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SLC2A1 plays a significant prognostic role in lung adenocarcinoma 
and is associated with tumor immunity based on bioinformatics 
analysis
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Background: The treatment of lung adenocarcinoma (LUAD) has been stuck in a bottleneck due to 
a number of factors. There is a pressing need for research into potential genetic markers to help drug 
development and improve the prognosis of patients. SLC2A1 has been reported in multiple LUAD-related 
prognosis prediction signatures. However, the role of SLC2A1 in the occurrence and development of LUAD 
and its impact on prognosis remain elusive.
Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were used to acquire 
the samples. We used R to perform statistical analysis, Gene Set Enrichment Analysis (GSEA), immune 
infiltration and immune cell correlation analysis, drug sensitivity analysis, and visualization. The immune 
cell score was calculated using the Timer2.0 database. Prognostic analysis was performed using R, Gene 
Expression Profiling Interactive Analysis (GEPIA), and the Kaplan-Meier Plotter. Overall survival and 
progression free survival were the main outcome of prognosis analysis. Protein-protein interaction, disease-
genetics analysis, and tissue-specific enrichment analyses were performed using Metascape. 
Results: SLC2A1 was highly expressed in LUAD tissues. Univariate COX regression [hazard ratio (HR) 
=1.689, 95% confidence interval (CI): 1.242–2.249, P<0.001] and multivariate COX regression including 
age, gender, smoking, TNM stage and SLC2A1 expression (HR =1.567, 95% CI: 1.127–2.179, P=0.008) 
showed that SLC2A1 was an independent prognostic risk factor for LUAD. GSEA and Metascape analysis 
showed that SLC2A1 was strongly associated with the cell cycle, mitosis, lung tissue, and tumor recurrence. 
Immune correlation analysis showed that SLC2A1 was associated with two tumor infiltration immune cells: 
activated CD (cluster of differentiation)4+ memory T cells (r=0.31, P=0.003) and activated mast cells (r=−0.28, 
P=0.010). Moreover, patients with high SLC2A1 expression had higher immune checkpoint molecules and 
Tumor Immune Dysfunction and Exclusion (TIDE) scores, indicating poorer immunotherapy efficacy. 
Patients with high SLC2A1 expression were more sensitive to chemotherapy drugs and less sensitive to 
targeted drugs compared to those with low SLC2A1 expression.
Conclusions: The high expression of SLC2A1 in LUAD predicted poor prognosis and was closely related 
to tumor immunity, which could be used as an effective prognostic biomarker to provide a new strategy for 
clinical prognosis assessment and immunotherapy for LUAD.
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Introduction

Lung cancer remains the leading cause of cancer-related 
death worldwide, with an estimated 5-year relative survival 
rate of 21% in 2021 (1). Lung adenocarcinoma (LUAD) 
is the most common pathological subtype of lung cancer, 
accounting for 40% of lung cancer cases (2). In recent 
years, with the development of targeted therapy and 
immunotherapy, the treatment of LUAD has gradually 
entered the era of precision therapy (3,4). However, the 
treatment of LUAD has been stuck in a bottleneck due to a 
number of factors, such as the improvement of anti-tumor 
drug resistance (5,6). In addition to the currently known 
genetic biomarkers (such as driver genes), there are many 
undiscovered genetic changes that may play important roles 
in the occurrence and development of LUAD. Therefore, 
there is a pressing need for research into potential genetic 
markers to help drug development and improve the 
prognosis of patients.

Solute carrier (SLC) transporters are a family of more 
than 300 membrane-bound proteins that play an important 
role in the absorption of various nutrients and drugs by 
cells (7). SLC2A1 is a member of the SLC transporter 
family, which has been reported in multiple LUAD-related 
prognosis prediction signatures (8-10). Recent study (11) 
has shown that SLC2A1 has prognostic significance in 
patients with LUAD after surgical resection. However, 
as a single gene, the role of SLC2A1 in the occurrence 
and development of LUAD and its impact on prognosis 
remain elusive. As more and more attention has been paid 
to the role of tumor immune microenvironment and tumor 
immune infiltrating cells (TIICs), the role of SLC2A1 in 
lung adenocarcinoma tumor immunity is still unclear.

According to our previous studies, we found that the 
expression of SLC2A1 was correlated with the prognosis 
of patients with LUAD. On this basis, we want to further 
explore the role of SLC2A1  in the occurrence and 
development of and tumor immunity of LUAD based on 
bioinformatics methods, so as to provide new targets for 
molecular targeted therapy and immunotherapy of LUAD. 
We present the following article in accordance with the 
REMARK reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-1430/rc).

Methods

In this study, we explored the expression of SLC2A1 
in LUAD and its prognostic value in LUAD patients 
based on TCGA (The Cancer Genome Atlas) and GEO 
(Gene Expression Omnibus) databases. We analyzed the 
differential expression network of SLC2A1 and the possible 
mechanism of its impact on the prognosis of LUAD 
through multi-dimensional analysis. We also analyzed the 
correlation between SLC2A1 expression and tumor immune 
infiltration, as well as the role of SLC2A1 in guiding 
immunotherapy decisions. Furthermore, the relationship 
between SLC2A1 expression and the drug sensitivity of 
LUAD was also explored. Our study comprehensively 
verified the potential role of SLC2A1 in LUAD, which may 
provide a new biomarker for the treatment and prognostic 
assessment of LUAD patients, and provide new suggestions 
for clinical decision-making. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Data collection and pretreatment

The datasets used in the current research were acquired 
from TCGA (https ://portal .gdc.cancer.gov/)  and 
GEO (https://www.ncbi.nlm.nih.gov/geo/). The RNA 
(Ribonucleic Acid) sequencing FPKM (Fragments Per 
Kilobase of exon model per Million mapped fragments) 
data of 11,093 pan-cancer samples were downloaded from 
TCGA-ALL. The RNA sequencing counts data and FPKM 
data of 535 tumor samples of LUAD and the corresponding 
clinical information were downloaded from TCGA-LUAD. 
There were a total 486 tumor samples with complete 
information on age, gender, smoking, TNM (Tumor Node 
Metastasis) stage, vital status, and overall survival (OS) time. 

