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Abstract Microtubules are key cytoskeletal elements
found in all eukaryotic cells. The microtubule shaft is
composed of the heterodimer protein, tubulin and decorated
with multiple microtubule associated protein, regulating
microtubule function. Tau (tubulin associated unit) or
MAPT (microtubule associated protein tau), among the
first microtubule associated proteins to be identified, was
implicated in microtubule initiation as well as assembly, with
increased expression in neurons and specific association with
axonal microtubules. Alzheimer’s disease (AD) is the most
prevalent tauopathy, exhibiting tau-neurofibrillary tangles
associated with cognitive dysfunction. AD is also character-
ized by β-amyloid plaques. An abundance of tau inclusions,
in the absence of β-amyloid deposits, can be found in Pick’s
disease, progressive supranuclear palsy (PSP), corticobasal
degeneration (CBD) and other diseases, collectively described
as tauopathies. The increase in tau pathology in AD correlates
with the associated cognitive decline. The current manuscript
touches on the variability as well as common denominators of
the various tau pathologies coupled to new approaches/current
innovation in treatment of tauopathies in favor of advanced
technologies in predictive diagnostics, targeted preventive and
personalized medicine (PPPM).
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Tau background

The understanding of the multiple triggers of neurodegen-
eration is bound to lead to better diagnostics and improved
therapeutics. In this respect and looking for unifying
pathways, the accumulation of intracellular neurofibrillary
lesions composed of abnormally phosphorylated and
aggregated tau protein was identified as characteristic in
many neurodegenerative disorders [1].

The microheterogeneity of tubulin [2, 3], the building
block of the microtubule shaft, expressing multiple isotypes
with brain specificity [4], coupled to the intricate complex-
ity of the microtubule interacting proteins leads to enhanced
control of neuronal function. Mis-metabolism and muta-
tions in tubulin or in the interacting proteins leads to a
variety of disease conditions, e.g. [5]. Here the emphasis
will be put on the tubulin interacting protein, tau.

Tau (tubulin associated unit) or MAPT (microtubule
associated protein tau) [6] is required for microtubule
initiation as well as assembly [7], with increased expression
in neurons and specific association with axonal microtubules
[8]. MAPs binding to tubulin/microtubules enables them to
play a fundamental role in promoting microtubule assembly
and stability [6, 9, 10]. Functionally, microtubules are
essential for cell division, neuronal development, mainte-
nance of neuronal shape, neuronal plasticity (e.g. plasticity of
dendritic spines and axoplasmic transport with tau partici-
pating in neurite extension and axonal transport [11–14].

Tau is primarily a neuronal protein, though not exclu-
sively. In an adult human brain, there are six major
isoforms of tau derived from a single gene through
alternative splicing [15, 16]. These isoforms differ by the
presence or absence of one or two short inserts in the amino
terminal half and in whether they contain three or four
tubulin binding domain repeats in the carboxy terminal
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half. The alternative splicing of tau has been suggested to
impact axonal functional homeostasis [17], and 3 repeat tau
was suggested to have a stronger effect on axon transport
dynamics.

Using cultured Aplysia neurons and online confocal
imaging of human tau, it was shown that over-expression of
tau generates the hallmarks of human tau pathogenesis. It
was further demonstrated that the tau-induced impairment
of organelle transport is because of polar reorientation of
the microtubules along the axon or their displacement to
submembrane domains establishing that tau over-
expression leads to impaired retrograde and anterograde
organelle transport [18].

The following review is an update on a review in press
in Current Alzheimer Research [19] it is not a comprehen-
sive review of the literature, but rather a point of view
touching upon some recent publications as follows below.

Tauopathies

Disruption of the microtubule network is a hallmark of
neurodegeneration, including the most prevalent tauopathy,
Alzheimer’s disease (AD). AD is characterized by the
deposition of intracellular fibrillar structures forming paired
helical filaments (PHFs) followed by larger aggregates
termed neurofibrillary tangles (NFTs) [20] as well as the β-
amyloid deposits.

Tau was originally identified as the primary component
of PHF [21–27]. NFTs are composed mainly of PHFs with
a minority of straight filament (SF), [28–30]. PHFs appear
to consist of two filaments that are wound helically around
one another, with a longitudinal spacing between cross-
overs of about 80 nm and a width of 30 nm at the widest
point and 15 nm at the narrowest [31]. PHFs morphology
distinguishes them from microtubules (250 nm diameter),
neurofilaments (∼100 nm diameter) and microfilaments
(∼60 nm diameter) which are the major cytoskeletal
elements in healthy neurons [28–30, 32]. The biochemistry
of tau is a subject of multiple reviews [33].

