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Abstract

Background: Gene expression plays a key intermediate role in linking molecular features at the DNA level and phenotype.
However, owing to various limitations in experiments, the RNA-seq data are missing in many samples while there exist
high-quality of DNA methylation data. Because DNA methylation is an important epigenetic modification to regulate gene
expression, it can be used to predict RNA-seq data. For this purpose, many methods have been developed. A common
limitation of these methods is that they mainly focus on a single cancer dataset and do not fully utilize information from
large pan-cancer datasets. Results: Here, we have developed a novel method to impute missing gene expression data from
DNA methylation data through a transfer learning–based neural network, namely, TDimpute. In the method, the
pan-cancer dataset from The Cancer Genome Atlas (TCGA) was utilized for training a general model, which was then
fine-tuned on the specific cancer dataset. By testing on 16 cancer datasets, we found that our method significantly
outperforms other state-of-the-art methods in imputation accuracy with a 7–11% improvement under different missing
rates. The imputed gene expression was further proved to be useful for downstream analyses, including the identification
of both methylation–driving and prognosis-related genes, clustering analysis, and survival analysis on the TCGA dataset.
More importantly, our method was indicated to be useful for general purposes by an independent test on the Wilms tumor
dataset from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project. Conclusions:
TDimpute is an effective method for RNA-seq imputation with limited training samples.
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Background

The recent development of molecular biology and high-
throughput technologies facilitates the simultaneous measure-

ment of various biological omics data such as genomics, tran-
scriptomics, epigenetics, proteomics, and metabolomics for a
single patient. Compared with single-omics analysis, integrative
analyses of multi-omics data provide comprehensive insights
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2 Imputing missing RNA-sequencing data from DNA methylation

Figure 1: The architecture of a transfer learning–based neural network (TDimpute) for imputing missing gene expression values in a multi-omics dataset. The neural

network: DNA methylation data are transformed into gene expression data and the root mean squared error (RMSE) between the actual output and desired output
is minimized. Transfer learning: a pan-cancer dataset is used to train the general imputation model for multiple cancers, which is specifically tuned for each type of
cancer.

into cancer occurrence and progression and thus strengthen
our ability to predict cancer prognosis and to discover various
levels of biomarkers. However, owing to limitations of experi-
mental techniques and relatively high costs for measuring the
multi-omics data, most samples are not measured with all types
of omics data and lack 1 omics data type (called “block miss-
ing”). This problem is prevalent in publicly available multi-omics
datasets including The Cancer Genome Atlas (TCGA). Because
gene expression affects clinical outcomes or phenotypes more
directly than molecular features at the DNA level such as DNA
methylation and genetic variants [1], we focused on gene expres-
sion data imputation from DNA methylation data.

When the missing data happens at random positions in
single-omics data, the missing data can be imputed by tradi-
tional methods, such as singular value decomposition impu-
tation (SVD) and k-nearest neighbor (KNN) [2]. However, these
methods do not perform well when the entire set of RNA se-
quencing (RNA-seq) data is missing. To address this issue, Voil-
let et al. developed a multiple hot-deck imputation approach to
impute missing rows in a multi-omics dataset for multiple fac-
tor analysis [3]. Imbert et al. used multiple hot-deck imputations
to improve the reliability of gene network inference [4]. In these
2 methods, they measured the similarities to cases in a stan-
dard database and fixed the missing values according to the case
with the highest similarity. Because it is easy for the most sim-
ilar case to be affected by random fluctuations in its neighbors,
Dong et al. developed the trans-omics block missing data im-
putation (TOBMI) method by using a KNN-weighted method to
impute messenger RNA–missing samples, where the similarity
was measured by similarities in DNA methylation data [5]. Ob-
viously, these methods depend strongly on the available neigh-
bors and are of limited accuracy owing to the relatively small
sample sizes of specific cancer datasets. More importantly, they
cannot capture information from other related cancer datasets.
Recently, least absolute shrinkage and selection operator (Lasso)
penalized regression was used to predict gene expression using
genetic variants [6] and DNA methylation [7], respectively. How-
ever, these linear methods are still limited in their ability to cap-
ture the non-linear relations between genomic variables.

