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Distance‑based clustering 
challenges for unbiased 
benchmarking studies
Michael C. Thrun 

Benchmark datasets with predefined cluster structures and high-dimensional biomedical datasets 
outline the challenges of cluster analysis: clustering algorithms are limited in their clustering ability 
in the presence of clusters defining distance-based structures resulting in a biased clustering solution. 
Data sets might not have cluster structures. Clustering yields arbitrary labels and often depends on 
the trial, leading to varying results. Moreover, recent research indicated that all partition comparison 
measures can yield the same results for different clustering solutions. Consequently, algorithm 
selection and parameter optimization by unsupervised quality measures (QM) are always biased and 
misleading. Only if the predefined structures happen to meet the particular clustering criterion and 
QM, can the clusters be recovered. Results are presented based on 41 open-source algorithms which 
are particularly useful in biomedical scenarios. Furthermore, comparative analysis with mirrored 
density plots provides a significantly more detailed benchmark than that with the typically used box 
plots or violin plots.

Modern biomedical analysis techniques such as next-generation sequencing (NGS) have opened the door for 
complex high-dimensional data acquisition in medicine. For example, The Cancer Genome Atlas (TCGA) pro-
ject provides open-source cancer data for a worldwide community. The availability of such rich data sources, 
which enable discovering new insights into disease-related genetic mechanisms, is challenging for data analysts. 
Genome- or transcriptome-wide association studies may reveal novel disease-related genes, e.g.1, and virtual 
karyotyping by NGS-based low-coverage whole-genome sequencing may replace the conventional karyotyp-
ing technique 130 years after von Waldeyer described human chromosomes2. However, deciphering previously 
unknown relations and hierarchies in high-dimensional biological datasets remains a challenge for knowledge 
discovery, meaning that the identification of valid, novel, potentially useful, and ultimately understandable 
patterns in data (e.g.,3) is a difficult task. A common first step is identifying clusters of objects that are likely to 
be functionally related or interact4, which has provoked debates about the most suitable clustering approaches. 
However, the definition of a cluster remains a matter of ongoing discussion5,6. Therefore, clustering is restricted 
here to the task of separating data into similar groups (c.f.7,8). Vividly, relative relationships between high-dimen-
sional data points are of interest to build up structures in data that a cluster analysis can identify. Therefore, it 
remains essential to evaluate the results of clustering algorithms and grasp the differences in the structures they 
can catch. Recent research on cluster analysis conveys the message that relevant and possibly prior unknown 
relationships in high-dimensional biological datasets can be discovered by employing optimization procedures 
and automatic pipelines for either benchmarking or algorithm selection (e.g.,4,9). The state-of-the-art approach 
is to use one or more unsupervised indices for automatic evaluation, e.g., Wiwie et al.4 suggest the following 
guidelines for biomedical data:

"Use […] [hierarchical clustering*] or PAM. (2) Compute the silhouette values for clustering results using 
a broad range of parameter set variations. (3) Pick the result for the parameter set yielding the highest 
silhouette value" (*Restricted to UPGMA or average linking, see https://​clust​eval.​sdu.​dk/1/​progr​ams).

Alternatively, the authors provide the possibility of using the internal quality measures of Davies–Bouldin10 and 
Dunn11 indices.
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The main contribution is to outline the pitfalls and challenges of approaches in which relevant and possibly 
prior unknown relationships in high-dimensional biological datasets are to be discovered by employing opti-
mization procedures and automatic pipelines; more precisely, this work shows that.

•	 Parameter optimization on datasets without distance-based clusters,
•	 Algorithm selection by unsupervised quality measures on biomedical data, and
•	 Benchmarking clustering algorithms with first-order statistics or box plots or a small number of trials

are biased and often not recommended. Evidence for these pitfalls in cluster analysis is provided through 
the systematic and unbiased evaluation of 41 open-source clustering algorithms with several bodies of data that 
possess clearly defined structures. These insights are particularly useful for knowledge discovery in biomedical 
scenarios. Select distance-based structures are consistently defined in artificial samples of data with specific pit-
falls for clustering algorithms. Moreover, two natural datasets with investigated cluster structures are employed, 
and it is shown that the data reflect a true and valid empirical biomedical entity.

This work shows that the limitations of clustering methods induced by their clustering criterion cannot be 
overcome by optimizing the algorithm parameters with a global criterion because such optimization can only 
reduce the variance but not the intrinsic bias.

This limitation is outlined in two examples in which, by optimizing the quality measure of the Davies–Bould-
ing index10, Dunn index11 or Silhouette value12, a specific cluster structure is imposed, but the clinically relevant 
cluster structures are not reproduced. The biases of conventional clustering algorithms are investigated on five 
artificially defined data structures and two high-dimensional datasets. Furthermore, a clustering algorithm’s 
parameters can still be significantly optimized even if the dataset does not possess any distance-based cluster 
structure.

