiquitin ligase helps regulates mycelial
morphology (Butler et al., 2006). For example, SCFCdc4 is
involved in negative regulation of fungal filaments (Atir-Lande
et al., 2005), whereas SCFGrr1 is involved in negative regulation of
pseudomycelia (Butler et al., 2006). In Aspergillus nidulans,
SCFGrrA is involved in meiosis and sexual sporogenesis
(Krappmann et al., 2006). These results indicate that the
ubiquitin–proteasome pathway is involved in cell cycle
regulation and fungal transformation.

Autophagy also helps to maintain protein homeostasis in
cells. Autophagy is a response to various environmental stresses,
such as nutritional deficiencies and hypoxia (Shliapina et al.,
2021). Many studies show that induction of autophagy depends
primarily on the serine/threonine protein kinase TOR regulating
the phosphorylation level of the core Atg protein (Jung et al.,
2010; Paquette et al., 2018; Wang and Zhang, 2019). In yeast,
TOR regulates the phosphorylation level of Atg13, resulting in a
decrease in the affinity between Atg1 and its binding proteins,
and subsequently inhibits the initiation of autophagy under
nutrient-rich conditions (Kawamata et al., 2008; Jung et al.,
2010). In addition, several Atg proteins undergo changes in
acetylation state, indicating that acetylation modification is
very important in the regulation of autophagy (Lee and Finkel,
2009; Yi et al., 2012; Banreti et al., 2013). Acetylation is also
involved in many other biological processes and cellular activities
of fungi, including host adaptability, genome stability,
production of virulence factors, synthesis of secondary
metabolites, and fungal drug resistance (Lee et al., 2009;
Wurtele et al., 2010; Lu et al., 2012; Lamoth et al., 2014;
Brandao et al., 2015; Freire-Beneitez et al., 2016). In C.
neoformans, deletion of the histone deacetylases SIR2, HST3,
and HST4 significantly altered the epigenetic landscape and
virulence (Arras et al., 2017). Essential in the pathogenesis in
C. neoformans is the deacetylases Sir2, Hst3, Hst4, Dac2, Dac6,
Dac4, Dac5, and Dac11 (Figure 1B) (Li Y. et al., 2019). Li Y. et al.
(2019) also compared acetylomes of baker’s yeast and three
human fungal pathogens (C. neoformans, C. albicans, and A.
fumigatus). Thus, the acetylation motifs of fungal pathogens
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
participate in mediating pathogenicity and therefore are subject
to selective evolution (Li Y. et al., 2019). The study provides a
reference for further investigations of the evolution of protein
translational modifications in pathogenic fungi.
SECRETOMIC PROFILES OF FUNGAL
PATHOGENS

Extracellular vesicles (EVs) deliver secretory proteins into a host.
In C. neoformans, 76 proteins in EVs are linked to virulence and
protection against oxidative stress during infection (Rodrigues
et al., 2008). With increased technological sensitivity, another
147 proteins were identified as main component proteins in EVs
(Wolf et al., 2014). Composition of EV proteins is closely
associated with virulent phenotypes (Vargas et al., 2015;
Bielska and May, 2019). C. neoformans needs to penetrate the
blood brain barrier (BBB) in order to invade the central nervous
system, and vesicles play an important role in that process (Vu
et al., 2014). A secreted metalloproteinase, Mpr1, identified in
extracellular proteome analysis was found to play an important
role in breaching the BBB (Vu et al., 2014). In C. albicans, protein
composition of EVs is associated with pathogenesis, cell
organization, carbohydrate and lipid metabolism, and response
to stress (Vargas et al., 2015). For example, a VPS4mutation in C.
albicans leads to reductions in normally secreted proteins, which
may associated with altered branching and biofilm formation
(Thomas et al., 2009). Defects in lipid biosynthetic genes CHO1,
PSD1, and PSD2 lead to significant changes in the exponential
cargo of EVs (Wolf et al., 2015). Mutation in the cell wall
protein-encoding gene DSE1 leads to a lack of chitin
biosynthesis protein Chs5 and stimulates the expression of the
cell wall degrading-related protein glucoamylase 1 (Zohbi et al.,
2014). In A. fumigatus, the release of extracellular proteases to
degrade host structures is also an important fungal virulence
factor. Transcription factors XprG and PrtT regulate
extracellular proteolysis. Proteomic analysis was performed to
determine the expression of secreted proteases in ptrtD, xprgD,
and ptrt/xprgD, and the expression levels of 24 proteases, 18
glucanases, 6 chitinases, and 19 allergens decreased by two to
fivefold (Shemesh et al., 2017). Because secretory proteins affect
fungal virulence from several aspects, secretomes of pathogenic
fungi are currently a hot topic of research.
DRUG ACTION AND PHARMACOLOGICAL
EFFECTS ON PROTEOMIC PROFILES