Phosphorylation occurs on a number of different parts
of tau and an increase in phosphorylation generally
reduces tau-tubulin binding. A link to a slide delineating
different tau domains and tau mutations can be accessed
via: http://www.alzforum.org/res/com/mut/tau/table1.asp.
This site outlines the various mutations that have been
found in tau that are associated with multiple tauopathies
including CBD = corticobasal degeneration. DDPAC =
disinhibition-dementia-parkinsonism-amyotrophy com-
plex; FTD = frontotemporal dementia. FTDP-17 = FTD
with Parkinsonism linked to chromosome 17; HFDT =
hereditary frontotemporal dementia; MSTD = multiple

system tauopathy dementia; PPND = pallidopontonigral
dementia; and PSP = progressive supranuclear palsy. The
different tau mutations are associated with different
morphology of the tau pathology (http://www.alzforum.
org/res/com/mut/tau/table1.asp). The original identifica-
tion of mutations in tau in familial forms of FTD was
described in 1998 [34–37].

The majority of tau in PHFs and NFTs is hyper-
phosphorylated [38, 39]. This hyperphosphorylation maybe
related to either an increase in kinase activity or a decrease
in phosphatase activity [40]. Additionally, tau undergoes a
specific type of serine—threonine O-glycosylation, and
these modifications can reduce the extent of tau phosphor-
ylation [41]. Tau can also be tyrosine phosphorylated [42],
sumoylated and nitrated [43], although the effects of these
modifications on tau require further investigations. Tau
hyperphosphorylation appears to precede its accumulation
in the affected neurons in AD [44, 45]. Hyperphosphory-
lated tau shows impaired axonal transport [12, 46],
defective microtubule binding [47–50], failure to promote
microtubule assembly [51, 52], and self-assembly into
NFTs [53, 54]. Additionally, hyperphosphorylation of tau
might make it more resistant to caspase proteolysis as well
as degradation and thereby more likely to accumulate in
neurons, forming PHFs and NFTs [55].

As suggested above, original studies indicated that a
down-regulation of protein phosphatase 2A (PP2A), the
major tau phosphatase in human brain, contributes to tau
hyperphosphorylation in AD. Importantly, PP2A dephos-
phorylated tau at several phosphorylation sites with
different efficiencies. Among the sites studied, Thr205,
Thr212, Ser214, and Ser262 were the most favorable sites,
and Ser199 and Ser404 were the least favorable sites for
PP2A in vitro. In addition to its direct effect on tau,
inhibition of PP2A with okadaic acid in metabolically
active rat brain slices caused inhibition of glycogen
synthase kinase-3beta (GSK-3beta) via an increase in its
phosphorylation at Ser9. GSK-3beta phosphorylates tau at
many sites, with Ser199, Thr205, and Ser396 being the
most favorable sites. The overall alterations in tau phos-
phorylation induced by PP2A inhibition were the result of
the combined effects of both reduced tau dephosphory-
lation due to PP2A inhibition directly and reduced
phosphorylation by GSK-3beta due to its inhibition
[56]. Tau phosphorylation impacts its biological activity
and neurofibrillary degeneration in association with the
specific phosphorylation site (for a comprehensive web
site on tau hyperphosphorylation, including the kinases
involved see (http://www.alzheimer-adna.com/Gb/Tau/
TauPhosphoSeq.htm). Thus, the interplay between phos-
phorylating enzymes and phosphatases plays a role in
tauopathy progression.
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Most of the tau phosphorylation sites that have been
characterized were Ser and Thr residues. More recent
reports showed that tau can be phosphorylated at Tyr
residues by kinases including Fyn, Syk, and c-abl (Abl).
Proteomic analyses show that tau phosphorylated at Tyr394
(Y394) exists within AD PHF samples. It was further
shown that Abl phosphorylated this particular site on tau. A
most recent report showed that Arg, the other member of
the Abl family of tyrosine kinases, also phosphorylates tau
at Y394 in a manner independent of Abl activity. Given the
reported role of Arg in oxidative stress response and neural
development, the ability to phosphorylate tau at Y394
implicated Arg as a potential player in the pathogenesis of
AD and other tauopathies [57].

The MAPT gene on human chromosome 17 appears in
two main extended haplotypes. In a total of approximately
200 unrelated Caucasian individuals, there was complete
disequilibrium between polymorphisms which span the
gene (which covers approximately 100 kb of DNA). This
showed an establishment of the two haplotypes (H1 and
H2) [58]. It was further shown that the more common
haplotype (H1) is significantly over-represented in PSP
patients [59].