This work is structured as follows. After introducing the challenges and pitfalls of cluster analysis in five 
subsections, the results are divided into the following three subsections.

Two examples for the pitfalls of optimizing or selecting algorithms by the Davies–Bouldin index are presented 
directly in the result section. Other datasets and unsupervised indices are evaluated in SI C and SI E. In SI D: the 
MD plots reveal biases and the various states of probability outlining that benchmarking clustering algorithms 
with first-order statistics, box plots, or a small number of trials is not advisable. In addition, this is also shown 
in Fig. 2, left and SI C, Supplementary Fig. 10 left for high-dimensional datasets. The third subsection of the 
results outlines the first step for an unbiased benchmarking of clustering algorithms, for which the results of all 
evaluations based on appropriately used supervised indices are summarized in Table 1. This work finishes with 
the methods section explaining the selection process for datasets with clearly predefined structures allowing for 
only one correct partition of the data, the choice of high-dimensional datasets, evaluation criteria and access to 
state-of-the-art clustering algorithms.

Table 1.   Typical distance-based clustering challenges with one example dataset each. The table summarizes 
the results of SI C, Supplementary Fig. 10 and SI D Supplementary Figs. 11–14. No algorithm is able to 
reproduce all types of problems with highly stable results. The challenge that no distance-based cluster 
structures exist is not included in this table because benchmarking is not possible in this case. Note that the 
benchmarking performed here does not allow the deduction if an algorithm fails due to the cluster structures 
or due to the distribution of the data.

Distance-based cluster 
structures

Exemplary dataset 
dimensionality d range of 
cluster size Stable clustering solution

Small bias with minor 
variance

Small bias and unstable 
clustering solution 
(multimodality) Large bias

Non-overlapping convex 
hulls with varying intra-
cluster distance

Hepta, D = 3 14%-15% 24/41 QT, SOM,
CrossEntropyC, Hartigan, 
HCL, HDD, LBG, mvnpEM, 
npEM, Orclus, SOM Sparse 
k-means Spectral,

Diana, ProClus, RTC, PPC

Overlapping convex hulls Atom D = 3 50% 10/41 DBS CrossEntropyC 29/41

Non-overlapping convex 
hulls with varying geometric 
shapes and noise

Lsun3D D = 3 24–49% 
(Additionally, 4 outliers as 
noise)

Clustvarsel, , Gini, 
HDBSCAN, Minimax Mod-
elBased, mvnpEM, npEM, 
VarSelLCM, Ward, , ,

Fanny, DBS, Orclus, Cros-
sEntropyC, HDD Spectral, ProClus 25/41

Linear non-separable entan-
glements Chainlink D = 3 50%

DBS, Gini, 
HDBSCAN,mvnpEM, Sin-
gleL, Spectral, Spectrum, ,

Clustvarsel, CrossEntr-
poy, Modelbased, npEM, 
VarSelLCM

/ 29/41

High dimensionality with 
highly imbalanced cluster 
sizes

Leukaemia D = 7447 Range 
of cluster sizes: 2.7–50% 
(Additionally, 1 outlier as 
noise)

AverageL, CompleteL Diana, 
SingleL, WPGMA DBS Clara, HCL, QT

32/41 with Clustvarsel, 
CrossEntropy, ModelBased, 
mvnpEM, npEM, Orclus, 
RTC, and Spectrum not 
computable

High dimensionality with an 
unstable clustering solution

Cancer D = 18,167 Range of 
cluster sizes: 10%-17% Gini Ward DBS, Hartigan, HDD, LBG, 

Neural Gas

34/41 with Clustvarsel, 
CrossentropyC, Model-
Based, mvnpEM, npEM, 
Orclus, RobustTrimmedC, 
SparseH and Spectrum not 
computable
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Challenges and pitfalls
This work is based on two assumptions. First, there exists only one optimal partition of data defining the real 
clustering situation, which is contrary to the axioms of Kleinberg13. The existence of only one optimal partition 
will not hold for many clustering applications (c.f.14), but we assume that in the case of biomedical applications, 
it is a valid assumption for diagnoses or therapies (see description in SI A, Supplementary Figs. 1–4). Second, a 
trained physician or diagnostic specialist is able to recognize and validate the patterns of data for datasets in two 
or three dimensions (e.g.,15). Thus, empirically based clusters such as "diagnoses" should match the algorithmic 
clustering approach’s results. If artificial datasets are defined systematically (e.g., in16,17), then manual clustering 
would be consistent with the prior classification.

Keeping these two assumptions in mind, in principle, five categories of challenges can be identified: data-spe-
cific cluster structures, the limitations of clustering criteria, the biases induced by evaluation, high-dimensionality 
and estimating the number of clusters.

