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Peroxisome proliferator-activated receptor-𝛾 (PPAR𝛾) is a ligand-activated transcription factor belonging to the nuclear receptor
superfamily, which plays a central role in regulating lipid and glucose metabolism. However, accumulating evidence demonstrates
that PPAR𝛾 agonists have potential to reduce inflammation, influence the balance of immune cells, suppress oxidative stress,
and improve endothelial function, which are all involved in the cellular and molecular mechanisms of cardiac fibrosis. Thus,
in this review we discuss the role of PPAR𝛾 in various cardiovascular conditions associated with cardiac fibrosis, including
diabetes mellitus, hypertension, myocardial infarction, heart failure, ischemia/reperfusion injury, atrial fibrillation, and several
other cardiovascular disease (CVD) conditions, and summarize the developmental status of PPAR𝛾 agonists for the clinical
management of CVD.

1. Introduction

Cardiac fibrosis is an inevitable process of varieties of
cardiovascular diseases (CVDs) and is characterized by
abnormal accumulation of extracellular matrix (ECM) in the
myocardial interstitium. The ECM, composed of collagens,
elastic fibers, glycosaminoglycan, and glycoproteins [1], are
derived mainly from fibroblasts. Under physiological condi-
tions, ECM is necessary to maintain the normal structure
and function of the heart, the formation and degradation
of ECM retain in dynamic balance, while in pathologi-
cal conditions, because of excessive activation of renin-
angiotensin-aldosterone system (RAAS), maladjustment of
matrix metalloproteinases (MMP), and excessive secretion
of some regulation cytokines such as transforming growth
factor beta (TGF𝛽), the dynamic balance would be broken
which resulted in ECM deposition and eventually cardiac
fibrosis [2]. This pathological process is the beginning of
cardiac remodeling and directly leads to arrhythmia [3],
impaired cardiac function [4, 5] heart failure (HF), and even
sudden cardiac death [6].

Although there are no effective strategies for treatment of
cardiac fibrosis right now, it is firmly convinced that inhibi-
tion or reversion of myocardial fibrosis will be a promising
way for prevention and treatment of HF in the nearby future
[7]. Currently, the strategies for treatments of cardiac fibrosis
mainly target RAAS system and inflammatory response;
however, more and more other molecular mechanisms have
been recognized to involve the regulation of cardiac fibrosis
[8].

Interestingly, peroxisome proliferator-activated receptor-
𝛾 (PPAR𝛾) has been identified to have the function of
antimyocardial fibrosis [9–11]. According to published inves-
tigations, PPAR𝛾 has a wide spectrum of functions in reg-
ulating metabolism, attenuating inflammation, maintaining
the balance of immune cells, inhibiting apoptosis and oxida-
tive stress, and improving endothelial function [12]. All of
these biological functions will be benefit for preventing the
cardiac function from deterioration. However, the underling
mechanisms of PPAR𝛾 in the regulation of cardiac fibrosis are
not fully illustrated yet. This review will mainly summarize
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Figure 1: Schematic structure of peroxisome proliferator-activated receptor-𝛾 and its protein isoforms. A/B, C, D, and E/F indicate the N-
terminal A/B domain containing a ligand-independent AF-1, theDNA-binding domain, the hinge region, and the C-terminal LBD containing
AF-2, respectively. AF-1 is responsible for phosphorylation, while AF-2 promotes the recruitment of coactivators for gene transcription. PPAR:
peroxisome proliferator-activated receptor; AF: activation function; DBD: DNA-binding domain; HD: hinge domain; LBD: ligand-binding
domain. Figure adapted from [13].

the reports about PPAR𝛾 and its agonist in the regulation of
cardiac fibrosis.

2. Structure and Function of PPAR𝛾

PPARs, belonging to the nuclear hormone receptor super-
family and consisting of three isoforms, PPAR𝛼, PPAR𝛽/𝛿,
and PPAR𝛾, are ligand-inducible transcription factors. They
are encoded by three separate genes and are distributed in
different organs and tissues [14]. Because of the different
expression and distribution profile, each of them presents
unique biological function [14–16]. Activated by their spe-
cific ligands, PPARs can transfer into nucleus and form
heterodimers with the retinoid X receptor.The heterodimeric
complexes then band to the promoter region of target genes
carrying peroxisome proliferator response elements (PPREs)
and regulate transcription of target genes [17, 18]. Being
similar to other nuclear receptors, PPAR isoforms possess
five or six structural regions within four functional domains
[14, 17, 19]. Activation function-1 motif (AF-1) locates at
the N-terminal and is the target of phosphorylation kinase.
The DNA-binding domain (DBD) consists of two highly
conserved zinc finger motifs and is responsible for binding
to PPRE. The hinge domain (BD) serves as a docking site for
cofactors. The ligand bind domain (LBD) located at the C-
terminal (E/F domain) is in charge of ligand specificity and
activation of PPARs that bind to the PPRE, which increases
target gene expression (Figure 1) [14, 17, 19].