In recent years, the deep neural network technique has
demonstrated its superiority for modeling complex nonlinear
relationships and enjoys scalability and flexibility. For gene ex-
pression imputation or prediction, many deep learning models
have also been proposed. Chen et al. built a multilayer feedfor-
ward neural network to predict the expression of target genes
from the expression of ∼1,000 landmark genes [8]. With the abil-

ity to recover partially corrupted input data, denoising autoen-
coder (DAE) was used to impute missing values in single-cell
RNA-seq data [9–11]. Xie et al. constructed a similar deep model
to infer gene expression from genotypes of genetic variants [12].
On the basis of a convolutional neural network (CNN), Zeng et al.
used promoter sequences and enhancer-promoter correlations
to predict gene expression [13]. One obstacle for using these
deep learning models with multi-omics datasets is the high di-
mensionality (>20,000 features) in omics data despite a small
sample size (<1,000). Even TCGA has only hundreds of samples
for each cancer type. Thus, it is hard to train an accurate model
with millions of parameters in deep learning architecture.

In such scenarios, transfer learning is usually considered as a
promising method, in which parameters trained for a task with
a large amount of data are reused as the initialization param-
eters for a similar task with limited data [14]. In the computer
vision community, a common strategy is to pretrain the CNN
with ImageNet [15] and then fine-tune its last few layers or all
layers (depending on the size of the target dataset) for the tar-
get tasks. This pretraining approach has achieved state-of-the-
art results on many tasks including object detection [16], image
segmentation [17], image classification [18], and action recog-
nition [19]. Yosinski et al. pointed out the relationship between
network structure and the transferability of features [20]. They
showed that the deep features transition from general to spe-
cific along the network, and transferring higher layers results in
a significant drop in performance because the features are more
specific to source datasets.

For the omics data analysis of cancers, the transfer learning
strategy has been applied to different tasks. Li et al. built a pan-
cancer Cox model for the prediction of survival time, where 8
cancer types were combined to assist the training of a target can-
cer dataset [14]. Yousefi et al. used samples from uterine corpus
endometrial carcinoma and ovarian serous carcinoma to aug-
ment the target breast cancer dataset to improve the prediction
of clinical outcomes [21]. Hajiramezanali et al. used information
from head and neck squamous cell carcinoma to subtype lung
cancer [22]. Based on the assumption that different types of can-
cer may share common mechanisms [23, 24], transfer learning
is becoming a useful approach for the prediction of missing data
by learning from the data of different cancer types.

In the present study, we propose a new method to use a trans-
fer learning–based neural network for imputing gene expression
from DNA methylation data, namely, TDimpute. Specifically, we
first train a neural network based on the pan-cancer dataset
to build a general imputation model for all cancers, which is
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then transferred to target cancer types (Fig. 1). To the best of
our knowledge, this is the first study to use transfer learning for
the imputation of gene expression from DNA methylation. The
method was shown to be superior to other methods to recover
gene expressions for 16 cancer types (see Table 1) in TCGA at 5
different missing rates. Our imputed gene expressions were fur-
ther proven useful with the identification of methylation-driving
genes, prognosis-related genes, clustering analysis, and survival
analysis through the validations on the TCGA dataset and inde-
pendent test of the Wilms tumor dataset from the Therapeuti-
cally Applicable Research to Generate Effective Treatments (TAR-
GET) project.