Single nucleotide polymorphisms mapped linkage dis-
equilibrium in the regions flanking MAPT and have
established the maximum extent (∼2 Mb) of the haplotype
block on chromosome 17 q21.31 [60] and a 900 kb
inversion which suppresses recombination [61]. This
∼2 Mb gene-rich region extends centromerically slightly
beyond (∼400 kb) the corticotrophin releasing hormone
receptor 1 gene. The telomeric end was defined by a
∼150 kb region beyond the WNT3 gene. This study of
Pittman et al., showed that the entire H1 haplotype is
associated with PSP, which may implicate several other
genes in addition to MAPT, as candidate pathogenic loci
[60]. Additional studies by Pittman et al., resolved multiple
variants of the H1 haplotype, reflecting a greater diversity
of MAPT than can be explained by the H1 and H2 clades
alone [62].

Mild cognitive impairment (MCI) is often considered a
transitional condition prodromal to AD. Therefore, the
genotypes of 7 polymorphisms tagging the major tau
haplotypes were assayed on 186 patients with amnestic
MCI and 191 unrelated controls. Association study was
conducted by logistic regression including apoliprotein E
genotype and age as covariates (with the aplipoprotein E4
and age representing major risk factors for AD). The
common H1 haplotype was found to be significantly
overrepresented in amnestic MCI patients. This finding
was confirmed when the aplipoprotein E4 allele was taken
into account. These results suggest 1] that the risk of MCI
is influenced by tau protein gene variations and 2] that MCI

shares a common genetic background with AD. The results
may help elucidating the genetic risk to cognitive decline
and designing effective clinical trials, future diagnostics and
future therapies [63].

Interestingly, in trying to evaluate the rate of progression
and the predictors of worsening in frontotemporal lobar
degeneration (FTLD) patients, 127 FTLD patients entered a
study and were re-evaluated at 1-year follow-up. A
statistical driven approach on wide neuropsychological,
behavioral, and functional data was applied to identify
homogeneous groups both at baseline and at follow-up
within FTLD, taking into account: (i) the demographic
characteristics, (ii) the genetic background, i.e. apolipopro-
tein E genotype, tau haplotype, and functional polymor-
phisms affecting serotonin and dopamine pathways, and
(iii) the clinical phenotype. On the basis of the overall
assessment (disease severity), the results recognized two
groups of patients, “good performers” and “bad perform-
ers”. At 1-year follow-up, almost 30% of FTLD patients
progressed from “good” to “bad” performances, whilst 70%
maintained stable “good” performances. Apolipoprotein E4
allele, Tau H2 haplotype and behavioral variant FTD
phenotype were associated with worse prognosis over time,
suggesting specific genetic and clinical predictors in FTLD
progression [64] that converge and differ from those of
other tauopathies (e.g. amnestic MCI/AD and PSP).

Recent reviews describe the different tauopathies, e.g.
[33, 65]. Thus, tau comprises the Pick bodies found in
Pick’s disease (PiD) with aggregates of three microtubule
binding repeat tau (3R tau) and frontal atrophy associated
with cognitive clinical dysfunction of frontal dysexcutive
syndrome, progressive nonfluent aphasia and semantic
dementia [33, 65].

Like other tauopathies, progressive supranuclear palsy
(PSP) is characterized by accumulation of abnormally
phosphorylated tau [66, 67]. Predominantly, the four
microtubule binding domain (4R) form of tau accumulates
in straight NFTs in neurons and glial cells in affected brain
regions [59, 67, 68]. PSP is characterized by NFTs in basal
ganglia, diencephalon, and brain stem with frontal executive
cognitive impairment and movement disorders characterized
by supranuclear gaze palsy, falls and Parkinsonism-like
behavior [65, 69–71]. It is a rare progressive disease [72–
74]. Like in AD and PiD, brain atrophy occurs in patients
with PSP. While some degree of brain atrophy occurs with
normal aging, the atrophy in PSP is more pronounced [75,
76], correlating with clinical disease progression [77] and
assessed by structural brain imaging [75, 78].

Cortico-basal ganglionic degeneration (CBD) is charac-
terized by parietofrontal or frontotemporal atrophy and
pallor in substantia nigra and 4R tau-aggregates (also found in
glial lesions) that is manifested by cognitive dysfunction —
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cortical sensory loss, apraxia (loss of the ability to execute or
carry out learned purposeful movements) and asymmetric
akinetic rigid syndrome [33, 65].

PiD, PSP and CBD are subtypes within the broader
category of called frontotemporal dementias (FTD). Anoth-
er FTD is frontotemporal dementia with Parkinsonism
linked to chromosome 17 (FTDP-17) that is characterized
by frontal atrophy often seen with tau-positive neuronal and
glial inclusions with behavioral changes, cognitive decline
and Parkinsonism [34].