Additionally, the microarray data of LUAD of four 
datasets [GSE118370 (n=12),  GSE140797 (n=14), 
GSE32863 (n=116), GSE40275 (n=84)] were downloaded 
from the GEO database for validation. The extracted data 
were normalized and processed by log2 transformation, 
and the data were normalized using the “preprocessCore” 
package (12) in R software (version 4.1.0, Copyright (C) 
2021 The R Foundation for Statistical Computing). The 
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Remove Batch Effect function in “limma” package (13) in 
R was used to remove batch effect and combine the four 
datasets, and the removal of batch effect was evaluated by 
comparing the visual PCA (Principle Component Analysis) 
diagram before and after batch removal. There were a total 
of 79 tumor samples and 114 normal lung tissue samples 
in the combined GEO datasets. Additionally, the high 
throughput sequencing data of GSE40419 was acquired 
from the GEO database for immune-related analysis. There 
were 87 tumor samples and 77 adjacent normal lung tissue 
samples in the GSE40419 dataset.

Differential expression analysis of SLC2A1

The differential expression difference analysis and 
visualization of SLC2A1 between tumor and normal 
tissues in pan-cancer and LUAD were analyzed using 
basic R package and “ggplot2” package (14) in R software. 
Subsequently, the TCGA samples were divided into a “high” 
and “low” group according to the expression of SLC2A1, 
and the cutoff value was the median expression value of 
SLC2A1. Baseline data tables describing the relationship 
between SLC2A1 expression and various clinical information 
were drawn using the basic package in R. “Limma” package 
in R was used to study the differential expression of mRNAs 
(message RNAs) between the two groups. The adjusted 
P value was analyzed to correct for false positive results. 
“Adjusted P<0.05 and Log(Fold Change) >1 or Log(Fold 
Change) <−1” were defined as the thresholds for screening 
the differential expression of mRNAs. A Volcano plot and 
cluster heatmap were constructed using “gglot2” package in 
R to visualize the differential analysis results.

Prognosis-related analysis

The Gene Expression Profiling Interactive Analysis 
(GEPIA) (15) and Kaplan-Meier Plotter (16) website tools 
were applied to construct survival curve and evaluate the 
prognostic potential of SLC2A1 in LUAD. The “median 
value“ of SLC2A1 expression was selected as the cutoff 
value in GEPIA for grouping, and the survival curves of all 
samples in both two groups were drawn with OS (overall 
survival) and PFS (progression free survival) as the end 
points, respectively. The same grouping was constructed 
using the Kaplan-Meier Plotter, and the survival curves of 
all samples and each clinical subgroup of the two groups 
were drawn with OS and PFS as the end points, respectively. 
In addition, univariate and multivariate Cox analyses were 

performed on SLC2A1 and the clinical characteristics 
to assess the potential independent prognostic value of 
SLC2A1 in LUAD using “glmnet” and “survival” packages 
(17,18) in R. The clinical characteristics of age, sex, smoking 
history and TNM stage were included in consideration of 
common clinical use and complete acquired data.

Gene Set Enrichment Analysis (GSEA) and Metascape 
annotation Analysis

GSEA was performed to further confirm the underlying 
function and obtain the relevant signaling pathways of 
SLC2A1-related differential expression genes in LUAD 
using “clusterProfiler” package (19) in R. The hallmark 
gene sets from GSEA-MSigDb (http://www.gsea-msigdb.
org) were selected to conduct the GSEA. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were also included. 
Metascape (https://metascape.org) (20) was used to perform 
the protein-protein interaction (PPI) enrichment analysis 
and disease-genetics analysis enrichment and tissue-specific 
enrichment analysis. 

Tumor immune-related analysis

To investigate the role of SLC2A1 in LUAD tumor 
immunity and its relationship with infiltrating immune cells, 
the “CIBERSORT” algorithm from the “immunedeconv” 
package (21) in R was used to calculate the immune-
infiltrating score of TCGA samples. A heatmap was drawn 
to visualize the immune scores of the high and low SLC2A1 
expression groups, and the basic R package was then used 
to calculate whether there were significant differences in 
the immune-infiltration scores of 22 immune cells included 
in CIBERSORT between the two groups. Additionally, 
TIMER2.0 (http://timer.comp-genomics.org) (22) was used 
to calculate the immune-infiltrating score of GSE40419 
tumor samples (n=87), and the “ggstatsplot” package (23)  
in R was applied to conduct the correlation analysis 
between SLC2A1 and immune cells, in order to validate the 
“CIBERSORT” analysis results. SIGLEC15, TIGIT, CD274, 
HAVCR2, PDCD1, CTLA4, LAG3, and PDCD1LG2 
are immune checkpoint-related transcripts (24-27). The 
expression values of these eight genes were extracted to 
observe the expression of immune checkpoint-related genes 
in the high and low SLC2A1 expression groups based on the 
TCGA samples. Also, the Tumor Immune Dysfunction and 
Exclusion (TIDE) algorithm (28) was used to predict the 
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response of the high and low SLC2A1 expression groups to 
Immune-checkpoint-blocking (ICB) based on the TCGA 
samples. 