The PPAR𝛾 gene is located on human chromosome 3p25
[20]. Seven transcripts have been identified, termed PPAR𝛾1,
PPAR𝛾2, PPAR𝛾3, PPAR𝛾4, PPAR𝛾5, PPAR𝛾6, and PPAR𝛾7
[17]. The PPAR𝛾1, PPAR𝛾3, PPAR𝛾5, and PPAR𝛾7 mRNA
transcripts translate PPAR𝛾1 protein and PPAR𝛾2 mRNA
yields PPAR𝛾2 protein, while PPAR𝛾4 and 𝛾6 mRNA tran-
scripts translate PPAR𝛾4 protein [21–23]. Because of different
transcript, translation, and tissue distribution, each protein
has different biological functions in a variety of organs and
cells (Table 1) [13]. So it is not a surprise that PPAR𝛾 plays
important roles in CVDs including hypertension [17, 24,
25], atherosclerosis [26], HF [27], diabetic cardiomyopathy
[11, 28], angiogenesis [29], valvular calcification [30], aortic
aneurysm [31], restenosis following cardiovascular interven-
tions [32], and ischemia/reperfusion (I/R) injury [33, 34].

Table 1: Tissue and cell distribution of PPAR𝛾 mRNA transcripts.
Modified from [13].

PPAR𝛾mRNA
transcripts Tissue and cell distribution

PPAR𝛾1
Cardiac muscle, skeletal muscle, kidney,
adrenal, spleen, intestine, pancreatic 𝛽-cells,
and vascular smooth muscle cells

PPAR𝛾2 Adipose tissue
PPAR𝛾3 Adipose tissue, colon, and macrophages
PPAR𝛾4 Macrophages
PPAR𝛾5 Macrophages
PPAR𝛾6 Macrophages and adipose tissue
PPAR𝛾7 Macrophages and adipose tissue

3. PPAR𝛾 and Cardiac Fibrosis

Theprimary of activation of PPAR𝛾 is to lower serum glucose
and improve the insulin sensitivity. In the clinical practice, the
specific ligands of PPAR𝛾 have been accepted for treatment
of diabetes mellitus. However, more and more researches
had indicated that activation of PPAR𝛾 presents pleiotropic
biological effects involving regulation of inflammation and
energy metabolism. Because of its pleiotropic effects, PPAR𝛾
has been recognized as a target for the treatment of cardiac
fibrosis. The characteristics of PPAR𝛾 regulate myocardial
fibrosis in different CVDs as described below.

3.1. Diabetic Cardiomyopathy. The diabetic cardiomyopathy
is accompanied by myocardial hypertrophy, dilated ventricu-
lar chamber, and fibrosis [49]. The specific PPAR𝛾 ligands,
thiazolidinediones (TZDs), are used in clinical practice
to improve insulin sensitivity in type 2 diabetes mellitus
(T2DM). As shown in Table 2, evidences have demonstrated
that TZDs could decrease myocardial fibrosis and improve
cardiac dysfunction. In the animal experiment, Ihm and his
colleagues found that the PPAR𝛾 ligand, rosiglitazone, sig-
nificantly decreased myocardial fibrosis in the Otsuka Long-
Evans Tokushima Fatty (OLETF) rats [35]. The underlying
mechanism may be involved in the inhibiting nuclear factor-
𝜅B (NF-𝜅B) activation in the myocardium. This biological
function directly resulted in downregulation of receptor
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Table 2: Effects of PPAR𝛾 ligands on diabetic related cardiac fibrosis.

Study model Dose/duration/route Major cardiac findings and conclusions Ref.

Male OLETF rats, LETO rats, 20
weeks old

Rosiglitazone 20mg/kg/d
for 20 weeks, gavage

Suppression of RAGE and CTGF
expression in the diabetic myocardium
appears to contribute to the antifibrotic
effect of rosiglitazone

[35]

Male STZ-induced diabetic
Sprague-Dawley rats (200 ± 20 g)

Pioglitazone 10mg/kg/d for
14 weeks, gavage

Activation of the PPAR𝛾 signal pathway
could repress cardiac fibrosis in diabetic
rats and partly improve cardiac
remodeling and function by
downregulating activity of RAS level

[36]

Male offspring of Wistar rats fed
NP diet or LP diet, 3 months old

Rosiglitazone 5mg/kg/d for
three months, gavage

Rosiglitazone showed beneficial effects on
rat offspring programmed by low protein
diet during gestation decreasing cardiac
fibrosis and enhancing myocardial
vascularization