Many of the tau alterations that are characteristic of AD
have also been identified in PSP and CBD. Tau truncation
at Asp421 is an alteration that is unique to neuronal lesions,
occurring in Pick bodies as well as in NFTs, but not in
lesions associated with glia. Conversely, phosphorylation at
Ser422 is not only present in all these lesions, but identifies
additional glial and neuronal pathology in disease-
susceptible cortical regions. The results suggest that the
molecular alterations of tau that occur during the initial
process of tangle formation in AD are similar in non-AD
tauopathies, but the middle and later changes are not
common to all diseases [79].

Tauopathies include also the early-onset dementia
observed in Down syndrome (DS; trisomy 21). Splicing
misregulation of adult-specific exon 10 results in expres-
sion of abnormal ratios of tau isoforms, leading to FTDP.
Positions +3 to +19 of the intron downstream of exon 10
define a hotspot: Point mutations in it result in tauopathies.
All these mutations increase the inclusion of exon 10
except for mutation +19, which almost entirely excludes
exon 10. To investigate the tau connection between DS and
AD, a recent study examined splicing factors located on
chromosome 21 for their effect on tau exon 10. In these
experiments, the splicing factor located on chromosome 21,
heterogeneous nuclear ribonucleoprotein E3 — hnRNPE3
(PCBP3), was found to modestly activate the splicing of
exon 10 by interacting with its proximal downstream intron
around position +19 [80]. Other studies found decreased
levels of Tra2beta, an RNA splicing factor responsible for
tau exon 10 inclusion, in both cortical cell cultures exposed
to MG132 (proteasome inhibitor) and in cerebral cortex
after ischemic injury, suggesting that transient focal
cerebral ischemia reduces tau exon 10 splicing through a
mechanism involving proteasome-ubiquitin dysfunction
and down-regulation of Tra2beta [81].

Diagnostic tools

Cerebrospinal fluid (CSF) total tau levels vary widely in
neurodegenerative disorders, thus not being useful in their
discrimination over AD. It has been suggested that total tau

alongside with amyloid beta can predict conversion from
MCI to AD [82–85]. AD is characterized by a signature of
phosphorylated tau and amyloid beta in the CSF [84],
coupled with brain imaging technologies this can follow
AD disease progression [86–88] (http://www.labtestsonline.
org/understanding/analytes/tau/test.html). Commercial
companies like Applied NeuroSolutions, Inc. (http://www.
appliedneurosolutions.com/) and Innogenetics (http://www.
innogenetics.com/neurodegeneration.html) offer measure-
ments of phosphorylated tau in the CSF, specifically P-tau
231 and P-tau 181 determination, respectively. Further-
more, a novel strategy to characterize tau versions present
in CSF with respect to their molecular mass and isoelectric
point was just published which will facilitate advanced
diagnosis [89].

A recent study characterized and measured tau forms in
order to verify the differential patterns among neurodegener-
ative disorders. A quantitative immunoprecipitation was
developed showing an extended (55 kDa), and a truncated
(33 kDa) forms of tau in the CSF with differential expression.
Thus the tau ratio 33 kDa/55 kDa was significantly decreased
in patients with PSP (0.46+/−0.16) when compared to
controls, including healthy subjects (1.16+/−0.46, P=0.002)
and AD (1.38+/−0.68, P<0.001), and when compared to
FTD (0.98+/−0.30, P=0.008) or CBD (0.98+/−0.48,
P=0.02). Moreover, in PSP patients tau form ratio was
lower than in other neurodegenerative extrapyramidal dis-
orders, such as Parkinson disease (1.16+/−0.26, P=0.002)
and dementia with Lewy bodies (1.44+/−0.48, P<0.001).
Tau ratio 33 kDa/55 kDa did not correlate either with
demographic characteristics, cognitive performances or with
motor impairment severity. Truncated Tau production shows
a different pattern in PSP compared to other neurodegener-
ative disorders, supporting the view of disease-specific
pathological pathways. These findings are promising in
suggesting the identification of a marker for PSP diagnosis
in clinical practice [90].

Another study suggested that CSF concentrations of the
42 amino acid fragment of amyloid-beta (Abeta42), neuro-
filament light chain (NFL), neurofilament heavy chain
(pNFH), tau protein, glial fibrillary acidic protein (GFAP),
neuron specific enolase (NSE), S-100B protein, and myelin
basic protein (MBP) that are released into the CSF after
brain tissue damage caused by a variety of neurological
diseases could be of value in the differential diagnosis of
neurodegenerative disorders [91].

In an elegant study 18 signaling proteins in blood plasma
were suggested to be used to classify blinded samples from
AD and control subjects with close to 90% accuracy and to
identify patients who had MCI that progressed to AD 2–
6 years later. Biological analysis of the 18 proteins points to
systemic dysregulation of hematopoiesis, immune
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responses, apoptosis and neuronal support in presymptom-
atic AD. Further studies should evaluate whether this test
could be implemented for other tauopathies and whether
distinction can be made based on this highly desirable
plasma evaluation tool [92].