Fluconazole, voriconazole, and itraconazole are widely used in
prophylactic and maintenance therapies (Day et al., 2013;
Rajasingham et al., 2017). In a time-course proteomic analysis
of Cryptococcus gattii during fluconazole treatment, most
ribosomal proteins decreased, whereas mitochondrial
respiratory chain, plasma membrane, and heat shock proteins
and those associated with sugar metabolism and ATP synthesis
December 2021 | Volume 11 | Article 774340
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increased (Figure 1D) (Chong et al., 2012). In C. albicans,
proteomic analysis revealed a synergistic mechanism of
fluconazole and berberine against fluconazole-resistance.
Mitochondrial membrane potential, endogenous reactive
oxygen species (ROS) production, and the TCA cycle (Aco1,
Idp2) were up-regulated; whereas ATP content, ATP-synthase
(complex V) activity, and glycolysis (Fba1, Eno1) were
down-regulated (Figure 1D) (Xu et al., 2009). In A. fumigatus
cells treated with itraconazole, abundances of 14a-sterol
demethylases, transmembrane proteins, G-protein complexes,
glucan modifying enzymes, glucanosyl transferases, and glucan
synthases were altered (Figure 1D) (Gautam et al., 2016). Eight
fluconazole-induced resistant strains of Candida glabrata
changed in expression of proteins associated with bud
formation and metallothionein production (Samaranayake
et al., 2013).

Some natural compounds are effective antifungal agents, and
proteomic analysis has been used to explore their affected targets
and mechanisms of control. Myristic acid (MA) and oleic acid
affect biofilm formation and virulence of C. albicans by
regulating ergosterol synthesis, sphingolipid metabolism, and
lipase production proteins (Figure 1E) (Prasath et al., 2019;
Muthamil et al., 2020). In A. fumigatus exposed to cis-9-
hexadecenal, PKS enzymes are up-regulated and the 1,8-
dihydroxynaphthalene-melanin biosynthesis pathway is down-
regulated. Induced oxidative stress is also an important
mechanism of candidate antifungal agents. N-chlorotaurine
inhibits conidial and mycelial growth in A. fumigatus by up-
regulating the oxidative stress response (Sheehan et al., 2019).
Atorvastatin has treatment potential because it induces oxidative
stress and alters membrane permeability in A. fumigatus (Ajdidi
et al., 2020). Such novel antifungal drugs are welcomed additions
in clinical therapy.
VACCINE SCREENING FOR FUNGAL
PATHOGENS

