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ABSTRACT: The coronavirus disease 2019 (Covid-19), which caused
respiratory problems in many patients worldwide, led to more than 5 million
deaths by the end of 2021. Experienced symptoms vary from mild to severe
illness. Understanding the infection severity to reach a better prognosis could
be useful to the clinics, and one study area to fulfill one piece of this biological
puzzle is metabolomics. The metabolite profile and/or levels being monitored
can help predict phenotype properties. Therefore, this study evaluated plasma
metabolomes of 110 individual samples, 57 from control patients and 53 from
recent positive cases of Covid-19 (IgM 98% reagent), representing mild to
severe symptoms, before any clinical intervention. Polar metabolites from
plasma samples were analyzed by quantitative 1H NMR. Glycerol, 3-
aminoisobutyrate, formate, and glucuronate levels showed alterations in
Covid-19 patients compared to those in the control group (Tukey’s HSD p-
value cutoff = 0.05), affecting the lactate, phenylalanine, tyrosine, and tryptophan biosynthesis and D-glutamine, D-glutamate, and
glycerolipid metabolisms. These metabolic alterations show that SARS-CoV-2 infection led to disturbance in the energetic system,
supporting the viral replication and corroborating with the severe clinical conditions of patients. Six polar metabolites (glycerol,
acetate, 3-aminoisobutyrate, formate, glucuronate, and lactate) were revealed by PLS-DA and predicted by ROC curves and ANOVA
to be potential prognostic metabolite panels for Covid-19 and considered clinically relevant for predicting infection severity due to
their straight roles in the lipid and energy metabolism. Thus, metabolomics from samples of Covid-19 patients is a powerful tool for
a better understanding of the disease mechanism of action and metabolic consequences of the infection in the human body and may
corroborate allowing clinicians to intervene quickly according to the needs of Covid-19 patients.
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■ INTRODUCTION

With an estimated cost of more than 6.3 million deaths and
trillions of dollars in the worldwide economic breakdown, the
coronavirus disease 2019 (Covid-19) has impacted the lives of
the entire globe.1,2 The economic and social consequences of
the Covid-19 pandemic will last for many years; however, it
also reshaped science and caused a race for scientific evolution
in many areas.3 The entire world joined forces, resources, and
knowledge to fight the virus, from health-care workers to
pharmaceutical companies and research institutes. As a result,
several tests, health protocols, and vaccines arrived on the
market, quickly as possible, resulting in the downfall of Covid-
19 cases. Since the World Health Organization (WHO)
received an alert about an unknown disease in China, 27
months passed, accumulating more than 530 million confirmed
cases, 11.8 billion vaccine doses distributed, and more than
180,000 papers published on the topic.1

However, the risk of critical mutations remains active and
concerns the scientific community, particularly for mutations
in the spike protein responsible for the virus entry in human

cells through the ACE2 receptor and one of the main targets of
immunologic response.4,5 Mutations in the spike protein may
generate higher transmissivity and even immunologic response
evasion, decreasing the vaccination efficacy and threatening
new outbreaks. Currently, the Center for Disease Control and
Prevention (CDC) considers variants to be monitored, the
Alpha, Beta, Gamma, Delta, Epsilon, Eta, Iota, Kappa,
B.1.617.3, Mu, and Zeta, and variants of concern, Delta and
Omicron.6,7

The disease, in general, causes severe respiratory problems,
and its main symptoms are fever, fatigue, and cough.8

Symptoms range from mild to severe, and about 80% of
people recover from the disease without requiring hospital
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treatment.9 However, 20% develop respiratory failure and
dysfunction of other organs requiring urgent oxygen therapy or
specific interventions.9,10 It is noteworthy that the risk of death
within 12 months following severe Covid-19 infection
increases more than 200% compared to uninfected or mild
symptom patients.11 Notwithstanding, besides the elderly and
those with comorbidities such as high blood pressure, heart
and lung problems, diabetes, or cancer presenting a higher risk
of becoming seriously ill,12−14 people without known
comorbidities with Covid-19 may also develop a severe case
or a postacute Covid-19 syndrome (PACS), a condition
characterized by long-term complications after Covid-19
infection, such as chest pain, fatigue, metabolic disruption,
neurological sequelae, and thromboembolic conditions.15−19 In
fact, PACS is currently one primary concern for clinicians due
to its impact on the patients’ quality of life20 and even on the
world economy since affected patients are unable to perform
their occupations normally.15,20