Drug sensitivity analysis

The “pRRophetic” package (29) in R was used to assess the 
sensitivity of the high and low SLC2A1 expression groups 
to eight LUAD drugs included in the Cancer Genome 
Project (CGP) database (version cgp2016), including six 
chemotherapeutic drugs and two targeted drugs. The 
“ggplot2” package in R was applied to visualize the results, 
and TCGA samples were used to perform this analysis. 
In order to determine whether the relationship between 
SLC2A1 expression and sensitivity to targeted drugs is 
affected by differences in driver gene mutations, we used 
the “mafftools“ package (30) in R to analyze the somatic 
mutations of patients. Using SPSS (version 26.0.0.0©, 
Copyright IBM Corporation 2021), we compared the high 
and low SLC2A1 expression groups to assess whether 
there were differences in the LUAD driver gene mutation 
frequency between both groups of patients.

Statistical analysis

The driver gene mutation frequency differences between 
the high and low SLC2A1 expression groups were assessed 
using SPSS (version 26.0.0.0), and the other statistical 
analyses were performed in R software (version 4.1.0) 
(except for the online website tools mentioned above). 
The correlation analysis between SLC2A1 expression and 
immune-infiltrating cells was assessed using the Pearson 
correlation coefficient. For all analyses, the low and high 
SLC2A1 expression groups were established according to 
the median SLC2A1 mRNA expression value in the selected 
dataset. 

In the univariate and multivariate Cox regression 
analyses, SLC2A1 was also divided into two grade variables 
“high” and “low” according to the median value. The paired 
t-test was used to compare the SLC2A1 expression levels in 
TCGA tumor and pan-cancer paired samples. Pearson’s chi-
squared test was applied to analyze the differences in driver 
gene mutation frequency between the high and low SLC2A1 
expression groups (*P<0.05, **P<0.01, and ***P<0.001). All 
differences between groups (except those mentioned above) 
were analyzed using the unpaired t-test. P<0.05 (two-sided) 
was considered significant in all tests.

Results

SLC2A1 was highly expressed in LUAD tissues

By analyzing the expression of SLC2A1 in the pan-cancer 
dataset included in TCGA database, we obtained the 
expression differences of SLC2A1 in 33 cancers and the 
corresponding normal tissues (Figure 1A). The results 
showed that SLC2A1 was significantly highly expressed in 
LUAD. The expression differential analysis results in the 
TCGA-LUAD dataset showed that the expression level 
of SLC2A1 in LUAD tissues was higher than that in their 
adjacent tissues using both unpaired and paired sample 
t-tests (Figure 1B,1C). 

The combined GEO data obtained was then used for 
the same analysis for a validation, and the results were 
consistent with those in TCGA data (Figure 1D-1F). This 
indicated that SLC2A1 was more highly expressed in 
transcriptional levels in LUAD tissues than in normal lung 
tissues.

Overexpression of SLC2A1 indicated poor prognosis in 
LUAD

To explore the correlation between SLC2A1 and the 
clinical phenotype of LUAD, we analyzed the expression 
of SLC2A1 in each clinical subgroup of the TCGA-LUAD 
dataset (Table 1). The results showed that SLC2A1 expression 
was significantly associated with T stage classification 
(P<0.001), N stage classification (P=0.015), TNM stage 
classification (P=0.002), gender (P=0.004), OS (P<0.001), 
and DSS (Disease Specific Survival) (P<0.001). 

To further confirm the role of SLC2A1 in the prognosis 
of LUAD, univariate and multivariate Cox regression 
analyses were performed. The results showed that high 
SLC2A1 expression was associated with poorer prognosis 
in both univariate [HR (hazard ratio) (high vs. low) =1.689, 
95% confidence interval (CI): 1.242–2.249, P<0.001] and 
multivariate [HR (high vs. low) =1.567, 95% CI: 1.127–
2.179, P=0.008] regression in LUAD (Figure 2A,2B). 

In order to more intuitively understand the relationship 
between SLC2A1 and the survival of LUAD patients, 
GEPIA and the Kaplan-Meier Plotter were used to 
draw the survival curves of the high and low SLC2A1 
expression groups. GEPIA used TCGA-LUAD dataset, 
while the Kaplan-Meier Plotter used data from the site’s 
own pre-processed GEO database. In the Kaplan-Meier 
Plotter, patients in the high and low SLC2A1 expression 
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Figure 1 SLC2A1 was highly expressed in LUAD tissues. (A) The expression differences of SLC2A1 in 33 cancers and the corresponding 
normal tissues; (B) the expression level of SLC2A1 in LUAD tissues was higher than that in their adjacent tissues using unpaired sample t-test 
in TCGA data; (C) the expression level of SLC2A1 in LUAD tissues was higher than that in their adjacent tissues using paired sample t-test 
in TCGA data; (D) the PCA diagram of the four GEO datasets before batch removal; (E) the PCA diagram of the four GEO datasets after 
batch removal; (F) SLC2A1 was more highly expressed in transcriptional levels in LUAD tissues than in normal lung tissues in the GEO 
data. *, P<0.05; **, P<0.01; ***, P<0.001; ns, P>0.05. LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TCGA, The 
Cancer Genome Atlas; GEO, Gene Expression Omnibus; PCA, principal components analysis.
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groups exhibited significant differences in OS and PFS  
(Figure 2C,2D). In addition, we also compared the OS and 
PFS of the two groups in various clinical subgroups, such 
as male, female, smoking, non-smoking, postoperative, 
and post-chemotherapy, and the results showed that high 
SLC2A1 expression predicted poor prognosis in both the 
overall samples as well as the samples of each subgroup 
(Figure 2C-2O). GEPIA survival analysis showed that the 
high SLC2A1 expression group had significantly worse OS 
than the low expression group (HR =1.9, logrank P=2.4e-05) 

(Figure 2P). However, through GEPIA, we found that the 
PFS of the two groups were not significantly different in the 
logrank test (logrank P=0.053) (Figure 2Q). Based on these 
results, we concluded that SLC2A1 expression is significantly 
related to the progression and survival of LUAD.