Extracellular proteins participate in fungal pathogenesis as
immunoreactive antigens (Zhang L. et al., 2021). In an analysis
of secreted and cell wall-bound proteins in C. neoformans,
extracellular proteins possessed immunogenicity and
proteolytic ability for the glycosylphosphatidylinositol-
anchored proteins that were recruited to the cell wall
(Eigenheer et al., 2007). Immunoblot-MS analyses have been
conducted with fungal pathogens to identify diagnostic markers
or candidate antigens for development of vaccines and
immunotherapy (Young et al., 2009; Kumar et al., 2011;
Chaturvedi et al., 2013; Martins et al., 2013; Virginio et al.,
2014). Highly conserved secreted and surface proteins from 13
fungal species were identified, including the following 1,3-b-
glucanosyltransferases: Gel1, Gel2, Gel3, Gel4, Bgt1, Crf1,
Ecm33, EglC, Sed2, Asp f15, ALP2, and carboxypeptidase S1.
Gel1 and Crf1 were screened as promising vaccine candidates
(Figure 1F) (Champer et al., 2016). Vaccines are widely used to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
prevent bacterial and viral infections; however, some obstacles
impede vaccine development for fungal pathogens. For example,
b-1,3-D-glucan, a key component of fungal cell walls, is poorly
immunogenic (Armstrong-James et al., 2017). The sensitivity
and high throughput of mass spectrometry have been improved,
creating unprecedented opportunities to exploit fungal vaccine.
However, the fungal vaccines are still on the way.
PROTEOMES AND PTMS IN
PHAGOCYTOSIS DURING FUNGI
INVASION

Fungal pathogens and their hosts require rapid modulation of
virulence and defense mechanisms. Fungal pathogens have
developed rapid and precise gene expression, protein
translation, and PTM regulation mechanisms in order to
colonize, invade, and replicate during systemic infection,
summarized in Table 2 (Butler et al., 2009; Kronstad et al.,
2011; Kronstad et al., 2012; Li H. L. et al., 2019; Bruno et al.,
2020). In pathogens, virulence factors also evolved to resist host
obstruction and interception, including capsules, melanin,
biofilms, and growth at 37°C, among others (Cherniak and
Sundstrom, 1994; Crabtree et al., 2012; Dambuza et al., 2018;
Suo et al., 2018; Casadevall et al., 2019). To counter pathogenic
invasion, host cells trigger a series of response cascades, restrict
essential nutrients, produce cytokines and chemokines, induce
infiltration of immune cells, and consequently activate
eliminating mechanisms (Campuzano and Wormley, 2018;
Casadevall et al., 2018).