Challenge induced by clustering criteria.  Clustering criteria make implicit assumptions about data18–22, 
resulting in biased clustering. Moreover, clustering algorithms partition the data even if the data do not possess 
distance-based structures22,23. No algorithm exists that is able to outperform all other algorithms if more than 
one type of problem exists24. More precisely, the insights of Geman et al.25 and Gigerenzer et al.26 state that the 
error in various types of algorithms is the sum of the variance, bias, and noise components, which is the starting 
hypothesis of this work. Here, the bias is the difference between the given cluster structures and the ability to 
reproduce these structures. If a global clustering criterion is given that an implicit definition of a cluster exists, 
the bias is the difference between this definition and the given structures in data. The variance is the stochastic 
property of not reproducing the same result in different trials. Small or zero variance means high reproducibility. 
Outliers in distance-based datasets can represent the data noise.

Challenges in evaluating clustering solutions.  Quality evaluation in unsupervised machine learning 
is often biased. This bias can be shown for quality assessments for clustering methods in the case of unknown 
class labels (unsupervised quality measures)20 as well as quality assessments for dimensionality reduction meth-
ods if graph theory insights are applied23,27.

In the case of supervised indices, partition comparison measures can yield the same results for a different 
clustering solution. Ball and Geyer-Schulz proved that all partition comparison measures they had found in 
the literature fail on symmetric graphs because they are not invariant w.r.t. the group automorphisms28. They 
state that given the automorphism group, their results on the decomposition of the measures generalize to arbi-
trary cluster problems28. Their analyzed supervised indices are available in the R package ‘partitionComparison’ 
CRAN (https://​CRAN.R-​proje​ct.​org/​packa​ge=​parti​tionC​ompar​ison). Since most of the real-world graphs con-
tain symmetries29 and distance-based cluster structures can be described through graph theory23, the author 
agrees with28 that this insight is generalizable to clustering problems. Clearly, this theory developed by Ball and 
Geyer-Schulz means that different partitions of the data may result in the same value for a supervised quality 
measure (QM). In practice, this means that the usual definition of the F1 score has a probability to evaluate 
well-partitioned data and incorrectly partition data equally if enough algorithms and datasets are investigated. 
In conclusion, performing streamlined evaluations and comparisons of the clustering algorithms (e.g.4) can be 
inappropriate, especially as the number of trials and algorithms and parameters increases.

Challenges for distance‑based cluster structures.  When a new method is proposed, quality assess-
ment is performed with preselected supervised indices depending on the publication30,31. Either elementary arti-
ficial datasets are used without the precise investigation of the cluster structure (especially if they are distance- or 
density-based clusters) or natural datasets with unknown (or undiscussed) structures are selected. An evaluation 
is then performed using a priori, possibly arbitrarily given the classification, but it remains unknown if only one 
valid clustering scheme exists for these datasets. If more than one valid clustering scheme is possible, the discus-
sion about algorithm performance becomes infeasible.

Such cases do not generally imply how well clustering algorithms work or indicate which structures an algo-
rithm can find. More importantly, the reproducibility of a method is usually investigated insufficiently, meaning 
that methods can possess different states of probability depending on the trial, which remains invisible if first-
order statistics or box plots are used.

Challenges of high‑dimensionality.  Usually, three types of automatic approaches can be applied to cope 
better with high-dimensional data (c.f.32–35). In the first type, clustering is combined with dimensionality reduc-
tion (e.g.36), in the second type, clustering is combined with feature selection (c.f.37), and in the third type, deep 
learning is employed to learn feature representation for clustering tasks38.

Well-known approaches for the first type are subspace clustering (e.g.39,40) and clustering combined with 
various linear and non-linear projection methods. An extensive discussion of these methods can be found in41. 
Here, several algorithms of this type are selected (see SI F, Table 1).

For the second type, the best accessible approaches are based on finite mixture modeling which provide the 
framework for cluster analysis based on parsimonious Gaussian mixture models42. An extensive discussion of 
these methods can be found in32. Scrucca and Raftery proposed to use the Bayesian information criterion to 
compare mixture models fitted on a nested subset of features42. Alternatively, Marbac and Sedki proposed a new 
information criterion for selecting a model with relevant features43, which assumes that variables are independ-
ent within components44.

https://CRAN.R-project.org/package=partitionComparison
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In a non-model-based clustering method, a lasso-type penalty to selected features was used in the so-called 
sparse clustering45. As another option, Random forests provide a proximity measure that can capture different 
levels of co-occurring relationships between variables and can be converted into an unsupervised learning 
method, for which the derived proximity measure can be combined with a clustering approach46. However, 
there is no proof that methods that integrate feature selection in clustering outperform a two-stage approach in 
which the first stage screens for relevant features and the second stage applies conventional clustering methods 
on the pre-selected features47. Nonetheless, Azizyan et al. conjecture that there could be certain conditions under 
which simultaneous feature selection and clustering would outperform the two-stage apporach 47. Furthermore, 
reducing the dimensionality of data automatically without taking into account the clustering goal can conduce 
to suboptimal results32.