Functional enrichment analysis and PPI network of 
SLC2A1-related differential genes

Analysis of the gene expression differences between the 
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Table 1 The expression of SLC2A1 in each clinical subgroup of the 
TCGA-LUAD dataset

Characteristic
Low SLC2A1 

expression (n=267)
High SLC2A1 

expression (n=268)
P value

T stage, n (%) <0.001

T1 108 (20.3) 67 (12.6)

T2 133 (25.0) 156 (29.3)

T3 14 (2.6) 35 (6.6)

T4 10 (1.9) 9 (1.7)

N stage, n (%) 0.015

N0 186 (35.8) 162 (31.2)

N1 38 (7.3) 57 (11.0)

N2 30 (5.8) 44 (8.5)

N3 0 (0) 2 (0.4)

M stage, n (%) 0.225

M0 183 (47.4) 178 (46.1)

M1 9 (2.3) 16 (4.1)

Pathologic stage, n (%) 0.002

Stage I 168 (31.9) 126 (23.9)

Stage II 51 (9.7) 72 (13.7)

Stage III 33 (6.3) 51 (9.7)

Stage IV 10 (1.9) 16 (3.0)

Gender, n (%) 0.004

Female 160 (29.9) 126 (23.6)

Male 107 (20.0) 142 (26.5)

OS event, n (%) <0.001

Alive 193 (36.1) 150 (28.0)

Dead 74 (13.8) 118 (22.1)

DSS event, n (%) <0.001

Alive 208 (41.7) 171 (34.3)

Dead 43 (8.6) 77 (15.4)

PFS event, n (%) 0.007

Alive 170 (31.8) 139 (26.0)

Dead 97 (18.1) 129 (24.1)

Age, median 
[IQR]

67 [60, 73] 65 [58, 72] 0.135

T, tumor; N, node; M, metastasis; TCGA, The Cancer Genome 
Atlas; LUAD, lung adenocarcinoma; OS, overall survival; DSS, 
disease specific survival; PFS, progression free survival; IQR, 
interquartile range.

high and low SLC2A1 expression groups in TCGA-LUAD 
showed that 306 genes exhibited significant expression 
differences [adj. P<0.05, abs (log2FC(Fold Change)) >1], 
among which 179 genes were highly expressed and 127 
genes were lowly expressed in the high SLC2A1 group 
(Figure 3A, Figure S1). The difference analysis results are 
reported in detail in Table S1. We drew the expression 
heatmap of these 306 genes from the GEO data, and the 
results showed that there were significant differences in 
the expression of these genes in the high and low SLC2A1 
expression groups, which verified the results of TCGA data 
analysis (Figure 3B). Furthermore, GSEA showed that these 
306 SLC2A1-related genes were closely related to the basic 
cellular activities (Figure 4A-4C, Table 2, Tables S2-S4).  
In terms of cellular components (CC), we found that 
these SLC2A1-related differential genes were primarily 
enriched in the extracellular region, intracellular anatomical 
structure, organelles, and nucleus. As for biological 
processes (BP), these genes were enriched in the cellular 
component organization, or more specifically, the cell cycle 
(according to the KEGG pathway analysis results). With 
regards to molecular function (MF), SLC2A1 was found to 
be closely correlated with protein binding. 

GSEA based on the HALLMARK gene set in MSigDb 
showed that these SLC2A1-related genes were mainly enriched 
in the G2M CHECKPOINT, E2F TARGETS, MITOTIC 
SPINDLE, GLYCOLYSIS, and MTORC1 SIGNALING 
pathways. By searching the annotation of GSEA of these 
five pathways, we found that the first three pathways were all 
related to the occurrence or development of mitosis. Thus, 
we hypothesized that these genes might have a lot to do with 
tumor progression, and subsequent functional enrichment 
analyses using Metascape confirmed our hypothesis. 

The PPI network analysis results showed that these 
SLC2A1-related genes were mainly enriched in the 
resolution of sister chromatid cohesion, mitotic anaphase, 
and metaphase (Table 3, Figure 5A,5B). Moreover, the 
disease-genetics analysis result showed these genes were 
most concentrated in recurrent tumor (Figure 6A). More 
importantly, the tissue-specific enrichment analysis results 
showed that the SLC2A1-related genes were mainly enriched 
in lung tissue and bronchial epithelial cells (Figure 6B).