A recent study also used a molecular imaging probe for
plaques and tangles, 2-(1-{6-[(2-[F-18]fluoroethyl)(methyl)
amino]-2-naphthyl}ethylidene)malonon itrile ([(18)F]
FDDNP) relating cognitive ability to positron emission
tomography (PET) and suggesting this an a potential early
diagnostic tool [93].

Tau as a drug target is a relatively young field and future
clinical studies should aim at evaluating tau distribution in
biological fluids as well as develop imaging technologies to
identify potential changes in tau following candidate drug
application.

Activity-dependent neuroprotective protein (ADNP),
tauopathy and neuroprotection

Our own focused research is on activity-dependent neuro-
prtective protein (ADNP). When we discovered ADNP [94,
95] and as I have recently reviewed [96], bioinformatics
suggested that ADNP is a transcription factor containing a
homeobox domain profile with sequence motifs that are
associated with nuclear localization as well as cellular
secretion and uptake. These structural characteristics imply
nuclear, cytoplasmic and extracellular functions [94, 95].
When we performed complete knockout of ADNP in the
mouse, our results revealed cranial neural tube closure
failure and death on E8.5–9.0 of the ADNP-knockout
embryos [97]. To further elucidate ADNP associated path-
ways, we used Affymetrix microarrays on ADNP knockout
and control mouse embryos (E9), resulting in gene
expression changes of >450 genes. A group of dramatically
up-regulated gene transcripts in the ADNP-deficient em-
bryos were clustered into a family encoding for proteins
enriched in the visceral endoderm such as apolipoproteins
(including apolipoprotein E), cathepsins and methallotio-
nins. A down regulated gene cluster associated with
ADNP-deficiency in the developing embryo consisted of
organogenesis markers including neurogenesis (Ngfr, neu-
rogenin1, neurod1) and heart development (Myl2) [98].
Our results placed ADNP at a crucial point of gene
regulation, repressing potential endoderm genes and en-
hancing genes associated with organogenesis/neurogenesis.
Immunoprecipitation experiments showed interactions with
heterochromatin protein1α (HP1α) [98] and with BRG1,
BAF250a, and BAF170, all components of the SWI/SNF
(mating type switching/sucrose nonfermenting) chromatin
remodeling complex [99]. Together, our results place

ADNP in a chromatin remodeling epigenetic role in
neurodifferentiation and neuroplasticity and aging.

While complete ADNP-deficiency is lethal, we have
shown that ADNP heterozygous mice (+/−) survive, but
exhibit phenotypic deficiencies. ADNP+/− male mice
exhibited cognitive deficits, significant increases in phos-
phorylated tau, tangle-like structures emanating from
astrocytes (as described for CBD and PSP) and neuro-
degeneration as compared to ADNP+/+ mice [100]. It is an
open question as to whether ADNP is directly associated
with human tauopathies.

Interestingly, comparison of the expression of ADNP
mRNA in the peripheral blood mononuclear cells (PBMCs,
i.e. T-cells, B-cells, monocytes and natural killer cells) of
normal subjects and multiple sclerosis patients showed that
monocytes, B-cells and T-cells, but not regulatory (CD4 +
CD25+) T-cells expressed ADNP that was reduced in the
PBMCs of multiple sclerosis patients compared to those of
the healthy controls. The authors suggested that the
decreased expression of ADNP in PBMCs of multiple
sclerosis may contribute to reduced immuno-regulatory
capacity in these patients [101]. Other studies showed
increased tau hyperphosphorylation in multiple sclerosis
[102].

Drug candidates aimed at tauopathy [19, 103–105]

Several aspects of tauopathy are currently targeted. Those
include, targeting tangles to break the potentially toxic
aggregates, inhibiting tau phosphorylation, accelerating tau
dephosphorylation, and accelerating — tau microtubule
interactions (for review please see [106]).

Advanced models of tauopathy have been developed for
translational research, including a model for rapid analysis
of tau-related degeneration in zebrafish [107], a model of
tauopathy in drosophila that dissociates tau toxicity and
phosphorylation at the level of GSK-3beta, MARK and
Cdk5. The model suggests that, in addition to tau
phosphorylation, microtubule binding plays a crucial role
in the regulation of tau toxicity when misexpressed. These
data have important implications for the understanding and
interpretation of animal models of tauopathy [108]. Ad-
vanced mouse models are many as recently reviewed [109].
Preferred models include models where the transgene can
be inactivated at will (e.g. [110]). Interestingly, the
propagation of protein misfolding, such as tau, may occur
through mechanisms similar to those that underlie prion
pathogenesis [111–113].