The physiological and metabolic changes associated with the
disease are still not perfectly understood. In this way, it is
essential to understand better the molecular pathways involved
in the progression of severe Covid-19, which will provide more
targeted treatments and strategies.8,21,22 Previous studies have
demonstrated dramatic alterations of the metabolome and
lipidome in human plasma caused by various diseases,
including infections by SARS-CoV-2, where intracellular
parasites compete for the host cell nutrients and metabolites
leading to alteration of the host metabolome.23−25

Studies are still required regarding biological markers that
might help in fast and easy diagnosis and, most importantly, in
the prognosis of patient’s predisposition of severe Covid-19
symptoms, not only for new daily cases but also as preparation
for possible new outbreaks. Within this context, the present
work aims to perform 1H NMR-based metabolomics in plasma
samples collected from healthy controls (negative) and Covid-
19 patients before any medical or drug treatment. All of the
sample donors were included in the data analysis, even in the
case of fatalities and recovery from mild to severe symptoms,
to evaluate whether the metabolic panel might indicate this
clinical distinction through multivariate statistical analysis.

■ MATERIALS AND METHODS

Samples

Blood samples from Covid-19 infected patients were collected
in EDTA tubes at the moment of admission to the hospital,
while healthy control samples were collected from health-care
workers from the hospital. The blood samples were aliquoted
for clinical tests, and patients were further submitted to RT-
PCR (swab nasopharyngeal and oral) and antibody tests
(plasma IgM) for SARS-Cov-2 virus infection confirmation.
Aliquots of the blood samples were centrifuged at 1000g for 10
min at 25 °C for plasma separation. Plasma samples were then
stored in a −80 °C freezer. A total of 110 samples were
collected and analyzed, 57 being control samples (negative)
and 53 being positive samples of Covid-19, 21 being from mild
symptom patients (level 1), 22 from moderate symptom
patients (level 2), and 10 from severe symptom patients (level
3). Mild symptoms were considered: fever, fatigue, cough,
runny nose, and sneezing, with normal pulmonary examina-
tions. Moderate cases were considered, where patients
reported clinical signs of pneumonia, persistent fever, and
low blood oxygen saturation. Severe cases were considered,

where the patients reported signs of pneumonia and severe
respiratory distress and required intensive-care-unit admission.
This study protocol was approved by the Ethics Committee of
Univers idade Federal de Sa ̃o Paulo, CAAE no.
43260121.1.1001.5505.

Plasma Metabolite Extraction

Before viral inactivation, all plasma samples were handled in
level 2 biosafety cabinets. The metabolites from plasma
samples were extracted and inactivated by adding methanol
in a 1:4 (plasma/methanol, v/v) proportion, which promotes
protein precipitation and viral inactivation in a straightforward
step.26 After protein precipitation, samples were centrifuged at
10,000g for 10 min at 4 °C, and the supernatants were dried at
speedvac (SpeedvacR Concentrator SPD131DDA-115, Ther-
mo Fischer) and stored at −80 °C until analysis.
The dried extracts containing the polar metabolites were

resuspended in 750 μL of a deuterium oxide phosphate buffer
(0.10 M, pD = 7.1) containing 0.7 mM of deuterated sodium
trimethylsilylpropanesulfonate (DSS-D6) and 0.02% w/w of
sodium azide. Then, they were filtered in 0.22 μm Teflon
membranes and 550 μL was transferred to a 5 mm NMR tube
for analysis.

NMR Analysis

NMR spectra were conducted at 298 K on a 500 MHz (11.7
T) Agilent DD2 spectrometer with a 5 mm OneNMR probe
with gradient capability. The spectra were acquired for proton
NMR using the presaturation pulse sequence (Agilent
PRESAT pulse sequence) for the water suppression, 32 K
data points, with a spectral width of 16.0306 ppm, an
acquisition time of 4.089 s, a fixed receiver gain of 46, a
recycle delay of 41 s (5*T1), dummy scans of 2, and an
accumulation of 128 transients.
FIDs were multiplied by a 0.3 Hz exponential multiplication

function prior to the Fourier transform. Phase and baseline
corrections were carried out within instrument software, and
the reference standard (DSS-d6) signal was calibrated at δ 0.00
ppm. The one-dimensional (1D) spectra were assigned using
Chenomx NMR Suite software as a database supported by the
literature and the two-dimensional (2D) NMR spectra
(gCOSY, gHSQC) were obtained for selected samples, and
spectral annotations were further analyzed using the
COLMARm web server (http://spin.ccic.osu.edu/index.php/
colmarm/index/) for (semi-) automated profiling. Metabolite
peaks were integrated and quantified relative to DSS-D6 0.7
mM using Chenomx software for quantification.