Data Description
Datasets and preprocessing

TCGA
We obtained the data of 33 cancer types from TCGA using the R
package TCGA-assembler [25], including RNA-seq gene expres-
sion data (UNC IlluminaHiSeq RNASeqV2 RSEM), DNA methyla-
tion data (JHU-USC HumanMethylation450), and clinical infor-
mation with follow-up and tumor–node–metastasis (TNM) can-
cer stages [26]. Originally, 20,531 genes and 485,577 methylation
sites were collected. After the exclusion of genes with zero val-
ues in the RNA-seq data across all samples, 19,027 genes re-
mained. The gene expressions were converted by log2(G + 1),
where G is the raw gene expression value. For DNA methyla-
tion data, we excluded methylation sites with “NA” values, and
269,023 methylation sites remained. By further removing sites
with small variances (<0.05) over all samples, 27,717 CpG sites
were kept. Here, for evaluating all imputation methods we kept
only samples having both RNA-seq and DNA methylation data.
Finally, the dataset contains 8,856 samples with expression data
for genes and methylation values of 33 cancers, namely, TCGA
dataset. To keep enough sample size for downstream analyses,
we selected cancer types containing >200 samples with com-
plete DNA methylation, gene expression, and clinical data, lead-
ing to 16 cancer types for the test (see Table 1).

TARGET
Apart from TCGA, we compiled another dataset developed from
the TARGET project. We chose the Wilms tumor (the most com-
mon type of childhood kidney cancer) that has the smallest sam-
ple size. Here, the DNA methylation data were downloaded from
the TARGET Data Matrix [27], and their corresponding RNA-seq
data (RSEM estimated read counts) were downloaded from the
UCSC Xena [28]. The data were normalized into the same distri-
bution as TCGA by means of quantile normalization [29]. Finally,
we obtained 118 samples with complete gene expression data,
methylation data, and clinical data, which were randomly split
into training and test datasets with a proportion of 1:1.

Analyses
Comparisons on the imputation accuracy

The imputation methods were evaluated by the mean values of
the root mean square error (RMSE), mean absolute error (MAE),
and the squared Pearson correlation coefficient (R2) across 16
cancer datasets. After selecting one portion (i.e., 1.0 minus the
missing rate) of samples for constructing/fine-tuning the mod-
els, the models were then applied to the remained samples. As
shown in Fig. 2A (Fig S2 for each dataset), Lasso [7] achieved
similar but consistently lower RMSE than TOBMI [5], which in-

dicated that penalized regression was better able to predict the
regulation between methylation and gene expression. The SVD
method [2] performed worse, demonstrating a slow increase
of RMSE from 1.06 to 1.10 as the missing rates changed from
10% to 70%, but then a sharp increase to 1.24 that was even
higher than the result by the Mean method. Overall, the Mean
method had the worst performance, which coincided with the
trend in the previous study [5]. By comparison, TDimpute-self
(indicates TDimpute trained and predicted on the target can-
cer dataset) without using transfer learning yielded 2–9% lower
RMSE than Lasso from the highest (90%) to lowest missing rate
(10%). The small improvement at the highest missing rate is be-
cause the limited training data cannot provide enough infor-
mation for the model to learn the methylation-expression cor-
relations. This performance degradation at the highest miss-
ing rate is reduced by TDimpute, which yielded 7% lower RMSE
than Lasso, indicating the advantage of using transfer learn-
ing over the non-transfer method. TDimpute-noTF, as a gen-
eral model, was trained on the pan-cancer dataset (excluding
the target cancer). The model did not use information from the
target cancer and thus showed a constant performance. It did
not perform well but produced lower imputation RMSE than
the Mean method. The RMSE was even lower than that of SVD
and TOBMI when the missing rate was >70%. TDimpute, a fur-
ther transfer learning on the target cancer from TDimpute-noTF,
decreased the RMSE by 7–16% over TDimpute-noTF. These re-
sults confirmed the power of our TDimpute method in transfer-
ring knowledge from other cancer types to improve imputation
performance. We also noted that SVD, Lasso, and TOBMI had
close to constant RMSE values at missing rates from 10% and
70%, indicating that tripling the sample sizes did not contribute
much to increasing the imputation accuracies. By comparison,
the deep learning methods, TDimpute and TDimpute-self, de-
creased the RMSE by 5% and 7%, respectively, indicating the po-
tential for further improvement with an increase of sample sizes
in the future.