Non-related studies have shown tau enrichment in
metastatic tumors and an ability of tau to promote tumor
cell reattachment through tubulin microtentacles formation,
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supporting a model in which tau-induced microtubule
stabilization provides a selective advantage during tumor
metastasis [114] and suggesting a potential cross talk
between cancer therapeutics/diagnosis and tauopathies.

Our research demonstrated that an 8-amino-acid peptide
fragment of ADNP was capable of conferring neuroprotec-
tion. This peptide fragment is called davunetide (also known
as NAP) and has the following amino acid sequence:

H2N� Asn� Ala� Pro� Val� Ser � Ile� Pro� Gln

� COOH

Preclinical experiments indicate that davunetide has neuro-
protective, cognitive protective, and neurotrophic properties.
Importantly, NAP (davunetide), did not affect dividing cells
(unlike paclitaxel and other microtubule targeting drugs)
[115].

We have indentified NAP (davunetide) as a potent
neuroprotectant in a wide range of in vitro models [116]
against a number of toxic insults including several relevant
to neurodegenerative diseases such as amyloid beta peptide
[94, 117], excitotoxicity [94], oxidative stress [118] and
oxygen glucose deprivation associated apoptosis [119]. We
have further identified NAP (davunetide) as a neurotrophic
factor, stimulating neurite outgrowth and synapse formation
[120]. These results were corroborated by other investi-
gators worldwide [121–123].

To understand the biological significance of NAP
(davunetide) activity, we have generated mice partially
deficient of the NAP (davunetide) -containing protein,
ADNP [100]. As indicated above, while the complete
knockout embryos do not form a brain and die in utero [97,
99], the heterozygous mice live and exhibit severe learning
deficiencies which are ameliorated, in part, by intranasal
NAP (davunetide) treatment [100]. Tau hyperphosphoryla-
tion occurs in these ADNP deficient mice and is reduced by
NAP (davunetide) treatment [100]. These studies demon-
strate the functionally significant role of ADNP and NAP
(davunetide) in limiting tau hyperphosphorylation.

As indicated above, multiple sclerosis may also be
associated with tauopathy [102] and recent studies associ-
ated reduced ADNP in the altered immune capacity of the
patients which maybe compensated by NAP (davunetide)
treatment [101, 124].

We have further shown activity for NAP (davunetide) in
a number of transgenic mouse models of dementia
including AD and tau mutations. In one of our most recent
studies, chronic intranasal NAP (davunetide) treatment has
been shown to reduce neurofibrillary tangles and tau
hyperphosphorylation in a “pure” tauopathy model that
has direct relevance of FTD [125]. This double transgenic
mouse model developed by our collaborator Dr. Rosenmann
at Hadassah Hospital in Israel has two mutant tau transgenes

(P301S; K257T) under the control of the tau promoter [126].
The mice develop inclusions in the hippocampus and cortex
accompanied by cognitive and behavioral dysfunction. These
mutations (reviewed in [127]) are both known to cause
familial forms of FTD with variable features of PSP, CBD
and less frequently amyotrophy, due to the tau proteins
having a reduced ability to stabilize microtubules. We treated
the tau transgenic mice with intranasal NAP (davunetide)
over several months which resulted in reduced tau phos-
phorylation and tangle pathology paralleled with improved
short-term spatial learning and memory [125]. Our results
indicate that long-term NAP (davunetide) treatment associ-
ated with reduction in tau pathology may improve cognitive
function and slow disease progression.

The triple transgenic mouse model of AD expressing
mutant APP (Swedish), tau (P301L), and presenilin-1
(M146V) develops both neurofibrillary tangles and amyloid
beta plaques in a progressive fashion [128]. When we
treated 12-month-old animals with an intranasal dose of
2 μg/day (∼0.07 mg/kg/day) for 3 months our results
showed a 70% decrease in phosphorylated tau at Ser202/
Thr205, Thr231, and Ser202 residues [129, 130]. Histolog-
ical examination of the hippocampal CA1 region confirmed
that NAP (davunetide) treatment resulted in a reduction of
phosphorylated tau. Treatment of 9-month-old animals with
an intranasal dose of 0.5 μg/day (∼0.017 mg/kg/day) for
3 months resulted in a 30% to 40% decrease in phosphor-
ylated tau.