Immunohistochemical staining, quantitative polymerase
chain reaction, western blot, transcriptome analysis, and
proteome and PTM analyses have provided valuable
information on interactions between hosts and invading fungi.
Phagocytosis by macrophages and glucose metabolism play
important roles in interactions between pathogens and hosts
(Rohatgi and Pirofski, 2015; Hansakon et al., 2019). The
infection process is a complex of interactions between
pathogen and host at RNA, protein, PTM, and metabolic
levels. When a host was invaded, phagocytosis by macrophages
clears invading pathogens (Li H. L. et al., 2019; Sun et al., 2019;
Nelson et al., 2020; Seoane et al., 2020). Many studies show that
phagosomes have a fundamental and distinct role in fungal
infections (Sorrell et al., 2016; Santiago-Tirado and Doering,
2017; Santiago-Tirado et al., 2017; Li H. L. et al., 2019;
Giusiano, 2020; Scherer et al., 2020), with phagocytosis
regulated by both protein and PTM levels. Reales‐Calderón
characterized the proteomic differences between human M1
and M2 polarized macrophages in both basal conditions and
in response to C. albicans. They identified metabolic routes
and cytoskeletal rearrangement components as the most
relevant differences between M1 and M2. In addition, the
switch from M1 to M2 may contribute to C. albicans
pathogenicity by decreasing generation of specific immune
responses or as part of a host attempt to reduce inflammation
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and limit damage from infection, which would increase fungal
survival and colonization (Reales-Calderon et al., 2014). Reales-
Calderon et al. (2013) used MS to quantify macrophage proteins
and phosphoproteins in murine macrophages cell line RAW
264.7 exposed to C. albicans. They identified 68 differentially
expressed macrophage proteins and 196 differentially abundant
phosphorylation peptides, which altered pathways associated
with receptors, mitochondrial ribosomal proteins, cytoskeletal
proteins, and transcription factor activators involved in
inflammatory and oxidative responses and apoptosis. The
results suggested that apoptosis is a central pathway in the
immune defense against C. albicans invasion (Reales-Calderon
et al., 2013). Recently, Vaz et al. (2019) used a quantitative
proteomic and phosphoproteomic approach to study human
macrophage ATP-binding proteins exposed to C. albicans. They
identified 59 differentially abundant ATP binding proteins,
including 6 kinases (MAP2K2, SYK, STK3, MAP3K2, NDKA,
and SRPK1), consistent with previous studies (Figure 1G) (Hole
and Wormley, 2016; Ballou and Johnston, 2017; Vaz et al., 2019).
Similar to C. albicans, in the initiation of C. neoformans
infections, macrophages are the main phagocytic cells, and
M1 macrophages can effectively inhibit pathogen spread.
Nevertheless, C. neoformans can survive and reproduce inside
macrophages. Consequently, macrophages can be a niche for
pathogens to survive and spread. Pandey et al. (2017) found that
host autophagy initiation complex (AIC), which regulates fungal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
colonization of mice, was regulated through kinase activities of
upstream regulatory components of AIC, LKB1 and AMPKa1.
Their discovery was based on a global phosphoproteomic
analysis of host response to C. neoformans infection in murine
macrophage cells (RAW264.7) using semi-quantitative, label-
free nano liquid chromatography-MS/MS. They identified 1,268
differentially phosphorylated host proteins deemed responsive
to C. neoformans (1.5 fold-change), which indicated a
reprograming of host kinase pathways, especially in the AIC.
Knockout of AMPKa1 in monocytes of mice results in resistance
to fungal colonization (Figure 1H) (Pandey et al., 2017). To
further understand the interaction between C. neoformans and
macrophages, Zhang L. et al. (2021) used a combination of
proteomics, lipidomics, and metabolomics to investigate the
roles of EVs from infected murine bone marrow-derived
macrophages and macrophages derived from human
monocytes in the interaction with Cryptococcus. Pathway-
associated p53, cell cycle and division, extracellular matrix
receptors, and phosphatidylcholine were significantly enriched
(Zhang L. et al., 2021). Consistent with in vitro investigations
above, Li et al. (2020) compared the transcriptome and proteome
in lung tissues of C. neoformans-infected C57BL/6J mice. They
found a distinct set of differentially expressed genes and similar
gene ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses, which may be the
result of different levels of PTMs (Li et al., 2020). Host
TABLE 2 | Summary of proteomic studies in host-fungal interaction.

Functions Proteomics or
PTMs

Pathogen and host Description Reference

Phagocytosis proteomics C. albicans, Human blood derived
macrophages(M1 and M2
macrophage)

Characterized the proteomic differences between human M1 and M2 polarized
macrophages in response to C. albicans.

(Reales-
Calderon
et al., 2014).

proteomics,
phosphorylation

C. albicans, RAW 264.7 Quantify macrophage proteins and phosphoproteins in RAW 264.7 exposed to
C. albicans.

(Reales-
Calderon
et al., 2013).

proteomics,
phosphorylation

C. albicans, THP-1 macrophage Quantitative proteomic and phosphoproteomic of human macrophage ATP-
binding proteins exposed to C. albicans.

(Vaz et al.,
2019)

phosphorylation C. neoformans, RAW264.7 Phosphoproteomic analysis of host response to C. neoformans infection in
murine macrophage.

(Pandey
et al., 2017)

proteomics,
lipidomics, and
metabolomics

C. neoformans, murine bone marrow-
derived macrophages and
macrophages derived from human
monocytes

Combination of proteomics, lipidomics, and metabolomics to investigate the
roles of EVs from infected murine bone marrow-derived macrophages and
macrophages derived from human monocytes interaction with Cryptococcus.