Statistical Analysis

Metabolite concentrations were analyzed in the MetaboAnalyst
5.0 platform (http://www.metaboanalyst.ca/faces/home.
xhtml) using principal component analysis (PCA) and partial
least-squares discriminant analysis (PLS-DA). Data preprocess-
ing involved no data filtering, sample normalization by the
median, data transformation by log transformation, and mean
centering scaling (mean-centered only). Five principal
components were used for the discrimination of the analyzed
metabolite samples. Specifically, for PLS-DA, we applied leave-
one-out cross-validation (LOOCV) as the cross-validation
method. The accuracy and variable importance in projection
(VIP) were also assessed to measure the performance and
importance features of the analysis, respectively. For binary
data comparisons, the receiver operating characteristic (ROC)
curve was also applied for model validation, and probability
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view graphs were generated from ROC curves to assess the
prediction probability of the model.
For one-way analysis of variance (ANOVA), an adjusted p-

value (FDR) cutoff of 0.05 was applied, and Tukey’s honestly
significant difference (Tukey’s HSD) was used as post hoc
analysis in GraphPad Prism 5.0 (La Jolla, CA, 2008) software.
Pathway analysis was performed, applying the differential
metabolites cross-listed with the pathways in the Kyoto
Encyclopedia of Genes and Genomes (KEGG), using the
previous identification at Kyoto Encyclopedia of Genes and
Genomes (KEGG) of Homo sapiens, and the top altered
pathways were identified and built according to the potential
functional analysis. For this purpose also, the MetaboAnalyst
5.0 platform was employed.

■ RESULTS

Demographic Information

Table 1 summarizes the patients’ demographic information.
Controls and level 1 patient’s (mild symptoms) age were
similar, 42 ± 19 and 46 ± 15, respectively, while level 2
(moderate) and level 3 (severe) patients had an average age of
57 ± 17 and 59 ± 11, respectively. Therefore, as expected and
widely reported, there was a correlation between the
symptom’s severity and patient’s age.13,27−29 From our sample
group, a slight majority of the Covid-19 groups were males,
approximately 57%. All patients within the Covid-19 group
were tested for IgM and IgG, with 100% confirmation for IgM
presence and approximately 66% for IgG incidence. Age and
sex were not taken into account for the statistical model to
search for general differences between Covid-19 levels.

Covid-19 Positive vs Control Samples

One hundred and ten plasma samples were analyzed by 1H
qNMR analysis, followed by identification, multivariate
statistical analysis, and interpretation, resulting in 18 potential
discriminant metabolites. The metabolomic profile is described
in Table 2 and Figure S1. The compound identification relied
first on the Chenomix software library, with additional double-
checking through 2D spectral data (Table S2). However, some
compounds, such as glucose and glucuronate, were identified
exclusively using the Chenomix software library since their 2D
NMR spectra data showed overlapping signals, as shown in
Figure S2.
The metabolite concentrations obtained for each sample

were first compared regarding positive vs negative diagnostics
of Covid-19, enlightening the metabolic differences caused by
the disease.
The supervised PLS-DA multivariate analysis (Figure 1A)

separated the positive from negative groups. The PLS-DA
model validation can be accessed by cross-validation, with R2

and Q2 coefficient values of 0.73 and 0.67, respectively (Figure
1B). A permutation test was also performed along with cross-
validation, applying the prediction during the training test and
2000 permutations, resulting in an empirical p < 0.0005
(Figure 1C). The ROC curve generated (Figure 1D) presented
an area under the curve (AUC) of 0.924 (95% CI: 0.843−
0.972), highlighting the capability of the model to predict the
group to which the sample belongs, with a confusion matrix
with eight misses from 110 samples (Figure 1E).
The most critical metabolites for positive vs negative group

discrimination were glycerol, 3-aminoisobutyrate, and acetate,
as reported in Figure 1F. For this cohort, glycerol and 3-
aminoisobutyrate levels were lower in positive samples, while
acetate, phenylalanine, leucine, and lactate levels were higher in

Table 1. Demographic Information of Sample Groupsb

sample groups age (Mean ± SD) males (%) females (%) IgMa (%) IgGa (%)

control (n = 57) 42 ± 19 44 58 0 0
Covid-19 level 1 (n = 21) 46 ± 15 57 43 100 62

level 2 (n = 22) 57 ± 17 55 45 100 86
level 3 (n = 10) 59 ± 11 60 40 90 50

aData were obtained from the patient’s chart. bSD: standard deviation.