[37]

Alloxan-induced diabetic rabbits
1.8–2.5 Kg

Rosiglitazone 2mg/kg/d for
4 weeks, unclear

Rosiglitazone attenuates arrhythmogenic
atrial structural remodeling and atrial
fibrillation promotion

[38]

Male OLETF rats, LETO rats, 20
weeks old

Pioglitazone 10mg/kg/d for
20 weeks, per orem

Activation of PPAR𝛾may decrease
collagen concentration and reduce
cardiac fibrosis by exerting regulatory
effects on cardiac telomere biology

[39]

Male WT, CBS+/+, CBS+/−, and
Ins2+/−/CBS+/− rats, 20 weeks old

Ciglitazone 3mg/kg/d for 4
weeks, orally

Treatment with ciglitazone alleviated
MMP-9 activity and fibrosis and
improved end diastolic diameter

[40]

Male OLETF rats, LETO rats, 28
weeks old

Rosiglitazone 3mg/kg/d
and losartan 5mg/kg/d for
12 weeks, gavage

A combination of rosiglitazone and
losartan attenuates myocardial fibrosis
and dysfunction

[41]

Male diabetic hypertensive rats
179–219 g

Rosiglitazone 3mg/kg/d or
combination of felodipine
5mg/kg/d for one month,
orally

The combined treatment can improve
dyslipidemia and decrease TNF𝛼, TGF𝛽,
collagen I, and collagen III, and increased
MMP-2 but within a greater effect than
treatment with rosiglitazone alone

[28]

OLETF: Otsuka Long-Evans Tokushima Fatty, LETO: Long-Evans TokushimaOtsuka, RAGE: receptor for advanced glycation end products, CTGF: connective
tissue growth factor, WT: wild type, CBS+/−: cystathionine beta synthase mutant, Ins2+/−: insulin 2 mutant, MMP: matrix metalloproteinases, TNF: tumor
necrosis factor, TGF: transforming growth factor, NP: normal protein (19% protein), LP: low protein (5% protein), STZ: streptozotocin, and RAS: renin-
angiotensin system.

for advanced glycation end products and connective tissue
growth factor (CTGF) expression [35], which have been
convinced to play a key role in cardiac fibrosis [50, 51].
As we know, activation of RAAS may also lead to collagen
deposition and result in cardiac fibrosis [2, 52]. Research has
shown that pioglitazone activation of PPAR𝛾 can attenuate
cardiac fibrosis in diabetic rats and partly ameliorates cardiac
remodeling and function by suppressing activity of RAS [36].
The interesting finding is that rosiglitazone is able to decrease
cardiac fibrosis and enhancemyocardial vascularization in rat
offspring programmed by low protein diet during gestation,
which may be implicated in rosiglitazone administration
which can decrease angiotensin (Ang) II and endothelin-
(ET-) 1 and increase endothelial nitric oxide synthase (eNOS)
[37].Moreover, rosiglitazone reduces atrial interstitial fibrosis
and AF promotion in the diabetic rabbits via modulating
oxidative stress and inflammation [38]. The selective PPAR𝛾,
pioglitazone, could attenuate cardiac fibrosis and collagen
concentration by upregulating insulin-like growth factor 1

(IGF-1), phosphorylated Akt, and eNOS in OLETF rats [39].
Furthermore, the PPAR𝛾 agonist ciglitazone may alleviate
MMP-9 and fibrosis and improve end diastolic diameter in
diabetic mice hearts [40]. Unfortunately, a recent study in the
same animalmodel gave a negative conclusion that treatment
with rosiglitazone had little cardioprotection and there is no
indication for the regulation of NF-𝜅B signaling pathway
[41]. But the combination of rosiglitazone and losartan
obviously attenuated the interstitial fibrosis and collagen
deposition of the heart by inhibiting TGF𝛽 and tumor
necrosis factor-𝛼 (TNF𝛼), along with the proinflammatory
cytokines, interleukin- (IL-) 1𝛽, and IL-6 [41]. Therefore,
the authors declared that the benefit may be not derived
from the activation of PPAR𝛾. In addition, combination
treatment with rosiglitazone and felodipine could improve
the metabolic abnormalities and decrease TNF𝛼, TGF𝛽,
collagen I, and collagen III and increased MMP-2, while
treatment with rosiglitazone alone had no effect on atten-
uating the hypertension and only exerted a minimal effect
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on reducing cardiac fibrosis and improving dyslipidemia and
hyperglycemia in diabetic hypertensive rats [28]. Thus, on
one hand, whether the activation of PPAR𝛾 which could
attenuate myocardial fibrosis remains unclear, the improving
of cardiac function may not be related to the attenuation of
cardiac fibrosis. On the other hand, the discrepancy results
may partly be due to the dosage and length of observation
time. Thirdly, the selective ligand, rosiglitazone, presents
more discrepancy in the published data, so different structure
of selective ligand may show different biological function.
More investigations are needed to clarify these perplex.