In the third type of approach, the so-called deep clustering integrates representation learning and clustering 
as a single process to obtain the optimal representation space for clustering48. Karim et al49 claims that accuracy 
of non-deep learning clustering algorithms for high-dimensional datasets degrades drastically due to the curse 
of dimensionality (c.f.32–35). Such approaches mainly focus on image datasets, for example, see50, while few 
attempts have been made on documents51, for example, see48, and graph datasets (e.g.52). One disadvantage of 
such approaches is their lower robustness: small perturbations in the input space will lead to diverse clustering 
results since labels are absent in the unsupervised clustering task48. Some methods like structural deep cluster-
ing network53 can also be used on numerical data but require the computation of a specific graph based on the 
raw data as a input. In this case, clustering results will depend on the type of graph used because it defines the 
relevant neighborhoods in the data23. Recently deep kernel learning methods were proposed for clustering54. 
However, the corresponding infinite-dimensional minimization problem can be recast into a finite-dimensional 
minimization problem which can be tackled with non-linear optimization algorithms55. As a consequence of 
this Representer theorem, deep kernel learning clustering methods have similar optimization procedures to 
conventional algorithms like k-means with specific objective functions that may not be appropriate to the given 
structures in data. It should be noted that in the difference to state-of-the-art clustering methods (c.f. summary of 
over 60 algorithms and many clustering libraries in the R package ”FCPS” on CRAN), deep clustering algorithms 
were so far either directly inaccessible or only published as GitHub packages (see overview in49). In contrast, 
rigorous external testing and strict documentation guidelines are required for a submission of packages to the 
comprehensive R archive network (CRAN)56 which results in a high stability of algorithms and reproducibly of 
results independent of the system architecture. As a consequence, deep learning clustering methods with access 
restricted to GitHub often only work for specific system architectures, have unclear or inaccessible dependencies, 
and without clear documentation may yield incorrect results due to inappropriate usage.

In addition to these types of approaches, the challenge of high dimensionality for cluster analysis can be 
resolved via the selection of an appropriate distance metric (see57 for details).

Estimating the number of clusters.  Automatically determining the number of clusters has been one of 
the most difficult problems in data clustering58. Methods for automatically determining the number of clusters 
cast either into the problem of model selection58 or the number of clusters can be determined visually. Exemplary 
for the first case serve information criteria like AIC and BIC with which the number of Gaussian mixture com-
ponents can be estimated (e.g.59). Further, Keribin demonstrated the consistency of BIC for selecting the number 
of components in mixture models 60. Clustering quality measures can be used which are typically based either on 
covariance matrices, or the intra, or intercluster distances can be compared to evaluate the homogeneity versus 
heterogeneity of the clusters (e.g.,61,62). For example, the distortion measure evaluates the average distance, per 
dimension, between each observation and its cluster center63. Further approaches use the gap statistic64, the 
quantization error65, the diversity index66 or by a novel approach of cross-validation for unsupervised learning67.

Visually, the most basic approach to estimate the number of clusters would be the elbow criterion68. Since 
then, various decision graphs or other visualization approaches for specific clustering methods were proposed31,69. 
Restricted to hierarchical clustering algorithms, large changes in fusion levels of the ultrametric portion of the 
used distance measure indicate the best cut, and, hence, the number of clusters23. Furthermore, scatter plots of 
dimensionality reduction methods (so-called projection methods70) , more elaborate methods based on emergent 
self-organizing maps71, or even interactive methods from the field of visual analytics (e.g.72) can be used. At last, 
some clustering algorithms automatically select the number of clusters (e.g.,30,73–75). Since this wide variety of 
possible approaches for estimating the appropriate number of clusters, the evaluation of this critical parameter 
will not be performed in this study. If the parameter has to be set, it will be set by a predefined number of clusters.

Results
The results are divided into three parts. In the first two sections, the reasons that clustering is biased and can-
not be optimized without prior knowledge are shown. The third section outlines the first step in an unbiased 
benchmarking of clustering algorithms.

Optimizing parameters based on an unsupervised QM imposes bias.  If no distance-based cluster 
structures exist, most algorithms will still partition the data22,23, and unsupervised evaluation criteria will pro-
vide valid values. Two clustering solutions are provided for which a clustering algorithm yields a homogenous 
grouping for data without distance-based structures (Fig. 1). Optimization of 9 parameters of SOM clustering 
can vary in Davies–Bouldin indices10 between 11.8 and 0.83 (Fig. 2). However, for both cases, the class-wise 
inter-cluster distance distribution remains with a variance equal to that of the full distance distribution (SI B, 
Supplementary Figs. 5 and 6).