Table 2. 1H NMR Assignments of Major Metabolites from Plasma Samples

metabolites NMR peak assignment

3-aminoisobutyrate 1.18 (d; 3H), 2.59 (m; 1H), 3.02 (dd; 1H), 3.10 (dd; 1H)

acetate 1.91 (s; 3H)

alanine 1.47 (d; 3H), 3.78 (q; 1H)

citrate 2.52 (d; 2H), 2.68 (d; 2H)

creatine 3.03 (s; 3H), 3.91 (s; 2H)

formate 8.45 (s; 1H)

glucose 3.25 (m; 1H), 3.41 (m; 2H), 3.48 (m; 2H), 3.54 (dd; 1H), 3.72 (m; 3H), 3.76 (dd), 3.82 (m; 2H), 3.89 (dd; 1H), 4.65 (d; 1H), 5.23 (d; 1H)

glucuronate 3.27 (m; 1H), 3.49 (m; 2H), 3.57 (dd; 1H), 3.71 (m; 1H), 4.05 (d; 1H), 4.65 (d; 2H), 5.23 (d; 1H)

glutamate 2.04 (m; 2H), 2.13 (m; 2H), 3.35 (m; 1H), 3.75 (m)

glycerol 3.55 (m; 4H), 3.64 (m; 4H), 3.78 (m; 1H)

lactate 1.32 (d; 3H), 4.10 (q; 1H)

leucine 0.94 (d; 3H), 0.96 (d; 3H), 1.71 (m; 3H); 3.73 (dd; 1H)

phenylalanine 3.12 (m; 1H), 3.28 (m; 1H), 3.99 (dd; 2H), 7.32 (d; 2H), 7.40 (t; 1H), 7.42 (t; 2H)

pyruvate 2.37 (s; 3H)

threonine 1.32 (d; 3H), 3.58 (d; 1H), 4.25 (m; 1H)

tryptophan 7.19 (t; 1H), 7.28 (t; 1H), 7.32 (s; 1H), 7.54 (d; 1H), 7.73 (d;1H)

tyrosine 6.88 (d; 2H), 7.18 (d; 2H)

valine 0.97 (d; 3H), 1.03 (d; 3H), 2.25 (m; 1H), 3.59 (d; 1H)
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Covid-19 positive samples (Figure 1F and Table S2). The
metabolite panel for positive vs negative group classification as

obtained by binning the spectra data also corroborates with the
qNMR results and is shown in Figure S3.

Figure 1. PLS-DA and cross-validation analysis of NMR metabolomics concentration data. (A) PLS-DA of Covid-19 samples vs health control,
confidence interval = 95%; (B) cross-validation model from PLS-DA analysis, plotting R2, Q2, and accuracy; (C) permutation test for the PLS-DA
model validation, p < 0.0005; (D) ROC curve for the predictive model, AUC = 0.924; (E) probability view for cross-validation; and (F) variable
importance for the projection (VIP) scores.
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Disease Severity Panel of Metabolite as Potential Plasma
Biomarkers

Another statistical data analysis approach was performed,
comparing the control group vs the positive group by severities.
These groups were previously categorized according to the
patients’ symptoms but, it is essential to notice that the severity
status of the patients represents the conditions they underwent

after hospital admission, not the immediate severity at the
sampling moment.
For severity group analysis, the samples were considered (i)

control, (ii) level 1mild symptoms, (iii) level 2moderate
symptoms, and (iv) level 3severe symptoms. Similarly, with
the prior comparison, PLS-DA multivariate analysis was able to
show a tendency of discrimination (Figure 2A), although even

Figure 2. PLS-DA and cross-validation analysis of NMR metabolomics data accordingly with Covid-19 symptom severity. (A) PLS-DA model with
a 95% confidence interval for each group; (B) PLS-DA projection in three dimensions; (C) cross-validation model of the analysis, plotting R2, Q2,
and accuracy; (D) permutation test for the generated model; and (E) variable importance for the projection scores.
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with three components, the level 3 group could not be entirely
separated from the others (Figure 2B). The PLS-DA cross-
validation R2 and Q2 coefficients evidenced a moderate
classifier model, with values consisting of 0.58 and 0.48,
respectively (Figure 2C), and the permutation test, applying
the prediction during the training test and 2000 permutations,
resulted in an empirical p < 0.0005 (Figure 2D).
Similarly to the previous comparison, glycerol, acetate, and