In humans, davunetide intranasal (AL-108) has been
studied for the treatment of amnestic MCI. The study was a
randomized, double-blind, placebo-controlled, parallel
group study. The effect of davunetide 5 mg once daily
and 15 mg twice daily compared to placebo was evaluated
in several tests of cognitive function. In that study, 144
subjects were randomized and 125 subjects completed the
study. Subjects treated with davunetide 15 mg twice daily
demonstrated a general pattern of improvement in cognitive
tests that primarily assessed attention and working memory
function. Both doses of davunetide were safe and well
tolerated. Headache and nasopharyngeal symptoms were
the most commonly reported adverse events [131]. These
studies place tau and tauopathies at central stage for further
understanding of neurodegenerative diseases and the
development of neuroprotective drugs.

Following our discovery of NAP (davunetide, [94]) we
have suggested that NAP (davunetide) affects microtubule
stability thereby providing neuroprotection [132, 133]. Our
recent studies extended the breadth of NAP (davunetide)
application to show that it protected against cognitive
dysfunction in a schizophrenia model of microtubule
deficiency [134]. Importantly, clinical studies in schizo-
phrenia patients suffering from cognitive impairment
performed by TURNS (Treatment Units for Research on
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Neurocognition and Schizophrenia) in collaboration with
Allon Therapeutics Inc. (www.allontherapeutics.com)
showed protection of functional capacity (activities of daily
living) and protection of brain function (magnetic reso-
nance spectroscopy measurements of N-acetyl aspartate) in
the treated patients (Javitt et al., in preparation).

Based on the animal translational studies and the human
clinical efficacy, davunetide is now poised for further
clinical studies in PSP, an orphan indication (Allon
Therapeutics, Inc.).

Paclitaxel and related compounds have been suggested
to act also in protecting microtubules, however, bioavail-
ability, brain specificity and the potential irreversibility of
their action suggests that more work is required prior to
paclitaxel-like neuroprotective drug candidate [135]. A
drug candidate in a similar stage of development to
davunetide is rember (methylene blue) that was featured
in several AD meetings as per [104, 136].

In the preclinical stage, a phenylthiazolyl-hydrazide
(PTH) compound was suggested as a possible hit in terms
of inhibition of tau aggregation and the core of the PTHs
crucial for activity was identified, thus representing a
putative lead structure [137]. Recently, quantitative high-
throughput screening (qHTS) of approximately 292000
compounds to identify drug-like inhibitors of tau assembly
was developed. The fibrillization of a truncated tau
fragment that contains four MT-binding domains was
monitored in an assay that employed complementary
thioflavin T fluorescence and fluorescence polarization
methods. Previously described classes of inhibitors as well
as new scaffolds were identified, including novel amino-
thienopyridazines (ATPZs). A number of ATPZ analogues
were synthesized, and structure-activity relationships were
defined. Further characterization of representative ATPZ
compounds showed they do not interfere with tau-mediated
MT assembly, and they are significantly more effective at
preventing the fibrillization of tau than the Abeta(1–42)
peptide which forms AD senile plaques. Thus, the ATPZ

molecules are suggested for further development [138]. As
a follow-up on these publications, AstraZeneca and The
University of Pennsylvania recently announced a new
collaborative research agreement that initially will focus
on generating new AD drug candidates for the clinical
development pipeline (http://www.astrazeneca.com/re
search/?itemId=8876304).

Various tau aggregation inhibitory molecules were
recently reviewed [104] also taking into consideration that
the cellular environment affects tau aggregation. In this
respect, it has been suggested that tau fragments across the
lysosomal membrane promote formation of tau oligomers at
the surface of these organelles which may act as precursors
of aggregation and interfere with lysosomal functioning
[139].

Other aspects of tau-related future therapeutics involve
targeting tau hyperphosphorylation [140] with inhibitors of
the key tau phosphorylating enzymes such as Cdk5/p25
kinase [141], GSK-3 inhibitors, such as lithium [142] or
peptide inhibitors [143] and possible enhancement of
protein phosphatase-2A (PP-2A) [144]. Other kinases
implicated in tau phosphorylation include CK1, PK1,
MARK, and the stress associated kinases, p38MAPK and
JNK [140]. ATP competitive inhibitors may present potent
drug candidates, but may also have undesirable side effects
[106].

Regarding lithium, it is currently in clinical trials in PSP and
CBD (http://clinicaltrials.gov/ct2/show/NCT00703677?
term=lithium&rank=6) and was tested in Alzheimer’s disease
patients (http://clinicaltrials.gov/ct2/show/NCT00088387?
term=lithium+alzheimer%27s+disease&rank=1).