(Zhang L.
et al., 2021)

proteomics C. neoformans, mouse Comparison of transcriptome and proteome in lung tissues of C. neoformans-
infected mice.

(Li et al.,
2020)

proteomics A. fumigatus, RAW 264.7 Comparative proteomic analysis of mouse macrophage phagolysosomes
containing melanized wild-type or nonmelanized pksP mutant conidia.

(Schmidt
et al., 2018)

Energy
Metabolism

proteomics C. albicans and serum Time-course proteomics in C. albicans in the presence or absence of FBS. (Aoki et al.,
2013a; Aoki
et al., 2013b)

proteomics,
phosphorylation

C. albicans, THP-1 macrophage Quantitative proteomic and phosphoproteomic of human macrophage ATP-
binding proteins exposed to C. albicans.

(Vaz et al.,
2019)

proteomics A. fumigatus, A549 Characterized the proteomic response of A549 exposed to A. fumigatus (Margalit
et al., 2020)

proteomics C. gattii, rat Identify differentially expressed proteins induced by a C. gattii in a rat model by
a shotgun proteomics

(Rosa et al.,
2019)

acetylation C. neoformans, mouse Comparative acetylome analysis in mouse model during C. neoformans
infections

(Li et al.,
2020)
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phagosomes and energy metabolism are regulated at the
pathogen–host axis at proteome and PTM levels and may play
important roles during antagonistic interactions (Pandey et al.,
2017; Schmidt et al., 2018; Li H. L. et al., 2019; Rosa et al., 2019;
Sim et al., 2019; Sun et al., 2019; Vaz et al., 2019; Li et al.,
2020; Nelson et al., 2020; Seoane et al., 2020). With the
human fungal pathogen A. fumigatus, Schmidt et al. (2018)
conducted a comparative proteomic analysis of mouse
macrophage phagolysosomes containing melanized wild-type or
nonmelanized pksP mutant conidia (Schmidt et al., 2018).
Bioinformatical analysis of differentially expressed proteins
revealed enriched pathways included vATPase-driven
phagolysosomal acidification, Rab5 and Vamp8-dependent
endocytic trafficking, and recruitment of Lamp1 phagolysosomal
maturation marker and lysosomal cysteine protease cathepsin Z.
Particularly notable, the proteome of invading A. fumigatus
contained 22 differentially expressed proteins. Most importantly,
the distinct roles of macrophages during fungal infections in
humans remain to be confirmed.
HOST ENERGY METABOLISM IN
HOST-FUNGI INTERACTIONS