3-aminoisobutyrate were the most important metabolites for
group discrimination, highlighting their relevance in the Covid-
19 infection (Figure 2E and Table S2). Glycerol concentration
was higher in the control group than in the Covid-19 groups;
nevertheless, its concentration in the Covid-19 groups
increased accordingly with the severity level. On the other
hand, acetate showed an increasing profile for moderate and
severe cases (levels 2 and 3), with no statistical difference,
although the mean concentration for level 2 was higher. The
concentration of 3-aminoisobutyrate was shown to be higher in

the control group and level 2 but with a tendency to decrease
for severe cases. The concentration of phenylalanine, glucose,
glucuronate, lactate, leucine, and creatine showed a higher
concentration for level 3. The metabolite panel, considering
binning spectra data, corroborates these results and is shown in
Figure S4.
Binary comparisons between the Covid-19 severity level

groups were also performed, observing for metabolic differ-
ences in each specific condition (Figure 3 and Table S2). PLS-
DA models could not separate the groups; however, a clear
tendency is shown in each comparison (Figure 3A−C). When
considering the univariate data, formate and 3-aminoisobuty-
rate concentrations, with similarities in control and mild levels,
helped differentiate mild from moderate level since their
concentration is higher for moderate cases (Figure 3A). On the
other hand, glucuronate and 3-aminoisobutyrate concentra-
tions may be used for severe cases distinct from mild cases
(Figure 3B), and formate, glucuronate, and creatine concen-

Figure 3. PLS-DA, VIP scores, and cross-validation analysis of binary comparisons between Covid-19 subgroups. (A) Level 1 (mild) vs level 2
(moderate) comparison; (B) level 1 (mild) vs level 3 (severe) comparison; and (C) level 2 (moderate) vs level 3 (severe) comparison. ROC curves
and probability view from the above comparisons are presented in Figure S5.
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Figure 4. Concentration in mg dL−1 (mean ± SEM) of metabolites from blood plasma samples from SARS-CoV-2 virus infection at levels 1−3
patients and healthy individuals that were considered significantly different comparing control versus each level of Covid-19 diseases (see Table S2
for complementary information). Tukey’s HSD p-value cutoffs were * p < 0.05 (significant), **p < 0.01 (very significant), and *** p < 0.001
(highly significant). SEM: standard error of the mean.
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trations can differentiate moderate from severe cases (Figure
3C). Cross-validation of the PLS-DA models showed a good
predictive capacity for mild and moderate separation,30 with a
Q2 of approximately 0.59; however, for mild and severe group’s
separation, the model showed little predictive relevancy, with a
Q2 of approximately 0.16, and for moderate and severe group’s
separation, the predictive relevancy was moderate, with a Q2

approximately 0.3. Results considering binning spectra data
corroborate these results and are shown in Figure S6.
The one-way ANOVA analysis showed that 10 of the 18

metabolites were significantly different when comparing
control versus each of the severity level groups (Table S2).

However, the one-way ANOVA analysis showed that 11 of the
18 metabolites were significantly different between the severity
level groups (Figure 4). The boxplots of each of the 18
metabolite concentrations, in mg dL−1, are presented in Figure
4. Supporting the previous PLS-DA multivariate analysis, the
glycerol concentration was lower in Covid-19 samples, while
lactate concentration increases accordingly with the severity.
Phenylalanine, tyrosine, leucine, valine, and creatine concen-
trations increase along with the increase in severity. Except for
leucine and valine, a significant statistical difference was
observed (p < 0.05) when comparing the control group with
severe cases. If phenylalanine and tyrosine concentrations

Figure 5. Metabolic pathway analysis from different comparisons of Covid-19 samples. (A) Positive vs control comparison; (B) level 1 (mild) vs
level 2 (moderate) comparison; (C) level 1 (mild) vs level 3 (severe) comparison; and (D) level 2 (moderate) vs level 3 (severe) comparison. The
red color indicates the high impact of the respective metabolic pathway (see Tables S3−S6 for complementary information). * p-value < 0.05
(significant).
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increase, Fisher’s ratio decreases with the severity of Covid-19
cases.
In summary, six metabolites were found to be relevant to

discriminating the disease. Glycerol, 3-aminoisobutyrate, and
acetate were the three biomarkers to differentiate positive
against negative diagnostic of Covid-19, and these metabolites
together with formate, glucuronate, and lactate differentiate
level 3 against levels 1 and 2, as confirmed by the ROC curve-
based model evaluation including metabolite ratios (Figure
S7).