It has been reported recently that the muscle specific
ubiquitin ligase muscle ring finger-2 (MuRF2) and MuRF3
regulate PPAR𝛾1 activity to protect against diabetic car-
diomyopathy [53, 54]. Although MuRF2−/− hearts have sig-
nificant increases in fibrosis and PPAR𝛾1-regulated cardiac
genes, the expression of PPAR𝛾1 mRNA has no differences
in MuRF2−/− hearts and wild-type mice. Unfortunately, only
minimal amount of fibrosis was detected inMuRF3−/− hearts
and has no differences compared to wild-type controls.
Furthermore, PPAR𝛾1 target genes showed increases in both
MuRF3−/− and wild-type hearts, but the mRNA expression
levels have no differences between the two groups. Thus
it can be seen that MuRF2 and MuRF3 inhibit cardiac
PPAR isoforms expression to protect against high fat diet-
induced diabetic cardiomyopathy, which mainly improve
systolic dysfunction and attenuate left ventricular mass and
heart weight but do not include cardiac fibrosis. Therefore,
more research needs to prove the role of different PPAR𝛾
subtypes in myocardial fibrosis.

3.2. Hypertension. There is considerable evidence regarding
arterial hypertension which leads to cardiac hypertrophy and
myocardial fibrosis [10, 55]. For this reason, it is significant
to explore novel strategies to protect the hypertension related
cardiac remodeling [56]. Fortunately, despite low expression
in the heart, PPAR𝛾 acts as a functional antifibrogenic
factor in hypertensive heart disease [42]. Recent studies have
indicated that treatment with the PPAR𝛾 activators resulted
in the reduction of ECM deposition and cardiac fibrosis,
while PPAR𝛾 antagonist GW9662 or T0070907 reversed
these changes [10, 42, 43]. In addition, a significant negative
correlation was observed between myocardial interstitial
fibrosis and mRNA expression of PPAR𝛾 [56]. Furthermore,
mice with a dominant-negative point mutation in PPAR𝛾
(P465L) developed significantly more severe cardiac fibrosis
to Ang II-induced hypertension [57].

Despite the fact that the role of PPAR𝛾 in chronic pressure
overload-induced cardiac fibrosis has been hypothesised
previously (details are shown in Table 3), the molecular
mechanisms are not fully understood. It has been suggested
that activation of PPAR𝛾 inhibited both the expressions of
TGF𝛽1 [10, 42–44, 56] and phosphorylation of Smad2/3
[10] in vivo and cultured neonatal rat cardiomyocytes and
cardiac fibroblasts. In addition, the PPAR𝛾 agonist pioglita-
zone significantly decreased cardiac inflammatory response
by inhibiting NF-𝜅B and activator protein-1 (AP-1) binding
activities, the expression of TNF𝛼, and the adhesion of

platelet endothelial cell adhesion molecule in stroke-prone
spontaneously hypertensive rats (SHRSP) [45]. On the other
hand, the downregulation of reactive oxygen species (ROS)
mediated by an upregulation PPAR𝛾 may play a role in
pressure overload-induced cardiac fibrosis [46, 47, 56]. How-
ever, Shinzato et al. [44] found that ROS production was
not improved in SHRSP treated with pioglitazone. Further-
more, long-term administration of pioglitazone attenuates
the development of left ventricular (LV) hypertrophy and
fibrosis and inhibited phosphorylation of mTOR and p70S6
kinase in the heart, which are likely attributable to both
the activation of AMPK signaling through stimulation of
adiponectin secretion and the inhibition of Akt signaling
[48].