Energy metabolism, especially glucose and fatty acid metabolism,
plays critical roles at the pathogen–host axis at both RNA and
protein levels (Table 2) (Li H. L. et al., 2019; Li et al., 2020).
Glucose is a primary factor in the competition between host and
invading pathogen, and its metabolism is critical for fungal
survival (Idnurm et al., 2007; Li H. L. et al., 2019). In fungal
pathogens, adaption to a nutritionally deficient environment is
also a key factor in pathogenicity. In C. albicans, carbon sources
influence biofilm formation and drug resistance by regulating
cell wall components and those of the secretome, including
adherence and pheromone-regulated proteins (Ene et al.,
2012). According to time-course proteomics in yeast nitrogen
base ± Fetal Bovine Serum (FBS) media, pathways associated
with transport, detoxification, energy metabolism, and iron
acquisition were enriched in C. albicans (Aoki et al., 2013a;
Aoki et al., 2013b). Furthermore, Li H. L. et al. (2019) found that
compared with in vitro C. neoformans results, in vivo glycolysis
and TCA cycle pathways varied in C. neoformans isolated from
both mouse and monkey infection models (Li H. L. et al., 2019).
From the host aspect, as mentioned before, Vaz et al. (2019) used
a quantitative proteomic and phosphoproteomic approach to
study human macrophage ATP-binding proteins during C.
albicans infections. They found significantly altered ATP and
macrophage mitochondrial proteins, indicating energy
metabolism of phagocytosis was also altered during C. albicans
infections. Margalit et al. (2020) characterized the proteomic
response of A549 exposed to A. fumigatus and identified changes
in mitochondrial activity and energy output (Margalit et al.,
2020). Rosa et al. (2019) used a shotgun proteomics approach to
identify differentially expressed proteins induced by a C. gattii
clinical strain in a rat model and found a potential Warburg-like
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
effect (Rosa et al., 2019). Briefly, rat lungs were isolated for three
days post incubation with avirulent and virulent C. gatti strains
and then analyzed by MS/MS. Infection by C. gattii induced a
dramatic change in protein expression, especially that of proteins
related to energy metabolism, such as those involved in the
aerobic glycolysis cycle, TCA cycle, and pyrimidine and purine
metabolism. These results indicated C. gattii infection triggers
important changes in energy metabolism that lead to activation
of glycolysis and lactate accumulation, culminating in a cancer-
like metabolic status known as the Warburg effect. Li et al. (2020)
found similar results in mouse lung tissues at day seven
postinfection with C. neoformans. They performed acetylome
analysis and found that the reactome of differentially expressed
Kac proteins primarily included those involved in glucose and
fatty acid metabolism (Li et al., 2020). Because of the important
roles of energy during infection progression, glucose metabolism
and mitochondrial function have gradually become the focus of
research in infectious diseases, from both host and pathogen
aspects. Deciphering the mechanisms of co-evolution at fungi-
host axis, which deserves more attention, will contribute the
therapy for fungal diseases and development of novel anti-
fungal drugs.
QUESTIONS AND OUTLOOK

This literature review summarizes the many applications of MS-
based proteome and PTM analyses that have increased
understanding of fungal pathogenesis and interactions between
pathogens and hosts. With increases in MS throughput and
precision, proteomics is now widely used in the life sciences.
Much has been learned using standard fungal strains, including
C. albicans, A. fumigatus, C. neoformans, and C. auris, and
samples from infected animal models, including mice and rats
and cell lines such as RAW264.7, A549, and THP-1. However,
shortcomings remain in this area. First, human-relevant samples
are limited to only those with monocytes or body fluids. Second,
differences among clinical fungal strains or primary cell types
and in specific organs/tissues are far too great to ignore. Third,
interactions of proteomes and regulation mechanisms among
PTMs are poorly understood. In addition, although proteomics
together with other omics can serve as comprehensive displays of
cellular transcriptional levels, unfortunately, most multiomic
studies are presented without simultaneous analyses and
functional experiments (Zamith-Miranda et al., 2019; Zhou
et al., 2021). This lack of supporting studies may be due to
constraints with database integration and interconnectivity of
omics data (Song M. et al., 2020). Over the past decade, a series of
multiomics tools and data sets have proven to be valuable.
However, simultaneously, higher requirements have become
necessary for data operation, and computational resources,
ethical regulatory issues associated with data sharing,
application of machine and deep learning, and development of
data visualization tools need to be addressed (Krassowski et al.,
2020). With the advent of the big data era, combined multiomics
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is expected to be a very powerful tool in future research on
pathogenic fungi. Furthermore, there is a great potential to
improve MS techniques, particularly to increase detection
resolution. In addition, dual-proteome or dual-PTM analyses
of pathogens and host are difficult to conduct and need to be
improved. In the future, mass spectrometry will be used to
identify important proteins, PTMs, and their functions in the
fungi and fungi-host interaction repertoire, and benefits for
fungal therapeutics and vaccine development. Overall, MS is a
novel approach that will continue to help decipher mechanisms
of fungal diseases. Understanding fungal pathogenesis and
clinically relevant interactions between host and fungal strains
contributes to the development of novel clinical therapies and
antifungal drugs and helps to identify clinical biomarkers to
combat deadly fungal infections and decrease morbidity
and mortality.
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