Metabolic Pathway Impact of Covid-19

The individual metabolite concentrations highlighted in the
previous comparisons were submitted to metabolic pathway
analysis in the MetaboAnalyst platform, revealing alterations in
11 metabolic pathways (Figure 5 and Tables S3−S6). The
most impacted pathways were (1−3) phenylalanine, tyrosine,
and tryptophan biosynthesis; (4) phenylalanine metabolism;
(5) pyruvate metabolism; (6) glycerolipid metabolism; (10)
citrate cycle (TCA cycle); and (11) glycolysis/gluconeo-
genesis. Notwithstanding, the ascorbate and aldarate metabo-
lism pathway does not show p-value < 0.05 in the control vs
Covid-19 sample comparison (Figure 5); these metabolic
pathways are relevant in the Covid-19 severity level
comparison.

■ DISCUSSION

The first creative aspect in this paper regards the analysis of
blood plasma sample extracts by 1H NMR. Since plasma is a
complex matrix rich in proteins, applying a diffusion-edited
pulse sequence like Carr−Purcell−Meiboom−Gill (CPMG)
for the NMR analysis is typically necessary, suppressing the
protein signals and allowing the analysis of small molecules
without matrix interference. However, this approach com-
monly causes a broadening of the baseline, complicating
posterior quantitative data analysis. Additionally, the common
reference standards used in NMR analysis, such as DSS-D6,
TMSP-D4, and TSP-D4, could lead to untrustful quantification
data once it has been observed that these standards may bind
to proteins and other macromolecules unambiguous in
biological fluids.31 Alternatives to avoid this problem are the
use of the proprietary Bruker in vitro diagnostics research
(IVDr) method for the entire plasma sample31 or physically
removing proteins and macromolecules from the sample.26,32

To circumvent this problem, the physical removal of protein by
precipitation with cold methanol followed by centrifugation
was shown to be an effective alternative for sample preparation,
assuring the quality of the quantitative 1H NMR data. A
positive perspective of our protocol is that, beyond the
determination of free (unbound) metabolite concentration in
the plasma sample, it also measured the liberated metabolites
previously bound to proteins.31

Considering that one of the sample preparation steps
includes the supernatant drying followed by resolubilization in
phosphate buffer and filtration, in this approach, only polar
metabolites were extracted, leaving proteins and lipids out of
the analysis. Compared with standard protocols using the
CPMG pulse sequence and direct analysis of plasma, our
results showed more specific information since it leads only to
low-molecular-weight molecules to be detected and identified.
The protocol also assures the integrity of the metabolites since
it avoids possible degradation.32,33 In addition, our protocol
can be considered safer for the analysis of high-risk samples

since the pathogen is inactivated prior to further manipulation,
lowering the risk of contamination.34

The presence of IgM in most samples confirmed that the
volunteers of this study were admitted to the hospital during
the early stage of the disease and that sampling protocol was
essential to guarantee that patients were not under
pharmacological treatments, leading to metabolic changes
and misinterpretation of the data.
Data analysis was performed in two main approaches, each

designed to answer a specific question. The first approach was
the comparison of healthy control plasma samples with Covid-
19 patients’ samples, regardless of symptom severity. This
approach leads to a panel of metabolites as potential
biomarkers of Covid-19 infection and shows the most affected
metabolic pathways during the disease. Our model generated
from this comparison was shown to be highly effective, with
only 8 prediction errors out of 110 samples in the confusion
matrix and an AUC of 0.924 in the ROC curve, as shown in
Figure 1. The second approach compares healthy control
samples with Covid-19 symptom severity subgroups, which
leads to a metabolite panel for Covid-19 prognosis. In that
analysis, besides presenting a moderate predictive coefficient,
the PLS-DA model could not entirely separate the level 3
subgroup (severe symptoms) from the remaining subgroups
(Figure 2). Notwithstanding, PLS-DA models constructed to
binary comparisons between the Covid-19 subgroups showed a
moderate separation between mild and moderate levels;
however, the models could not satisfactorily separate mild
from severe and moderate from severe cases (Figure 3) due to
the low predictive coefficient values.
Although identifying a panel of metabolites capable of

differentiating mild-to-severe-case symptoms is essential,
understanding the metabolite profile of mild to moderate
groups might be more suitable for clinical intervention.35,36

Regardless of the data analysis approach, the metabolites
glycerol, acetate, 3-aminoisobutyrate, formate, glucuronate,
and lactate were shown to be highly important for the groups’
discrimination (Figures 3 and 4), with the formate,
glucuronate, and creatine levels being highly expressed for
the severe group (level 3). The metabolic pathways suggested
were similar for both approaches, with phenylalanine, tyrosine,
and tryptophan biosynthesis being the most outstanding
pathway (Figure 5).