Relationship between SLC2A1 and tumor-infiltrating immune 
cells (TIICs) and the role of SLC2A1 in tumor immunity

Immune infiltration analysis using CIBERSORT revealed 

https://cdn.amegroups.cn/static/public/ATM-22-1430-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1430-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1430-supplementary.pdf
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Figure 2 Overexpression of SLC2A1 indicated poor prognosis in LUAD. (A) Forest plots with univariate Cox regression for SLC2A1 
and clinical factors; (B) Forest plots with multivariate Cox regression incorporating SLC2A1 and clinical factors; (C-O) high expression 
of SLC2A1 predicted poor OS and PFS in both the overall samples and each subgroup samples in the Kaplan-Meier Plotter; (P) the high 
SLC2A1 expression group had significantly worse OS than the low SLC2A1 expression group in GEPIA; (Q) the PFS of the two groups did 
not exhibit significant differences in the logrank test by GEPIA. LUAD, lung adenocarcinoma; OS, overall survival; PFS, progression free 
survival; GEPIA, Gene Expression Profiling Interactive Analysis.
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Figure 3 SLC2A1-related differential gene analysis in volcano map and heatmap. (A) Volcano map of SLC2A1-related differential gene 
analysis using TCGA data; (B) an expression heatmap of 306 differentially-expressed genes were drawn using the GEO data. TCGA, The 
Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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marked differences in the infiltration of nine types of 
immune cells between the high and low SLC2A1 expression 
groups (Figure 7A). To verify this, we used GSE40419 to 
calculate the immune score in the TIMER database, and 
conducted correlation analysis between SLC2A1 and 22 
immune cells by CIBERSORT. The correlation analysis 
results showed that three of the nine immune cells that 
CIBERSORT considered to be different were correlated 
with SLC2A1, and the trend of two of these three cells 
was the same as TCGA results (Figure 7B-7D, Figure S2). 
According to the Figure 7C,7D, SLC2A1 expression was 
positively correlated with activated CD4+ memory T cells 
(r=0.31, P=0.003) and negatively correlated with activated 
mast cells (r=−0.28, P=0.010). The correlation between 
SLC2A1 and these two types of cells in TCGA data was 
then evaluated using TIMER2.0, and the results were 
identical (Figure 7E). 

Additionally, we also paid attention to the immune 
microenvironment score, immune score, and stromal score 
calculated by XCELL algorithm in TIMER, and found 
that SLC2A1 expression was negatively correlated with the 

immune stromal score (r=−0.25, P=0.021) (Figure 7F). This 
indicated that SLC2A1 plays an important role in tumor 
immune cells infiltrating and it has a certain influence on 
the tumor immune microenvironment. 

In order to explore the role of SLC2A1 in the clinical 
application of tumor immunity, we also compared the 
expression of eight immune-checkpoint-related transcripts 
between the high and low SLC2A1 expression groups. 
Additionally, the TIDE scores of these two groups were also 
calculated to compare the potential immune-checkpoint-
blocking (ICB) response. The results showed that four of the 
eight immune-checkpoint-related genes were differentially 
expressed in both groups (Figure 8A). All four genes were 
highly expressed in the high SLC2A1 expression group. 
Similarly, the TIDE score of the high SLC2A1 expression 
group was markedly higher than that of the low SLC2A1 
expression group (Figure 8B). This suggested that patients 
with high SLC2A1 expression may have a poor prognosis 
due to their own poor immune response to the tumor, and 
the effect of immunotherapy in these patients may be worse 
than that of patients with low SLC2A1 expression. 

https://cdn.amegroups.cn/static/public/ATM-22-1430-supplementary.pdf
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Figure 4 Functional enrichment analysis of SLC2A1-related differential genes by GSEA. (A) The results of GO analysis containing logFC 
for SLC2A1-related differential genes; (B) the results of KEGG analysis containing logFC for SLC2A1-related differential genes showed 
these SLC2A1-related genes were mainly enriched in the cell cycle; (C) Gene Set Enrichment Analysis based on the HALLMARK gene 
set in MSigDb showed that these SLC2A1-related genes were mainly enriched in the G2M CHECKPOINT, E2F TARGETS, MITOTIC 
SPINDLE, GLYCOLYSIS, and MTORC1 SIGNALING pathways. GSEA, Gene Set Enrichment Analysis; logFC, log (Fold Change); 
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; MSigDb, The Molecular Signatures Database.

Patients in the high and low SLC2A1 expression groups 
had different sensitivities to chemotherapy drugs and 
targeted drugs

We summarized the currently commonly used chemotherapy 

and targeted drugs for LUAD and matched them with 

drugs included in the CGP database, and found that eight 

therapeutic drugs were included in the CGP database. We 

used the gene expression profile data of the samples to 
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Table 2 Gene Set Enrichment Analysis results [including GO (top 10) and KEGG enrichment analysis] for SLC2A1-related differential genes

ID Description Enrichment score P.adjust

GO:0005576 Extracellular region −0.292583838 0.016661795

GO:0005615 Extracellular space −0.338404417 0.016661795

GO:0005488 Binding 0.358355609 0.016661795

GO:0005622 Intracellular anatomical structure 0.249840001 0.016661795

GO:0043228 Non-membrane-bounded organelle 0.351254306 0.016661795

GO:0043232 Intracellular non-membrane-bounded organelle 0.351254306 0.016661795

GO:0050794 Regulation of cellular process 0.2390881 0.016661795

GO:0005515 Protein binding 0.341020358 0.016661795

GO:0005634 Nucleus 0.29956241 0.016661795

GO:0016043 Cellular component organization 0.349091002 0.016661795

hsa04110 Cell cycle 0.506896552 0.005719886

hsa04114 Oocyte meiosis 0.484745763 0.018079801

HALLMARK_G2M_CHECKPOINT HALLMARK_G2M_CHECKPOINT 0.551469393 3.20E-07

HALLMARK_E2F_TARGETS HALLMARK_E2F_TARGETS 0.448623465 2.87E-04

HALLMARK_MITOTIC_SPINDLE HALLMARK_MITOTIC_SPINDLE 0.485915493 4.95E-04

HALLMARK_GLYCOLYSIS HALLMARK_GLYCOLYSIS 0.493055556 0.001923517

HALLMARK_MTORC1_SIGNALING HALLMARK_MTORC1_SIGNALING 0.537546645 0.015472396

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

predict the IC50 of the two groups, and the results showed 
that the sensitivity of patients with low SLC2A1 expression 
to six chemotherapy drugs was significantly higher than that 
of patients with high SLC2A1 expression (Figure 9A-9F), 
while patients with high SLC2A1 expression were markedly 
more sensitive to the two targeted therapies than those with 
low SLC2A1 expression (Figure 9G,9H). We considered 
that this may be due to differences in the somatic mutations 
between patients with high and low SLC2A1 expression, 
and the mutation frequency of driver genes in patients with 
high SLC2A1 expression may be higher. 