Because RMSE is sensitive to outliers, we also evaluated the
imputation performance with MAE, which is less affected by
anomalous outliers. As shown in Fig S1, TDimpute consistently
performed the best at all missing rates, with MAE of 0.616–0.685.
Slightly differently, TOBMI’s performance became similar to that
of Lasso, with lower MAE at 10% while slightly higher MAE at
missing rates >50%.

When measured by the squared correlation (R2) between the
imputed and actual values by each sample (Fig. 2B, Fig. S3 for
each dataset), approximatively the same trends could be ob-
served for all methods. Differently, SVD ranked third except at
a missing rate of 90%, where SVD had the lowest R2 of 0.909.
The imputations by the mean gene expressions kept the lowest
performance. Hereafter, we focus on the comparison with SVD,
Lasso, and TOBMI methods.

Effects on the methylation-expression correlations and
the identification of methylation-driving genes

For a multi-omics dataset, a proper imputation method should
preserve the correlation structures between different types of
omics. Because the most correlated CpG-gene pairs play the
most important roles, we only compared the effect of imputa-
tion methods by the mean R2 of the top 100 CpG-gene pairs from
full datasets. As shown in Fig. 3 (Fig. S4 for each dataset), all im-
putation methods caused decreases in the correlations, and dif-
ferences increase with the missing rates. In general, TDimpute
had the highest recovery power for the methylation-expression
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Table 1: TCGA cancer types and their sample sizes sorted by size, with the first 16 types used for test

Cancer Full name
Dataset

size

BRCA Breast adenocarcinoma 867
THCA Thyroid carcinoma 562
HNSC Head and neck squamous cell carcinoma 541
LGG Brain lower grade glioma 541
PRAD Prostate adenocarcinoma 532
LUAD Lung adenocarcinoma 477
SKCM Skin cutaneous melanoma 472
BLCA Bladder urothelial carcinoma 424
LIHC Liver hepatocellular carcinoma 416
LUSC Lung squamous cell carcinoma 378
STAD Stomach adenocarcinoma 371
KIRC Kidney renal clear cell carcinoma 342
CESC Cervical squamous cell carcinoma and

endocervical adenocarcinoma
308

COAD Colon carcinoma 297
KIRP Kidney renal papillary cell carcinoma 297
SARC Sarcoma 262
UCEC Uterine corpus endometrial carcinoma 172

Figure 2: Imputation accuracy of each imputation method. Results were averaged across 16 imputed cancer datasets. (A) RMSE values of each method. (B) The squared

Pearson correlation coefficient (R2) between each sample of the imputed data and the original full data. TDimpute-self indicates TDimpute trained and predicted on
the target cancer dataset. TDimpute-noTF indicates TDimpute trained on the pan-cancer dataset (excluding the target cancer) and predicted on the target cancer
dataset. The error bar shows the standard deviation.

correlation, with R2 values close to the actual correlation (R2

= 0.68). The performance is followed by TDimpute-self. At a
missing rate of 90%, TDimpute-self by using a single dataset
had a large decrease in R2 to the same level with Lasso. Al-
though TOBMI performed better than SVD according to RMSE,
TOBMI consistently had the lowest correlations, likely because
TOBMI imputes gene expressions simply by nearest neighbors
in DNA methylations, which obscures the complex methylation-
expression relations.

We further investigated whether the preservation of cor-
relations can obtain better performance in identifications of
methylation-driving genes. As presented in Table 2 and Table
S2.1, TDimpute consistently showed superiority in preserving
methylation-driving genes from original data with the highest
PR-AUC (area under precision-recall curve) and top 100 over-

Table 2: Mean PR-AUC over 16 cancers for recovering methylation-
driving genes according to the imputed relative to the actual gene
expression data

Missing
rate SVD TOBMI Lasso TDimpute-self TDimpute

10% 0.972 0.971 0.965 0.980 0.983
30% 0.867 0.867 0.842 0.908 0.927
50% 0.737 0.703 0.702 0.807 0.848
70% 0.587 0.521 0.565 0.678 0.749
90% 0.391 0.308 0.390 0.397 0.601

Mean performance across 16 imputed cancer datasets is reported. TDimpute had
the best results in all comparisons. All differences were statistically significant
(paired t-test, P-value < 0.05) between TDimpute and other methods.
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Figure 3: The mean correlations (R2) of the top 100 CpG-gene pairs over 16 can-
cer datasets by 5 imputed methods. Dashed black line indicates the correlations

from the actual dataset. Error bars show the standard error of the mean.