Impacted Metabolites and Metabolic Pathways

Over the past years, many studies have been conducted on
Covid-19 patient samples, resulting in a broad knowledge of
the contamination process and pathways leading to the
symptoms. The SARS-CoV-2 virus enters the cells through
ACE2 binding, a receptor found mainly in the lung, liver,
intestine, and brain cells, and once in the interior of the cells, it
starts the process of viral replication. This process triggers the
immune system that relocates metabolic resources to start the
production of antibodies and cytokines, looking for targeting
viral particles and controlling the virus spreading. However, in
SARS-CoV-2 virus infection, the release of the cytokines may
be exaggerated, disrupting severe inflammations, mainly related
to high production of interleukins (ILs), macrophage colony
stimulating factors (M-CSFs), granulocyte colony stimulating
factors (G-CSFs), and interferons (IFNs).37−43

As mentioned, to produce high concentrations of such
proteins, the metabolism needs to adapt and relocate its
resources, culminating in a metabolite concentration shift. An
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example is the glucose and lipid metabolism, which is known
to be shifted during a high production of cytokines TNF-α, IL-
6, and IL-1β and during the entry, replication, and egress of the
virus at/from the host cell.42,44−46 In detail, glucose resistance
is highlighted during the production of cytokines, while
lipolysis and triglyceride synthesis are upregulated. Similarly,
it is also known that viruses might alter the host cell
metabolism on behalf of its replication, similar to the Walburg
effect, widely studied in cancer models, also known as aerobic
glycolysis.47,48 Compared to cancer cells, the virus’s replication
is highly dependent on the availability of glucose and
glutamine (carbon sources) and the tricarboxylic acid cycle
(TCA) process. However, viruses reprogram the host cell and
control those metabolic pathways and substrates. Each type of
virus might control them in a particular manner, and this
matter has not been clarified yet.49,50 Regarding the Covid-19
disease, this information endorses why diabetic patients
present higher chances of complication than healthy
individuals since their condition enables high cytokine
production and high energy support for viral proliferation,
aggravating their clinical status.51,52 Additionally, obese
patients with high triglyceride levels support the high
production of cytokines and, therefore, the cytokine storm,
resulting in more severe cases as well.48 As per the
literature,53−56 our metabolomics data indicate glycerol as a
vital metabolite for group discrimination, and its levels in
Covid-19 symptom subgroups increase along with symptom
intensity (Figures 1−3). Glycerol is one of the key metabolites
for triglyceride production and one of the significant products
in lipolysis. Our data show that glucose is elevated in patients
under SARS-CoV-2 virus infection, and its levels are higher in
the severe symptom group.57

In summary, the body’s energy metabolism has been altered
in Covid-19 patients by observing increased blood glucose and
decreased 3-aminobutyrate, implying a lowered glucose use.58

Together with glucose, other metabolites are presented as
crucial to the description of the disease. Bruzzone et al. showed
an elevation of 68, 33, 67, and 81% in amounts of glucose,
glutamate, pyruvate, and phenylalanine, respectively, in the
serum of Covid-19 patients.53,59,60 In our work, an elevation of
83, 22, 100, and 100%, respectively, is observed for these
metabolites in Covid-19 patients comprising the severe level of
infection compared with healthy individuals. These data
suggest an association between dysregulation of hepatic
capacity to oxidize acetyl-CoA in the mitochondria and a
general metabolic stress condition in Covid-19 patients.53

These data can also be corroborated by the increased level of
lactate in the severe symptom group and higher formate levels
for the moderate symptom group.59,60

During the TCA cycle under Warburg conditions (aerobic),
the pyruvate is converted to lactate and eliminated from the
cells, which might explain its increased concentration (Figure
4).44,45 Some researchers have been evaluating the use of
lactate levels as a guide in risk stratification since the blood
levels are significantly different compared to ambulatory versus
hospitalized patients, which can be elevated up to 120%.61