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18988  | https://doi.org/10.1038/s41598-021-98126-1

www.nature.com/scientificreports/

Using an unsupervised QM for the chosen algorithm imposes bias.  The evaluation of 24 conven-
tional clustering algorithms is presented with the mirrored density plot (MD-plot)76 in Fig. 2.

The MD-plot of the micro-averaged F1 score in Fig. 2 (right) visualizes the estimated probability density 
functions (PDF) for each clustering algorithm across 120 trials. First, multimodality for the DBS, Clara, Harti-
gan, LBG, ProClus, SOM, spectral, HCL, and QT clustering algorithms is clearly visible. Using the ground truth, 
the PDFs of supervised quality measure (QM) for each algorithm show that AverageL, CompleteL, DBS, Diana 
SingleL and WPGMA are appropriate algorithms to reproduce the high-dimensional structures. However, the 
stochastic nature of DBS, Clara, and HCL yields different states of the probability of which only one state is 
appropriate. The MD-plot of the Davies–Bouldin index suggests the Markov, MinEnergy, and HCL are appro-
priate algorithms. An additional high-dimensional example with a balanced number of instances also leads to 
inappropriate algorithm selection (SI C Supplementary Fig. 10), although approaches of knowledge discovery 
indicate a distance-based cluster structure (SI A, Supplementary Figs. 3 and 4).

Benchmarking shows bias and multimodal variance.  Table 1 shows the summarized results of the 
MD-plots in SI C and D (Supplementary Figs. 10–14). Here, the error rate is chosen because the number of 
instances per class is not highly imbalanced except for outliers, which are defined as noise. Table 1 validates the 
claim of77 because it shows that each global clustering criterion imposes a particular structure on the data, and 
only if the data happen to conform to the requirements of a particular criterion are the actual clusters recovered.

Discussion
The bias and reproducibility of specific distance-based cluster structures were investigated systematically using 
41 clustering algorithms. The results show the pitfalls of

1.	 Parameter optimization on datasets without distance-based cluster structures.
2.	 Algorithm selection by unsupervised quality measures on biomedical data.
3.	 Benchmarking clustering algorithms with first-order statistics or box plots or a small number of trials.

The clustering performance on two biomedical datasets (Fig. 2 and SI C. Supplementary Fig. 10) indicates that 
the evaluation of datasets and algorithms with the Davies–Bouldin index, the Dunn index (SI E, Supplementary 
Fig. 16), and the average silhouette value (SI E, Supplementary Fig. 15) does not enable researchers to select an 
appropriate clustering algorithm or result that is contrary to prior claims4. The best-performing algorithms are 
often inappropriate for these datasets since prior knowledge about high-dimensional data (presented in SI A, 
Supplementary Figs. 1–4) reveals that bias is induced by evaluating the Davies–Bouldin index, the Dunn index 
(SI E, Supplementary Fig. 16) or the average silhouette value (SI E, Supplementary Fig. 15). Recent research 
reports a significant correlation between the F1 score and silhouette values4. However, a correlation does not 
necessarily mean that a valid relationship between two quality measures (or any two variables) exists (see the 

Figure 1.   The coloured points of the two SOM clusters of the GolfBall dataset16. The figure on the left shows an 
optimal clustering of 0.83 for the Davies–Bouldin index, and the figure on the right shows the worst case of 11.8 
for the Davies–Bouldin index.
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counter-example in78). Here, the silhouette value is misleading for every clustering algorithm because it inves-
tigates whether the cluster structures are spherical23.

This is a general problem of algorithm selection by unsupervised quality measures because such an approach 
solely evaluates how well a clustering algorithm is able to partition the data into structures with a specific 

Figure 2.   MD-plots of the micro-averaged F1 score (left) and Davies–Bouldin index (right) across 120 trials for 
33 clustering algorithms calculated on the leukaemia dataset. Distance-based structures with imbalanced classes 
are not easy to tackle in high-dimensional data. The chance level is shown by the dotted line at 50%. The choice 
of an algorithm by the Davies–Bouldin index would lead to the selection of the CentroidL or for some trials 
VarSelLCM algorithms, whereas using the ground truth shows that AverageL, CompleteL, DBS, Diana SingleL 
and WPGMA are appropriate algorithms to reproduce the high-dimensional structures with low variance and 
bias. The results for Clustvarsel CrossEntropyC, ModelBased, mvnpEM, npEM, Orclus, RTC, and Spectrum 
could not be computed. Note that, Markov clustering results in only one cluster in which case the Davies-
Bouldin index is not defined.
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assumption about the data. Unsupervised quality measures possess biases20 requiring specific assumptions about 
the data. Furthermore, instead of selecting algorithms by an unsupervised quality measure, one could also opti-
mize the unsupervised quality measure directly by defining an objective function based on this unsupervised 
index which would achieve the same goal.