Table 3: The mean PR-AUC for recovering prognosis-related genes
according to the imputed relative to the actual gene expression data.

Missing
rate SVD TOBMI Lasso TDimpute-self TDimpute

10% 5.53∗ 5.83 5.55 5.71 5.91
30% 3.46∗ 4.08 3.71∗ 4.22 4.25
50% 2.08∗ 2.74 2.42∗ 2.94 3.06
70% 1.14∗ 1.60∗ 1.33∗ 1.87 2.03
90% 0.56∗ 0.47∗ 0.49∗ 0.89∗ 1.14

∗Statistical significance (paired t-test, P-value < 0.05) between TDimpute and
other methods. TDimpute had the best results in all comparisons.

laps, respectively. TDimpute-self ranked second in selecting
methylation-driving genes, followed by SVD, Lasso, and TOBMI.
Compared with TDimpute-self, TDimpute achieved 0.3–34% and
1–49% improvements for PR-AUC and overlap ration, respec-
tively. The improvement was especially pronounced at high
rates of missing data. These results confirm the consistency
between correlation preservation and methylation-driving gene
identification.

The PR-AUC and overlap of top 100 methylation-driving
genes per cancer dataset are detailed in Tables S1 and S2.2, re-
spectively.

Effects on the identification of prognosis-related genes

We investigated the recovery power of different imputation
methods on the identification of significantly prognosis-related
genes. To evaluate the selected genes, we compared the PR-AUC
and the overlaps between the top 100 genes identified from the
imputed and the actual data in Table 3 and Table S4.1, respec-
tively. We found that TDimpute consistently achieved the best
performance in all missing rates, with 2–28% higher PR-AUC val-
ues and 4–54% greater number of overlapped genes than those
by the TOBMI method. Lasso achieved lower values than TOBMI,
except at a missing rate of 90%, where Lasso slightly overtook
TOBMI. The high agreements and overlap ratios indicate that the
imputed gene expressions by TDimpute are more relevant to the
clinical outcome.

Table 4: The average enrichment factors of top 100 prognosis-related
genes overlapped with the genes collected in the Human Protein At-
las.

Missing
rate SVD TOBMI Lasso TDimpute-self TDimpute

10% 0.901 0.912 0.912 0.923 0.927
30% 0.711 0.747 0.742 0.768 0.784
50% 0.561 0.595 0.590 0.627 0.652
70% 0.428 0.454 0.449 0.487 0.523
90% 0.286 0.287 0.292 0.311 0.376

All differences were statistically significant (paired t-test, P-value < 0.05) be-
tween TDimpute and other methods. TDimpute had the best results in all com-

parisons.

The top 100 genes (ranked by P-values) were additionally
compared with the prognosis-related gene list downloaded from
The Human Protein Atlas (THPA) [30] by the enrichment rel-
ative to random selections. As reported in Table 4, TDimpute
achieved the largest enrichment factors (see Methods section for
definition), indicating its ability to identify the really validated
prognosis-related genes. At missing rates <70%, TOBMI consis-
tently outperformed Lasso and SVD performed the worst. At the
missing rate of 90%, all methods except TDimpute performed
worse than random selection with enrichment factors <1.0.

The PR-AUC, overlap of top 100 prognostic genes, and the en-
richment factors per cancer dataset are detailed in Tables S3,
S4.2, and S5, respectively.