Another study involving 2860 Covid-19 patients related high
serum lactate levels to the need for intensive care units (ICUs)
and mortality, with patients reaching 150% of increasing lactate
levels compared to normal levels.62 Our data showed 76%
elevated lactate levels in the severe patient’s group. However, it
is worth mentioning that our samples were collected earlier to

the individual’s hospitalization, i.e., the first search for help in
the medical care system.
Another interesting metabolite highlighted in our data

analysis was creatine, which was an important variable for the
moderate−severe symptom group separation. Different
researchers have evaluated the association between severe
Covid-19 infection and creatine kinase (CK), an enzyme in
muscle cells responsible for reversibly converting creatine to
phosphocreatine.63−66 Creatine kinase is a known marker for
muscular tissue damage since its release in the bloodstream
denotes muscular cell breakdown.67 In severe Covid-19
patients, pneumonia and pulmonary tissue damage are key
symptoms; therefore, CK levels are elevated. Phosphocreatine
stores energy with higher efficiency than ATP; thus, the
conversion of phosphocreatine into creatine enables fast
energy release for the muscle cells, supporting its energy
requirements.68 Consequently, in infected lung cells, creatine
and phosphocreatine play a significant role in energy supplies,
and high creatine levels imply high energy consumption,
possibly employed in viral replication.
Besides the roles of specific metabolites, the results of PLS-

DA and ANOVA statistical analysis (Figures 1−4) highlight
the importance of the pathways: phenylalanine, tyrosine, and
tryptophan biosynthesis; phenylalanine metabolism; and
pyruvate metabolism. Previous publications on Covid-19
metabolomics support our findings once phenylalanine- and
pyruvate-related metabolic pathways are described to be
altered in different cohorts.40,55,58,59,69−71 As discussed above,
energy-related metabolic pathways, such as pyruvate metabo-
lism, were shown to be relevant markers for symptom severity
due to their close relation with viral replication and cytokine
production.
Phenylalanine is an essential amino acid that plays a vital

role in the synthesis of proteins and cell proliferation, besides
being an energy provider. If hydroxylated, phase-1 metabolism
is transformed to tyrosine in the liver and then converted to
fumarate or acetoacetate. When transported to the brain, this
amino acid is converted to L-DOPA, dopamine, epinephrine,
and norepinephrine, playing an important neurofunction.
According to Figure 4, phenylalanine levels in severe patients
are higher, and similar behavior is observed for tyrosine but in
slightly lower concentrations. In general, high levels of
phenylalanine in plasma mean lower levels of tyrosine and
indicate a disturbance in the immune system due to the
inducement of apoptosis in human B-cell lines, favoring viral
infection and also enabling the attack of opportunistic
pathogens.72−74

Nevertheless, as discussed in previous paragraphs, our results
corroborate with the literature and evidence a panel of
metabolites relevant for Covid-19 severity prognosis; however,
it is important to discuss the limitations of this study. Our first
limitation is the relatively small sample size, particularly for the
severe symptom group, which was limited due to our exclusion
criteria regarding the patient’s previous treatment before the
collection of the blood sample. Second, we decided to include
patients of different ages in the groups due to the known
association between Covid-19 severity and older age. Our
rationale was to verify if metabolites related to aging are also
correlated with Covid-19 symptoms. Besides that some
metabolites highlighted in our panel have been reported as
aging markers, such as phenylalanine, lactate, and tyrosine,
other aging-related metabolites did not show to be relevant in
our data analysis as prognosis markers for Covid-19 severity,
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which was the case of valine, leucine, alanine, and
glutamate.75,76 Therefore, our data analysis suggests that
metabolic markers of aging cannot be steadily used as markers
for severity prognosis, and further studies must be conducted
to fully evaluate this hypothesis. Lastly, we have no access to
the detailed clinical history of the patients, and possible
coexisting conditions may be confounding factors in our data
analysis.
Therefore, our data suggest a metabolic shift, particularly in

energy and lipid metabolism, to support cytokine production,
leading to the cytokine storm, and support the viral replication,
leading to an increase in the viral load in the organism. Our
data analysis shows that such metabolic shifts are closely
related not only to Covid-19 infection but also to the increase
in symptom severity. Glycerol, acetate, 3-aminoisobutyrate,
formate, glucuronate, and lactate concentrations are potential
metabolite candidates for patients’ prognosis and may be used
in the clinical settings; however, considering the study
limitations, further analysis must be carried out in larger
cohorts for a panel of metabolite validation and for a
comprehensive analysis.
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Paulo, Saõ Paulo, SP 09972-270, Brazil

Joyce R. S. Raimundo − Faculdade de Medicina do ABC,
Santo André, SP 09060-870, Brazil

Fernando L. A. Fonseca − Faculdade de Medicina do ABC,
Santo André, SP 09060-870, Brazil; Departamento de
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