3.3.Myocardial Infarction (MI). Adverse LV remodeling after
MI is characterized by myocyte hypertrophy and interstitial
fibrosis of the noninfarcted myocardium [58]. Accumulat-
ing evidence suggests that angiotensin II receptor blockers
(ARBs) induce the activity of PPAR𝛾 which inhibit unfa-
vorable LV remodeling [41, 58–60]. PPAR𝛾 protein expres-
sion is mainly in cardiac myocytes and fibroblasts in the
infarcted area three weeks after MI, suggesting the critical
role of PPAR𝛾 in cardiac fibrosis [59]. A study conducted
by Maejima et al. [58] verified that telmisartan effectively
inhibits infaust LV remodeling through a reduction of infil-
tration of macrophages, activation of MMP2 and MMP9,
and expression of TGF𝛽1, CTGF, and osteopontin, while
expression of PPAR𝛾 and activation of tissue inhibitor of
metalloproteinase-1 (TIMP-1) were enhanced in the nonin-
farctedmyocardiumof rats. And in in vitro experiments, they
got the similar results. Pioglitazone, a PPAR𝛾 activator, has
been proved to reduce TNF𝛼, TGF𝛽, andmonocyte chemoat-
tractant protein-1 and attenuate myocyte hypertrophy and
interstitial fibrosis inMImice [61].This indicated that an anti-
inflammatory effect mediated by PPAR𝛾 activation plays a
critical role in post-MI LV remodeling in rats. More recently,
a multicenter randomized double-blind study demonstrated
that Qiliqiangxin, a traditional Chinese medicine, amelio-
rates unfavorable myocardial remodeling after acute MI
including improved cardiac function, decreased apoptosis,
and reduced fibrosis by increasing PPAR𝛾 levels. However,
the expression of well-known signaling pathways includ-
ing Akt, SAPK/Jun NH

2
-terminal kinase phosphorylation

(JNK), and ERK was not altered by Qiliqiangxin treatment
[62]. Interestingly, Birnbaum et al. showed that pioglita-
zone is able to limit myocardial infarct size by activat-
ing Akt and upregulating cytosolic phospholipase A2 and
cyclooxygenase-2 [63]. These suggest that the underlying
mechanism may be varied from different drugs, but PPAR𝛾
play a critical role in myocardial fibrosis after MI is indis-
putable. Besides, TZDs also have neutral [64] or detrimental
[65] effects on cardiac remodeling or mortality after MI.
Therefore, the exact role of TZDs in myocardial remodeling
after MI remains controversial and further studies should be
done to elucidate the precise effects and mechanisms.

3.4. HF. Although the initial indications for PPAR agonist
treatmentmainly focus on hyperlipidemia and diabetes, there
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Table 3: Effects of PPAR𝛾 ligands on hypertension related cardiac fibrosis.

Study model Dose/duration/route Major cardiac findings and
conclusions Ref.

Male SHR and WKY rats, 8
weeks old
Cell culture: CFs form SD rats,
1-2 days old

Curcumin 100mg/kg/d or
curcumin 100mg/kg/d plus
GW9662 10mg/kg/d for 12
weeks, gavage

Curcumin attenuates cardiac
fibrosis in SHRs and inhibits Ang II-
induced production of CTGF, PAI-1,
ECM, TGF𝛽1, and phosphorylation
of Smad2/3 in CFs in vitro

[10]

Male DnTGF𝛽RII and WT
C57BL/6 mice, 8–10 weeks old
subjected to TAC

Rosiglitazone 10mg/kg/d or
T0070907 1.5mg/kg/d for 3
weeks, gavage

Downregulation of endogenous
PPAR𝛾 expression by TGF𝛽may be
involved in pressure
overload-induced cardiac fibrosis

[42]

Male Wistar rats, weights
250–300 g subjected to
abdominal aortic banding at 4
weeks after ligation
Cell culture: CFs formWistar
rats, 1–3 days old

Rosiglitazone 6 g/kg/d or
GW9662 0.2 g/kg/d 2 h prior to
rosiglitazone 6 g/kg/d for 1 week,
intraperitoneal injection

Activation of PPAR𝛾 significantly
inhibited cardiac remodeling by
suppression the expressions of Brq1
and TGF𝛽1 through the NF-𝜅B
pathway

[43]

Male SHRSP and WKY rats, 24
weeks old

Pioglitazone 10mg/kg/d for 8
weeks, mixed with food

Pioglitazone decreased interstitial
fibrosis and number of
myofibroblasts; mRNA levels of
collagen I and BNP; MMP2 activity
and protein level of CTGF. However,
the mRNA level of collagen III and
TGF𝛽1, MMP9 activity, and ROS
production were not improved

[44]

Male SHRSP, 6 weeks old Pioglitazone 10mg/kg/d for 20
weeks, mixed with food

Subepicardial interstitial fibrosis,
left ventricular NF-𝜅B and AP-1
binding activities, the TNF𝛼
expression, and the adhesion of
PECAM were decreased by
pioglitazone treatment

[45]

Male SHRSP and WKY rats, 11
weeks old

Pioglitazone 1mg/kg/d or
2mg/kg/d, candesartan
0.3mg/kg/d for 4 weeks, gavage

Pioglitazone suppressed cardiac
inflammation and fibrosis and
reduced vascular endothelial
dysfunction by inhibition of
cardiovascular NADPH oxidase,
and the combination of pioglitazone
and candesartan exerted more
beneficial effects

[46]

Male C57BL/6J rats, 8 weeks old
subjected to abdominal aortic
banding

Ciglitazone 2mg/kg/d for 4
weeks, administered in drinking
water

Ciglitazone decreased interstitial
and perivascular fibrosis and
inhibition of an induction of NOX4,
iNOS, MMP-2/MMP-13 expression,
and collagen synthesis/degradation

[47]

Male inbred Dahl salt- sensitive
rats, 7 weeks old

Pioglitazone 2.5mg/kg/d for 4
weeks, gavage

Pioglitazone treatment ameliorated
LV hypertrophy and fibrosis and
improved diastolic function by
activating AMPK signaling and
inhibiting Akt signaling.