NP12 (Nypta®), a GSK-3 inhibitor [145], that we have
reviewed in our paper “Looking for novel ways to treat the
hallmarks of Alzheimer’s disease” as microtubule —
related drug candidate [105] is a potent thiadiazolidinone
derivative, that when injected into the rat hippocampus
dramatically reduces kainic acid-induced inflammation, as
measured by edema formation using T2-weighted magnetic

Drug candidate Activity

Davunetide (NAP) Microtubule protection: preventing tau hyperphosphorylation
and tau aggregate formation and providing neuro-glial
protection

Aminothienopyridazines (ATPZs) Preventing fibrillization of tau

Rember (methylene blue) and derivatives Preventing tau aggregation
GSK-3 inhibitors:

• lithium

• NP-12 (Nypta®) Preventing tau phosphorylation

Rasagiline mesylate Neuroprotection

Immunotherapy Anti-tau antibodies Potential personalized medicine —
future potential for targeting of specific mutations

Table 1 Drug candidates

Other drug candidates of similar
(or different) categories as well
as innovative approaches are
described in the text
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resonance imaging and glial activation and has a neuro-
protective effect in the damaged areas of the hippocampus
[146].

NP-12 (Nypta®), is claimed to be the first non ATP
competitive inhibitor of GSK3, has been already adminis-
tered to >140 healthy volunteers to date, as presented at the
International Conference on Alzheimer’s Disease (ICAD)
in 2008. NP-12 is developed by Noscira (formerly Neuro-
pharma, S.A.). Updates are available on the company
website: “The first Phase II trial for Alzheimer’s was
approved in the last quarter of 2008; 30 patients have
already been treated, and the results are being processed.
Noscira expects the first Phase II clinical trial in PSP to
begin in 2009.”

Regarding kinase inhibition, internet search of SAR-
502250 revealed the patent application: WO/2009/035159
also including MITSUBISHI TANABE PHARMA COR-
PORATION in the applicants. The patent abstract describes
a compound represented by a formula that is disclosed or a
pharmaceutically acceptable salt thereof: which is used for
preventive and/or therapeutic treatment of a disease caused
by abnormal activity of tau protein kinase 1 such as a
neurodegenerative diseases (e.g. Alzheimer disease)
(http://www.wipo.int/pctdb/en/wo.jsp?WO=2009035159).
Furthermore, SRN-003-556 was described as an inhibitor
of tau hyperphosphorylation that prevents severe motor
impairments in tau transgenic mice [147].

Brunden et al., also review the possibility of increased
tau degradation as a therapeutic target also looking at hsp90
[148] as well as macroautophagy [139]. Neuroprotection is
another approach to another disease associated with tau
deregulation, A clinical trial with patients with Multiple
System Atrophy (MSA), a disease with tau inclusions [149]
and with parkinsonism is currently ongoing (http://clinical
trials.gov/ct2/show/NCT00977665).

Another approach to clearing tau aggregates has been tau
immunotherapy [150, 151]; this approach is still in the
preclinical stage, showing potential promise in animal
studies. Yet, another approach to the regulation of tau
could be specific inhibition of synthesis, when this seems to
lead to accumulation as well as addressing specific tau
mutations (please see above and as described in http://www.
alzforum.org/res/com/mut/tau/table1.asp). When RNA
silencing and targeted in vivo mutagenesis further develop
to potential candidate drugs, this would be an interesting
avenue to follow. Finally, given the preponderance of 4
repeat (4R) tubulin binding domain tau in the neurodegen-
erative brain, drugs that target enhancement in the
expression of the 3R tau to restore homeostasis are highly
desirable, however, keeping in mind that the homeostasis
between the 3R and 4R tau isoforms is important and that
3R tau has been associated with the pathology of Pick’s
disease [33, 65].

Additional reading on the subject can be found is several
reviews including, but not limited to the following literature
citations [106, 152] and including insights to the selection
of the patient populations [153], some of the drug
candidates outlined above are summarized in Table 1.

Future outlook

In terms of prediction, the tau mutations, amyloid precursor
protein (APP) mutations, presenilin mutations and Down’s
syndrome predict tauopathy. Single nucleotide polymor-
phism (SNP) signatures may also contribute to disease
susceptibility and progression. Furthermore, the tau gene
haplotype contributes to susceptibility as well as additional
risk genes like apoliprotein E4. Thus, genetic profiling will
address prediction and provide for future diagnosis.

A very interesting facet of these diseases is the late onset;
it is also possible that the initial progress is slower until it
reaches a point of no return and is accelerated, perhaps due
to accumulations of stress signals. In terms of diagnosis,
one way is to follow-up plasma/blood and CSF samples of
family members — carriers of mutations, heterozygous and
non-carriers for tau abnormalities, changes in concentration,
changes in degree of phosphorylation and truncation to
address disease progression and potential preventative
measures.

Personalized medicine in this respect will include
customized immunotherapy as well as gene therapy,
shutting down the mutated gene and introducing the healthy
gene, using most advanced molecular genetic tools.
Personalized treatment will stem from knowledge of the
specific mutation, alteration in gene expression and post-
translational processing, toward a brighter future.
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