Therefore, we conducted a landscape analysis of 
mutations in SLC2A1 high and low expression groups 
using R, and the results showed that there was no notable 
difference in the top 10 mutant genes between the two 
groups (Figures S3,S4). According to the mutation 
frequency difference analysis between the two groups 
(Figure S5), there were significant differences in ALK, MET, 
and ROS1 mutations between the two groups. However, the 
mutation of EGFR, which was the target of the two targeted 
drugs for drug sensitivity analysis, showed no significant 

difference between the two groups. Therefore, we believe 
that this cannot explain the above drug sensitivity analysis 
results, and further research may be needed to determine 
the specific reasons.

Discussion

At present, it has been established that the growth and 
diffusion of a tumor depends on the characteristics of the 
tumor cells themselves, and is also closely related to the 
internal tumor microenvironment, especially the tumor 
immune microenvironment (31-33). Previous study (11) 
has shown that SLC2A1 is overexpressed in LUAD tumor 
tissues and has prognostic significance for patients with 
surgically-resected LUAD. However, the prognostic role 
of SLC2A1 transcription in all LUAD patients, its possible 
mechanism, and its role in tumor immunity have not yet 
been established.

In this study, SLC2A1 was found to be significantly 
overexpressed in LUAD tumor tissues and associated with 
poor prognosis. Univariate and multivariate Cox regression 

https://cdn.amegroups.cn/static/public/ATM-22-1430-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-22-1430-supplementary.pdf
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Table 3 PPI network analysis results for SLC2A1-related differential genes

MCODE ID Description Log10(P)

MCODE_1 R-HSA-2500257 Resolution of Sister Chromatid Cohesion −44

MCODE_1 R-HSA-68882 Mitotic Anaphase −41.9

MCODE_1 R-HSA-2555396 Mitotic Metaphase and Anaphase −41.9

MCODE_2 R-HSA-163125 Post-translational modification: synthesis of glycosylphosphatidylinositol
(GPI)-anchored proteins

−11.3

MCODE_2 R-HSA-6798695 Neutrophil degranulation −7

MCODE_2 GO:0031638 zymogen activation −5.4

MCODE_3 R-HSA-983189 Kinesins −6.8

MCODE_3 R-HSA-6811434 Coat protein complex I
(COPI)-dependent Golgi-to-endoplasmic reticulum
(ER) retrograde traffic

−6.1

MCODE_3 R-HSA-2132295 Major histocompatibility complex
(MHC) class II antigen presentation

−5.8

MCODE_4 R-HSA-6809371 Formation of the cornified envelope −11.7

MCODE_4 R-HSA-6805567 Keratinization −10.6

MCODE_4 GO:0002009 morphogenesis of an epithelium −4.2

MCODE_5 R-HSA-5688890 Defective CSF2RA causes SMDP4 −18.8

MCODE_5 R-HSA-5688849 Defective CSF2RB causes SMDP5 −18.8

MCODE_5 R-HSA-5687613 Diseases associated with surfactant metabolism −18.1

MCODE_6 R-HSA-983189 Kinesins −10.8

MCODE_6 R-HSA-6811434 COPI-dependent Golgi-to-ER retrograde traffic −9.8

MCODE_6 R-HSA-8856688 Golgi-to-ER retrograde transport −9.3

MCODE_7 R-HSA-1650814 Collagen biosynthesis and modifying enzymes −10.5

MCODE_7 R-HSA-1474290 Collagen formation −10

MCODE_7 R-HSA-1474244 Extracellular matrix organization −7.9

MCODE_8 R-HSA-418594 G alpha (i) signaling events −7.8

MCODE_8 R-HSA-373076 Class A/1 (Rhodopsin-like receptors) −7.7

MCODE_8 R-HSA-500792 g-protein coupled receptor
(GPCR) ligand binding

−7.1

MCODE_9 GO:0000079 regulation of cyclin-dependent protein serine/threonine kinase activity −7.4

MCODE_9 GO:1904029 regulation of cyclin-dependent protein kinase activity −7.3

MCODE_9 WP179 Cell cycle −7.1

MCODE_10 R-HSA-8957275 Post-translational protein phosphorylation −7.3

MCODE_10 R-HSA-381426 Regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth 
factor binding proteins (IGFBPs)

−7.1

MCODE_11 M65 PID FRA PATHWAY −8.7

MCODE_11 M167 PID AP1 PATHWAY −7.8

PPI, protein-protein interaction.