Typically, there are two alternatives for selecting algorithms with unsupervised quality measures. First, 
assumptions about the structures in data can be investigated manually with knowledge discovery approaches 
before algorithm selection (e.g., see SI A) or be based on other sources of prior knowledge. An example of prior 
knowledge could be the assumption that clusters should possess interrelations to external medical factors like 
survival.

As a consequence of investigating the structures in data before cluster analysis, natural high-dimensional 
datasets are only valuable for benchmark algorithms if the structures are known beforehand and the prior clas-
sification is unambiguous, which is often not the case or remains undiscussed. Otherwise, benchmarking with 
high-dimensional datasets and unsupervised quality measures is biased and could be misleading.

Secondly, the author follows the argument of Holzinger79 that the integration of a Human-in-the-loop’s 
(HIL)’s knowledge, intuition, and experience can sometimes be indispensable, and a HIL’s interaction with the 
data and algorithm selection and optimization can significantly improve the overall ML pipeline. Such interac-
tive ML uses the HIL to make possible what neither a human nor a computer could do alone (cf.79). The HIL is 
an agent that interacts with algorithms, allowing the algorithms to optimize their learning behavior (cf.80). This 
perspective fundamentally integrates humans into the algorithmic loop with the goal of opportunistically and 
repeatedly using human knowledge and skills to improve the quality of clustering algorithms (cf.80, see also81,82). 
For example, interactive projection-based clustering integrates the HIL in the process of algorithm and parameter 
selection72.The first results section serves as an example of the pitfall in cluster analysis that if no distance-based 
structures exist, then algorithm selection and parameter optimization by evaluating an unsupervised quality 
measure will not lead to any meaningful results. For high-dimensional data, the existence of cluster structures 
has to be investigated prior to using such a dataset for benchmarking. Both results imply that optimizing param-
eters and selecting algorithms without prior knowledge about the data results in an implicit restriction of the 
cluster structures that are sought even if they do not exist. This work outlines that optimization contradicts the 
typical knowledge discovery approach for biomedical data. If the values of any unsupervised quality measure 
are optimized, implicitly, a new clustering algorithm is created that possesses this quality measure as its global 
criterion. Without extensive prior knowledge, either based on medical insights or various knowledge discovery 
approaches, automation in cluster analysis for knowledge discovery can be inappropriate.

In the third part, 41 clustering algorithms are compared on artificially defined data structures and well 
investigated high-dimensional data with specifically defined distance-based challenges, revealing the biases 
of these clustering algorithms. Evaluating 120 trials per algorithm enables the visualization of the PDF of each 
algorithm’s error rates (SI C and SI D, Supplementary Figs. 10–14). The benchmarking uncovers variance in 
half of the algorithms investigated (SI F Table 1) and multimodalities in the variances of F1 score and error rate 
in these algorithms, meaning that these algorithms have different states of probabilities, and for noisy datasets, 
sometimes no stable clustering solution can be generated. This finding means that first-order statistics such as 
the mean and standard deviation or even box plots are invalid to compare the results of quality measures.

The resulting clusterings of algorithms typically have either a large variance and a small bias (e.g., spectral 
clustering and DBS clustering) or a large bias w.r.t. the distance-based structures investigated and a small variance 
in the results (e.g., hierarchical clustering algorithms). The exceptions are the two k-means clustering algorithms, 
which have high variance and high bias. Surprisingly, subspace clustering algorithms are unable to deal with the 
overlapping convex hulls of Atom, in which the low-dimensional manifold would be one-dimensional, and the 
high-dimensional datasets. It seems that subspace clustering is inappropriate for distance-based datasets. Spectral 
clustering is clearly affected by noise, and model-based clustering cannot be used if the dimensionality increases 
significantly. DBS is the only algorithm that exploits emergence, which results in the ability to reproduce every 
structure type because no global clustering criterion is required. However, it possesses a considerable variance 
that often has to be extensively dealt with. The claim of Karim et al.49 that the accuracy of non-deep learning 
clustering algorithms for high-dimensional datasets degrades drastically due to the curse of dimensionality was 
disproved for up to D > 18.000 with the exception of model-based clustering algorithms. There are sufficient 
many state-of-the-art methods available that can cope with high-dimensionality. Although a high number of 
cases (N > 10^5) was not investigated in this work, based on the evaluated results, it can be assumed that several 
non deep learning clustering algorithms will compute results with comparable efficiency.