[48]

DnTGF𝛽RII: dominant-negative mutation of the human TGF𝛽 type II receptor, WT: wild type, TGF: transforming growth factor, TAC: transverse aortic
constriction, CFs: cardiac fibroblasts, NF-𝜅B: nuclear factor-𝜅B, SHR: spontaneously hypertensive rats, WKY: Wistar Kyoto rats, SD: Sprague-Dawley, CTGF:
connective tissue growth factor, PAI-1: Plasminogen activator inhibitor-1, ECM: extracellular matrix, SHRSP: stroke-prone spontaneously hypertensive rats,
BNP: brain natriuretic peptide,MMP:matrixmetalloproteinases, ROS: reactive oxygen species,NADPH: nicotinamide adenine dinucleotide phosphate,NOX4:
nicotinamide adenine dinucleotide phosphate oxidase 4, iNOS: inductive nitric oxide synthase, AP-1: activator protein-1, TNF: tumor necrosis factor, PECAM:
platelet endothelial cell adhesion molecule, and AMPK: adenosine monophosphate-activated protein kinas.
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is a growing body of data which suggest that they maybe
improve cardiac function with decreased fibrosis, improved
contractility, and endothelial function in animal models of
systolic HF [66]. In a rabbit model with nonischemic HF
induced by combined aortic regurgitation and aortic steno-
sis, decreased ejection fraction and unfavorable myocardial
remodeling including increased collagen volume fraction
were observated. Moreover, the activity and expression of
NF-𝜅B subunits p65, RhoA, and Rho GTPase significantly
increased. Interestingly, all these changes were reversed and
the mRNA and protein expression of PPAR𝛾 were signifi-
cantly increased with simvastatin treatment. Based on these
results, the authors declared that simvastatin inhibited RhoA
andRhoGTPase signaling to restrainNF-𝜅B activation by the
PPAR𝛾-dependent pathway, thus attenuating LVhypertrophy
and fibrosis [67]. In addition, pioglitazone treatment reduced
the duration of atrial fibrillation (AF) and attenuated atrial
structural remodeling including atrial fibrosis via attenuating
the expression of TNF𝛼, TGF𝛽1, and ERK but left unaffected
p38 and JNK activation in the rabbit model with congestive
heart failure [68].Therefore, it is conceivable that PPAR𝛾 acti-
vation suppresses cardiac fibrosis by antagonizing inflamma-
tory and hypertrophic signaling pathways. Likewise, PPAR𝛾
acts as a modulator of cardiac fibrosis in human as well.
Cardiac remodeling occurring in patients with end-stage
heart failure due to ischemic cardiomyopathy is related to
PPAR activity, whereby inactivation of PPAR𝛼 and PPAR𝛾
would lead to an increase in the production of ET-1 and the
presence of cardiac fibrosis [69]. Nevertheless, rosiglitazone
treatment had no significant effects on myocardial fibrosis
compared with the vehicle group inMI-inducedHF rats [70].
This result should raise questions with regard to thesemodels
or the particular species at large. Further studies are needed
to test the variety and potential mechanisms.

3.5. I/R Injury. Early reperfusion of ischemic myocardium is
necessary to salvage myocardial tissue from ultimate death.
Nevertheless, reperfusion always results in cardiomyocyte
death, microvasculature injury, and cardiac fibrosis, which
ultimately cause myocardial remodeling and dysfunction [71,
72]. Recently, research has shown that rosiglitazone alleviated
I/R injury by inhibiting inflammatory, improving endothelial
function, reducing oxidative stress, and calcium overload
[33]. Likewise, rosiglitazone treatment can effectively sup-
press the inflammatory induced by I/R injury and promote
myocardial functional recovery [73] with an inhibition of
JNK, AP-1 DNA-binding activity, and NF-𝜅B signaling path-
way [33, 73]. These data demonstrated that rosiglitazone
limits postischemic injury, suggesting an important function
for PPAR𝛾 in the heart.