Wang et al. High SLC2A1 predicts poor prognosis in LUADPage 12 of 19

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2022;10(9):519 | https://dx.doi.org/10.21037/atm-22-1430

Figure 5 PPI network of SLC2A1-related differential genes. (A) PPI network of SLC2A1-related differential genes; (B) the 11 key nodes 
that make up this PPI network and the genes contained within. PPI, protein-protein interaction.

analyses showed that SLC2A1 is an independent prognostic 
biomarker of LUAD. Next, we constructed the differential 
expression and PPI networks of SLC2A1, and the potential 
mechanism of SLC2A1 in LUAD was explored. We 
subsequently explored the relationship between SLC2A1 
and tumor immunity, and found that SLC2A1 is correlated 
with tumor immune invasion and immunotherapy efficacy, 
which may be a possible reason for the correlation between 
SLC2A1 and poor prognosis. Finally, the relationship 
between SLC2A1 and drug sensitivity was analyzed. Our 
study systematically revealed the role of SLC2A1 as a tumor 
prognostic marker in LUAD, and analyzed its potential 
mechanism and clinical significance from various aspects. 

Through further analysis of TCGA-LUAD data, we 
found that SLC2A1 expression varied among T stages, N 
stages, and different genders. We then performed survival 
analysis using GEPIA and the Kaplan-Meier Plotter, and 
found that high SLC2A1 expression was associated with 
worse OS and PFS. Our results suggest that SLC2A1 has 
potential as a diagnostic and prognostic biomarker for 
LUAD. However, the biological function of SLC2A1 and 
its potential prognosis-related mechanism still needs to be 
explored.

In order to explore the potential molecular mechanism of 
SLC2A1 in LUAD, SLC2A1-related differential expression 

analysis was performed on TCGA-LUAD data and a 
SLC2A1 differential expression network was constructed. 
In total, 306 SLC2A1-related differential expression genes 
were screened out. GO and KEGG analyses of these genes 
revealed that they were mainly concentrated in cell cycle 
and mitosis-related pathways. The GSEA enrichment 
analysis results with the HALLMARK gene sets as the 
background showed that these genes were mainly enriched 
in the G2M CHECKPOINT, E2F TARGETS, MITOTIC 
SPINDLE, GLYCOLYSIS, and MTORC1 SIGNALING 
pathways. G2/M checkpoint has been reported to play 
a role in DNA repair in tumor cells (34). Normal cells 
repair DNA damage during G1 arrest, which is often 
deficient in cancer cells, while cancer cells repair damaged 
DNA depending on the G2/M checkpoint. It has been 
reported that the G2/M checkpoint is associated with the 
development of multiple tumors (35). E2F TARGETS gene 
sets containing genes encoding cell cycle-related targets of 
E2F transcription factors, which are key regulators of cell 
cycle checkpoints, and regulate a large number of genes 
related to DNA replication and cell cycle progression (36).  
Furthermore, it has also been found to be associated 
with tumor progression (37,38). Similarly, MITOTIC 
SPINDLE, GLYCOLYSIS (39,40),  and MTORC1 
SIGNALING (41,42) have all been shown to play different 
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Figure 6 Disease-genetics analysis of SLC2A1-related differential genes. (A) The disease-genetics analysis result showed these genes were 
most concentrated in recurrent tumors; (B) the tissue-specific enrichment analysis results showed that the SLC2A1-related genes were 
mainly enriched in lung tissue and bronchial epithelial cells. 

regulatory roles in tumor cell growth and the cell cycle. 
The Metascape enrichment analysis results provided 
more insight into protein, tissue, and disease levels. PPI 
showed that SLC2A1-related differential genes were mainly 
manifested in the resolution of sister chromatid cohesion, 
mitotic anaphase, and metaphase in terms of protein 

function, which were all associated with cell growth. In 
the tissue specific enrichment analysis, these genes were 
mainly expressed in lung tissue, bronchial epithelial cells, 
and the trachea. More importantly, the disease-genetics 
enrichment analysis results showed that the most closely 
related diseases were tumor recurrence and lung disease. 
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Figure 7 Relationship between SLC2A1 and tumor-infiltrating immune cells. (A) Immune infiltration analysis using CIBERSORT revealed 
significant differences in the infiltration of nine types of immune cells between the high and low SLC2A1 expression groups in TCGA; (B-D) 
three of the above nine tumor-infiltrating immune cells also exhibited a significant correlation with SLC2A1 in the GEO data, but the correlation 
trend of plasma B cells was contrary to that of the previous analysis; (E) SLC2A1 expression was negatively correlated with the stromal score in 
TIMER; (F) the correlation between SLC2A1 and the two cells in TCGA data was evaluated using TIMER2.0, and the results were the identical 
to those of the GEO. *, P<0.05; **, P<0.01; ***, P<0.001. TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus.
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Figure 8 SLC2A1 was correlated with immune-checkpoint-transcripts and immune-checkpoint-blocking. (A) Four of the eight immune-
checkpoint-related genes were differentially expressed in the two groups, and all four genes were highly expressed in the high SLC2A1 
expression group; (B) the TIDE score of the high SLC2A1 expression group was significantly higher than that of the low SLC2A1 
expression group. *, P<0.05; ***, P<0.001. TIDE, tumor immune dysfunction and exclusion.

These results directly illustrate the role of SLC2A1 in lung 
tumor development and perfectly explain its prognostic role 
in LUAD. 

However, according to the analysis results, SLC2A1 may 
also play an important role in lung squamous cell carcinoma 
(LUSC). As shown in Figure 1A, the expression of SLC2A1 
in lung squamous cell carcinoma tissues is significantly 
higher than that in normal tissues. However, we plotted 
the survival curves of LUSC patients with high and low 
SLC2A1 expression in GEPIA (Figure S6), and found no 
difference in survival between the two groups (logrank POS 

=0.22, PPFS =0.3). This suggests that SLC2A1 may be a good 
diagnostic indicator in LUSC, but is not associated with 
LUSC prognosis.