In sum, the authors do not want to make any recommendation of which clustering algorithm outperforms 
the others, because a complete benchmarking study should be double-blinded and unbiased, meaning that the 
authors of the study should not be the inventor of one of the methods, the authors should not know themselves 
which algorithm is which before ending the study and the reviewers should not know which authors performed 
the study.

However, two points are evident. First, the results of clustering algorithms should be compared over many 
trials on previously extensively investigated datasets with various knowledge discovery approaches (e.g., SI A, 
Supplementary Figs. 1–4) or precisely defined artificial datasets with a specific pitfall. Second, global clustering 
criteria and unsupervised and supervised quality measures in cluster analysis possess biases and can impose 
cluster structures on data. Only if the data happen to meet the structure type is appropriate validation of the 
clustering solution possible. Therefore, either various knowledge discovery approaches or Human-in-the loops 
(HILs) are necessary before a highly automated approach for cluster analysis such as ClustEval9 is applied.

On the one hand, the results shown here are not generalizable in the sense that an algorithm reproducing 
the distance-based structure is always able to reproduce the structures of this type. On the other hand, the 
results show the clustering algorithms’ limitations if distance-based data structures are investigated. Suppose an 



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:18988  | https://doi.org/10.1038/s41598-021-98126-1

www.nature.com/scientificreports/

algorithm is not able to reproduce structures of a particular type in any trial. In this case, it is fairly improbable 
that that algorithm will be able to reproduce such types of distance-based structures in high-dimensional data 
or that extensive parametrization will significantly reduce the bias.

Conclusion
This work emphasizes that only the combination of empirical medical knowledge and an unbiased, structure-
based choice of the optimal cluster analysis method w.r.t. the data will result in precise and reproducible clustering 
with the potential for knowledge discovery of high clinical value. It reveals the challenges of benchmarking and 
automation of cluster analysis for knowledge discovery. Unbiased benchmarking of clustering should be per-
formed using artificial or extensively investigated datasets to compare the clustering results with clearly defined 
cluster structures. Then, combining the Mirrored Density plot (MD-plot) with a supervised quality measure 
of apparent and exploitable bias is a possible solution to evaluate clustering algorithms. The bias in the quality 
measure has to depend on the dataset.

It is open to the reader to interpret the results and favor some algorithms because it is visible that on average, 
two out of three conventional clustering algorithms fail even on the most straightforward datasets if structures 
based on the relationships between data points are of interest. Future research should systematically investigate 
if deep learning clustering can reproduce structures in data better than state-of-the-art algorithms, although 
based on current literature review it is questionable.

Methods
Benchmarking will be performed on two high-dimensional datasets (D > 7000 and D > 18,000) and four artifi-
cially defined data structures with 41 clustering algorithms that are available in a previously published cluster-
ing suite83. The high-dimensional datasets possess one true partition of the data, which was verified by various 
methods and a domain expert.

Generation of distance‑based structure in data.  The following different distance-based challenges 
are provided for the task of separating data into homogeneous groups that are heterogeneous to each other. 
They defined distance-based cluster structures because all class-wise inter-cluster distances are larger than the 
full distance distribution (SI B, Supplementary Figs. 7–9, for detailed discussion please see57). If the dimension-
ality does not become too high, the full distance distribution is usually multimodal, which can be statistically 
tested84,85. These structures in data can be generated for arbitrary sample sizes and are described in one of the 
following ways:

•	 Linear separable clusters of non-overlapping convex hulls in which the intra-cluster distances can vary
•	 Cluster structures with overlapping convex hulls
•	 Cluster structures of varying geometric shapes and noise
•	 Complex entangled clusters that can be separated only non-linearly
•	 No existing distance-based structures

Five samples of these artificially defined structures in data are used16. They have a prior classification on 
clearly predefined structures allowing for only one correct partition of the data. The five artificially defined data 
structure types are called Hepta, Atom, Lsun3D, Chainlink, and GolfBall and are selected to address the issues 
mentioned above. Detailed descriptions can be found in16.

Choice of high‑dimensional datasets.  Additionally, for cluster analysis, the issue of high dimensional-
ity can arise, which is often coupled with various effects such as the curse of dimensionality in which distance 
measures become meaningless. Moreover, cluster structures with a highly imbalanced number of instances per 
cluster can be of interest. Thus, we select two high-dimensional datasets (d = 7700 and d = 18,000) with distance-
based structures (SI A, Supplementary Figs. 1–4).

The first one, the leukaemia dataset (see SI A for a description) with medical diagnoses provided by experts 
was selected because it has a high dimensionality by measuring more than 7000 gene expression levels simulta-
neously, the cluster sizes are highly imbalanced and acute myeloid leukaemia (AML) and chronic lymphocytic 
leukaemia have been accepted as clearly separable entities for many centuries. Only 8 cluster diagnoses have been 
proposed for AML86, and these categories have only recently been expanded with respect to specific molecular 
events87. Moreover, AML is a cancer in which the number of driver mutations in genes required during onco-
genesis is relatively small88.