Snail, a zinc finger transcription factor, activation induces
lung, liver, and kidneys fibrosis [74–76]. Recently, its role in
cardiac fibrosis after I/R injury and the probable underlying
mechanisms had been identified. Lee and her colleagues
[77] found that I/R injury to mouse hearts significantly
increases the expression of Snail. In addition, the author
showed that the cell source of Snail induction is endothelial
cells. Moreover, Snail overexpression-mediated endothelial-
to-mesenchymal transition-like cells markedly stimulated

fibroblasts tomyofibroblasts transdifferentiation via secretion
of CTGF. What is more, they found that PPAR𝛾 agonist
rosiglitazone, a selective Snail suppressor, remarkably sup-
pressed cardiac fibrosis, improved cardiac function, and
reduced Snail and CTGF expression in vivo. Based on this,
the authors suggested that Snail might be a potential target
molecule in the treatment of cardiac fibrosis.

3.6. AF. The relevance of atrial fibrosis and AF is well
established and the causal relationship between them is
interdependent. Atrial fibrosis expedites the development
of AF by causing alterations of electrical properties [78];
on the other hand, AF itself promotes atrial fibrosis [79].
Although the underlying mechanisms are not fully under-
stood, inflammation may promote the persistence of AF and
atrial remodeling. A study conducted by Chen et al. [80]
suggested that the PPAR𝛾mRNAwas significantly decreased
in the hypertensive AF patients and PPAR𝛾 had a negative
correlation with inflammatory cytokines TNF𝛼, IL-6, and IL-
1. The similar results were observed in elderly patients with
AF [81]. In addition, pioglitazone was able to attenuate Ang
II-induced electrical and structural remodeling by inhibiting
both the TGF𝛽1/Smad2/3 and the non-Smad TGF𝛽1/tumor
necrosis factor receptor associated factor 6/TGF𝛽-associated
kinase 1 signaling pathways in vitro cellular models [82],
which adds further evidence to the benefits of PPAR𝛾 agonist
for the prevention of AF. Thus, PPAR𝛾 is at least partly
involved in the pathogenesis ofAF by regulation of inflamma-
tion through the NF-𝜅B pathway; PPAR𝛾 agonist is potential
useful in suppressing cardiac fibrosis and preventing AF
occurrence.

3.7. Other CVD Conditions. It has been demonstrated that
myocardial fibrosis is a common pathological change in
radiation-induced heart diseases [83]. In Sprague-Dawley
rats receiving chest radiation, the protein expression of
TIMP-1 and TGF𝛽1 was higher than that in rats without radi-
ation in the heart; the PPAR𝛾mRNA and protein expression
levels are upregulated in heart injured by radiation as well.
However, upregulation of PPAR𝛾 failed to inhibit the expres-
sion of TIMP-1 and TGF𝛽1 [84]. Therefore, it is a possible
mechanism that PPAR𝛾 itself has protective effect in response
to radiation-induced heart injury. Regrettably, the authors
did not use PPAR𝛾 agonists or inhibitors to further discuss
its function in radiation-induced heart diseases. Besides,
study on experimental animals demonstrated that tenascin-
x, an ECM glycoprotein exclusively expressed in fibroblasts,
can inhibit myocardial fibrosis via upregulation of TGF𝛽1
and downregulation of PPAR𝛾 in alcoholic cardiomyopathy
[85]. These data suggested that PPAR𝛾 plays a crucial role
in inhibiting cardiac fibrosis; further understanding of car-
dioprotection properties of PPAR𝛾 activator came from the
study of pioglitazone influence on experimental autoimmune
myocarditis. The authors suggested that pioglitazone could
alleviate cardiac inflammation and fibrosis by inhibiting
macrophage inflammatory protein-1𝛼 expression and mod-
ulating theTh1/Th2 balance [86].
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Coincidentally, PPAR𝛾 shows a pivotal role in multiple
other cardiovascular disease states. Singh et al. [87] demon-
strated that rosiglitazone relieves cardiac hypertrophy and
myocardial fibrosis in a dose-dependent manner possibly
through its antioxidant activity in hyperhomocysteinemia
rats. Moreover, simvastatin treatment has beneficial effects
on augmentation of the PPAR𝛾, PPAR𝛼 expression, and
reducing cardiac interstitial fibrosis biochemical makers
including MMP-9 and cathepsin S in apolipoprotein E-
deficient mice fed with a high fat diet [88]. More importantly,
irbesartan prevents myocardial hypertrophy and fibrosis via
activation of the PPAR𝛾 and suppression of the TGF𝛽-CTGF-
ERK signaling in angiotensin-converting enzyme 2 knockout
mice [9]. Finally, activation of PPAR𝛾 inhibits isoprenaline-
induced myocardial fibrosis and remodeling via the NF-𝜅B
and MAPKs-dependent mechanism in rats [89–92].