It is known that tumor immune infiltration is significantly 

associated with cancer prognosis (43). Therefore, we 
attempted to explore the relationship between SLC2A1 
and LUAD in terms of tumor immunity. We found that 
there were significant differences in the infiltration of nine 
infiltrating immune cells in the high and low SLC2A1 
expression groups, based on TCGA-LUAD data. After 
validation in the GEO data, we found that SLC2A1 was 
positively correlated with activated CD4+ memory T cells 
and negatively correlated with activated mast cells. Different 
immune infiltrations can lead to different outcomes in 
tumors (43,44). For example, activated CD4+ memory T 
cell infiltration has been shown to be associated with poor 
prognosis and immune therapy response in several cancers 
(45,46), as have activated mast cells (47-49). This indicates 
that SLC2A1 might play a vital role in regulating the tumor 

https://cdn.amegroups.cn/static/public/ATM-22-1430-supplementary.pdf
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Figure 9 Patients with high and low SLC2A1 expression had different sensitivities to chemotherapy drugs and targeted drugs. (A-F) The 
sensitivity of patients with low SLC2A1 expression to six chemotherapy drugs was significantly higher than that of patients with high 
SLC2A1 expression; (G,H) patients with high SLC2A1 expression were significantly more sensitive to the two targeted therapies than those 
with low SLC2A1 expression.

immune microenvironment, and affects the prognosis of 
tumors by regulating infiltrating immune cells. 

However, it is not just immune cell infiltration that 
affects the body's immune response to tumors. Immune 
checkpoint molecules are inhibitory regulatory molecules 
in the immune system, which are essential for maintaining 
tolerance,  preventing autoimmune reactions,  and 
minimizing tissue damage by controlling the timing and 
intensity of immune responses (50,51). The expression of 
immune checkpoint molecules will inhibit the function of 
immune cells, so that the body cannot produce an effective 
anti-tumor immune response, and the tumor will form 
immune escape (52,53). We screened out eight genes  
(24-27) associated with immune checkpoint via a literature 
search, and found that the expressions of four genes in the 
SLC2A1 high expression group were significantly higher 
compared to the SLC2A1 low expression group. This 
indicates that in the SLC2A1 overexpression group, the 
function of immune cells is relatively suppressed and the 
risk of tumor immune escape is higher, which predicts a 
worse prognosis. 

In addition, we also used the TIDE algorithm to evaluate 
the relationship between SLC2A1 and the efficacy of 
immune checkpoint inhibitors. TIDE uses a set of gene 

expression markers to evaluate two different tumor immune 
escape mechanisms, including tumor-infiltrating cytotoxic 
T lymphocyte (CTL) dysfunction and rejection of CTL 
by immunosuppressive factors. A high TIDE score is 
associated with poor efficacy of immunocheckpoint blocking 
therapy (ICB) and short survival after ICB treatment. The 
TIDE score of the SLC2A1 high expression group was 
significantly higher than that of the SLC2A1 low expression 
group, indicating that patients with high SLC2A1 had a 
relatively poor response to immune checkpoint inhibitors 
and a worse immunotherapy effect. These analyses strongly 
demonstrated that SLC2A1 is closely associated to tumor 
immune cell infiltration and immune checkpoint, and 
provided an explanation as to why patients with high 
SLC2A1 expression had worse prognosis in terms of tumor 
immunity.

Finally, we analyzed the relationship between SLC2A1 
and IC50(the half maximal inhibitory concentration) 
for LUAD therapy from a clinical perspective. The 
“pRRophetic” package is an algorithm for drug response 
prediction based on expression matrices developed by 
the CGP database, which contains 138 drug actions from 
more than 700 cell lines (29,54). Interestingly, we found 
that patients with high SLC2A1 expression had remarkably 
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lower sensitivity to chemotherapy drugs than patients with 
low SLC2A1 expression. This was consistent with the results 
of previous survival analyses of patients after chemotherapy. 
The Kaplan-Meier Plotter analysis showed that patients 
with high SLC2A1 expression group had worse OS after 
chemotherapy, which may be largely attributable to a low 
sensitivity to chemotherapy drugs. Additionally, patients 
with high SLC2A1 expression were more sensitive to 
targeted drugs, which we believe may be due to differences 
in somatic mutations between patients with high and low 
SLC2A1 expression, and the driver gene mutation frequency 
of patients with high SLC2A1 expression may be higher. 
However, subsequent mutation-related analyses refuted 
our hypothesis, and thus, further studies may be needed to 
investigate the cause of this susceptibility.

In order to avoid selection bias and increase the 
credibility of our research results, data from TCGA and 
GEO were used, and four different GEO datasets were 
utilized for joint analysis. However, our bioinformatics-
based analysis still had limitations, and it is necessary for 
all research results to be verified by wet experiments. Also, 
the signaling pathway analyzed in this study was discovered 
through data mining, and its causal relationship in lung 
cancer needs to be verified experimentally. Finally, the 
number of tumor samples in the GEO dataset, which was 
used for validation, was relatively small. In future studies, 
we will expand the sample size and verify our analysis results 
in cell and animal models.

Conclusions

To the best of our knowledge, this is the first relatively 
complete study to reveal the role of SLC2A1 in LUAD 
prognosis and tumor immunity, and determine the 
related mechanisms. Our study found that high SLC2A1 
expression in LUAD predicted poor prognosis and 
was closely related to tumor immunity, which could be 
used as an effective prognostic biomarker to provide 
a new strategy for clinical prognosis assessment and 
immunotherapy of LUAD.
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