SI A outlines that a clear sub-manifold can be detected in which the subtypes of leukaemia (i.e., CLL, AML, 
APL (formerly M3 leukaemia according to the Bennett FAB classification)) are clearly separable from each other 
and from healthy individuals. Supplementary Figs. 1 and 2 outline a clear distance-based cluster structure of the 
prior classification of an imbalanced number of cluster instances. The dataset possesses an unambiguous ground 
truth because it reflects disease entities with entirely different therapy approaches. CLL is treated differently from 
AML, and the AML subgroup APL is treated differently from all other AML patients89, while healthy individuals 
do not require treatment at all. Despite the molecular diversity that leads to the previous AML categorization87, 
the dataset used here describes the most fundamental information, which is treatment modality.

In sum, the leukaemia dataset can be evaluated for the purpose of benchmarking, but the usual error rate 
would be unfavourably biased because the small clusters are highly relevant from a medical point of view. Thus, 
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a specific F1 score has to be chosen as discussed in SI A because the error rate will have the inappropriate bias 
when weighting the small but relevant class of APL considerably lower than the large classes of AML and CLL.

The cancer dataset (see SI A for a description) possesses five types of diagnoses with more than 18,000 RNA-
Seq gene expression levels. The class sizes are approximately balanced. Despite the high dimensionality of the 
dataset, distance-based cluster structures are still detectable (SI A, Supplementary Figs. 3 and 4). However, the 
dataset is noisier than the leukaemia dataset, and it can be expected that the given classification is an unstable 
solution w.r.t. the clustering of distance-based structures.

State‑of‑the‑art clustering algorithms and evaluation criteria.  As suggested in4, for biomedical 
data, the comparison of an internal index is performed with the F1 score based on the ground truth, and the 
error rate is chosen. The error rate (1-accuracy) is used for which the quality measure’s bias is clearly known. The 
accuracy measure does not penalize an incorrect clustering of a small class. Therefore, the artificially defined 
data structures used have equal-sized clusters except for one, in which the outliers are used to generate a tiny 
amount of noise in the data but are irrelevant w.r.t. the three main clusters.

For every cluster algorithm, the clustering accuracy is calculated across 120 trials. For each trial, the best 
of all the permutations of labels with the highest accuracy is selected because algorithms define the labels with 
arbitrary clustering w.r.t to the prior classification. Moreover, this approach avoids the problem described in28 
because all permutations are investigated.

For highly imbalanced classes in the leukaemia dataset, the accuracy (error rate) has an inappropriate bias. 
Therefore, the micro-averaged F1 score90 cites91 is used as suggested by92. In this case, the best permutation is 
chosen, too, as described above.

All clustering algorithms and access to the artificial data structures are available in the ’FCPS’ package83. The 
main parameter set is the number of clusters (NOC in Supplementary Table 1, SI F) if required by a method. In 
this work it is assumed that NOC is known prior to the clustering. Hence, the correct NOC for each dataset is 
used. If a kernel radius is required but no default value is accessible, it is estimated by the suggestion in93. If an 
additional parameter that has only two options is available, the best option regarding the accuracy is chosen. 
More advanced or numerical parameters are set to the defaults (SI F Supplementary Table 1). SI F provides a 
detailed overview of clustering algorithms and the abbreviations used in this work.

Given a valid quality measure for clustering, there are several approaches to evaluate the probability of a result 
if many trials are investigated (e.g.,94 and95).

In this work, a mirrored density plot (MD-plots), which is a schematic plot that visualizes the estimated PDF 
of "box-plot-like" features as violins76, is used. It was shown that the MD-plot outperforms comparable violin 
plots76 because its internal density estimation is particularly suitable for the discovery of structures in features, 
allowing the discovery of mixtures of Gaussians96. The MD-plot is available in the "DataVisualizations" R package 
from CRAN76 or in Python in the md-plot package on PyPI.

Computations were performed in either R 3.6.1 on Microsoft Azure using the VM size F64s_v2 with the 
specification of 64 CPUs, 128 GB RAM, 32 data disks, 80,000 max IOPS or an iMac Pro (late 2017), 2,3 GHz 
18-Core Intel Yeon W, 256 GB RAM with the R package ’parallel’ in R-core for parallel computation.

Ethics approval.  According to the Declaration of Helsinki, written patient consent was obtained for the 
leukemia dataset, and the Marburg local ethics committee approved retrospective calculation studies with this 
dataset (No. 138/16).

Data availability
The cancer dataset is available from the UCI ML repository (https://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​gene+​expre​
ssion+​cancer+​RNA-​Seq); other used data are published and accessible via16.

Code availability
All algorithms are accessible in R or Python, as described in83.
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