3.8. Cardiac Fibroblasts (CFs) Culture In Vitro. Apart from
in vivo experiments, PPAR𝛾 have been reported to have a
number of cardioprotective properties in vivo. Due to a large
number of stresses including growth and vasoactive factors,
cytokines, andmechanical stimuli [93], fibroblasts proliferate
and differentiate into myofibroblasts, a cell type with an
increased secretion capacity of ECM[94].There is convincing
evidence that PPAR𝛾 ligands, rosiglitazone, pioglitazone, and
15-deoxy-Δ12,14-prostaglandin J2, all inhibit Ang II-induced
CFs proliferation and differentiation, collagen synthesis, and

ECM production [95–97], which are the critical steps in the
pathogenesis of cardiac fibrosis. In addition, rosiglitazone can
prevent myocardial fibrosis induced by advanced glycation
end products in cultured neonatal rat CFs via inhibiting CFs
proliferation, decreasing nitric oxide production, and CTGF
expression [98]. Collectively, these data suggest that PPAR𝛾
activation has an antifibrotic effect. Despite these findings,
the underlying mechanisms for the regulatory effects of
PPAR𝛾 ligands on cardiac fibrosis are ambiguity and the
specific role of PPAR𝛾 in this process has not yet been fully
elucidated. The molecular mechanisms probably involved
NF-𝜅B/TGF𝛽/Smad2/3 and JNK signaling pathways [95, 99–
101].

4. Conclusions and Future Prospects

Cardiac fibrosis is associated with varied cardiovascular
disease and thus is a pivotal determinant of clinical out-
come in heart diseases. Although the last decade has seen
enormous progress insight into cardiac fibrosis, there is no
precise and effective therapy. At the same time, accumulating
evidences demonstrate that PPAR𝛾 exerts a broad spectrum
of biological functions, including the beneficial effects of
alleviating myocardial fibrosis. However, the cardioprotec-
tion mechanisms are currently not fully established, and the
potential mechanisms were shown in Figure 2. Therefore, in-
depth understanding of the potential molecular mechanisms
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of PPAR𝛾 and its ligands in preventing cardiac fibrosis may
provide valuable information in the design of novel treatment
strategies in HF.

Unfortunately, despite many beneficial features of PPAR𝛾
agonists, they also exhibit adverse effects associated with
long-term use. It has been proposed that PPAR𝛾 agonists
are not free from side effects including edema, headache,
hypoglycemia, myalgia, HF, weight gain, bone fractures,
increased risk of MI and mortality, and possibly bladder
cancer [13, 14, 17, 102–104]. Rosiglitazone, pioglitazone, and
troglitazone have been approved for treatment of type 2
diabetes in clinical practice. Contrary to pioglitazone, rosigli-
tazone and troglitazone were associated with significant
tissue toxicities after a relatively short-term exposure [15, 102].
In addition, the dual PPAR agonist ragaglitazar, MK-0767,
naveglitazar, tesaglitazar, and muraglitazar for diabetes have
failed due to various safety concerns. Aleglitazar, the most
recent dual PPAR𝛼/𝛾 agonist, has shown a significant dose-
dependent reduction in HbA1c and beneficial effects on lipid
subfractions [14]. Unfortunately, aleglitazar increased the
risks ofHF, renal dysfunction, bone fractures, gastrointestinal
hemorrhage, and hypoglycemia [105]. Thus, new PPAR𝛾-
directed therapeutic modalities should be considered as
possible approaches to reducing the adverse events seen with
current TZDs. The pan-PRAR agonists bezafibrate, selec-
tive PPAR𝛾 modulators S26948 and INT131, partial PPAR𝛾
agonists balaglitazone,MBX-102,MK-0533, PAR-1622, PAM-
1616, KR-62776, and SPPAR𝛾M5, newdual PPAR𝛼/𝛾 agonists
saroglitazar, have a reduced tendency to cause the adverse
effects and might be available in clinical management in the
near future [14].

PPAR𝛾 agonists convey beneficial effects as therapeutic
agents for cardiac fibrosis; however, their functions are
not fully established yet. As such, PPAR𝛾 agonists possess
different properties for different species, and themechanisms
by which they attenuate cardiac fibrosis are required in both
experimental animal models and humans [106]. Moreover,
the adverse side effects of PPAR𝛾 agonists and the potential
mechanisms responsible for these effects should be clarified
in detail, particularly in humans [106]. Last but not the least,
it is necessary to focus on interactions between PPAR𝛾-
activating agents and other cardiovascular drugs [106]. Inten-
sive research on these targets should be of great assistance to
the development of safety and efficacy PPAR𝛾 agonists in the
near future.
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