Effects on the performance of clustering analysis and
survival analysis

We also evaluated the effects of different imputation methods
on clustering analysis and survival analysis. By input of the top
100 prognosis-related genes, the K-means algorithm was used
to divide the samples into 2 clusters. Fig. 4A (Fig. S5 for each
dataset) shows the adjusted Rand index (ARI) for evaluating
the concordance between clusters from the imputed and actual
gene expression. For all methods, accuracy decreased with the
increase of the missing rate, agreeing with the previous study
[10]. As expected, TDimpute achieved the highest clustering con-
cordance among the 5 imputation methods consistently under
different missing rates.

A further survival analysis (Fig. 4B, Fig. S6 for each dataset)
shows that TDimpute consistently outperformed the compet-
ing methods. Interestingly, the C-index was not as sensitive to
the missing rates. Even at a missing rate of 90%, imputed data
caused a decrease of 2–9% in C-index, much smaller than the
decreases of 59–68% in PR-AUC for recovering prognosis-related
genes and 45–74% in ARI for clustering analysis. This is likely be-
cause the Cox models were trained with contributions from mul-
tiple gene features, and thus bad imputations could be avoided.
Similar results were also found in previous studies [31, 32]. For
reference, the C-index was 0.669 according to TNM typing [26]
assigned by clinicians on the basis of tumor phenotypes, indi-
cating the necessity of combining genotype and phenotype for
survival analyses in the future.

Validation on the UCEC from TCGA dataset

As a real data application, we performed survival analysis on
the uterine corpus endometrial carcinoma (UCEC) dataset be-
cause it has the largest proportion of missing gene expression



6 Imputing missing RNA-sequencing data from DNA methylation

Figure 4: (A) Mean adjusted Rand index (ARI) of the clusters from the imputed and actual data, and (B) mean C-index by survival analyses based on imputed data over
16 cancers. Error bars show the standard error of the mean.

in TCGA (172 samples with RNA-seq and 267 without). By using
the imputed samples, TDimpute achieved the highest C-index
of 0.588, compared with TDimpute-self, SVD, TOBMI, and Lasso
with C-index of 0.575, 0.55, 0.553, and 0.508, respectively. Fig. S7
shows the survival curves of 2 groups separated by K-means.
The 2 groups for TDimpute show a significant difference (P =
1.7e−04) in the survival curves according to the log-rank test. By
comparison, the P-values were 1.1e−03, 1.9e−03, 9.5e−03, and
1.2e−03 for TDimpute-self, Lasso, TOBMI, and SVD, respectively.

Independent test on the TARGET dataset

As an independent test beyond TCGA, we selected the small-
est Wilms tumor dataset from the TARGET project. By fine-
tuning the TCGA pan-cancer model with 59 randomly selected
samples (50% of the dataset), the model was tested on the re-
maining samples. As expected, TDimpute achieved the lowest
RMSE of 0.955 (TDimpute-self: 0.98; SVD: 1.064; Lasso: 1.006;
TOBMI: 1.018). This demonstrates the generalization of the
TCGA-pretrained model on an independent dataset. The K-
means method is used to cluster the 118 samples after imputa-
tion, and the 2 resulting clusters were used to plot the survival
curves. For the Kaplan-Meier survival curves in Fig. 5, TDim-
pute achieved the best prognostic stratification with P-value
of 7.81e−08, compared with 4.53e−07, 8.64e−06, 3.80e−03, and
2.99e−02 for TDimpute-self, TOBMI, Lasso, and SVD, respec-
tively. TDimpute achieved the highest C-index of 0.592, com-
pared with 0.591, 0.523, 0.558, and 0.501 for TDimpute-self, SVD,
TOBMI, and Lasso, respectively.

Discussion

In this study, we used TDimpute to perform missing gene ex-
pression imputation by building a highly nonlinear mapping
from DNA methylation to gene expression data. Owing to the
limited size of cancer datasets in TCGA, we used transfer learn-
ing to capture the commonalties in the pan-cancer dataset for
pretraining parameters. We compared TDimpute with and with-
out transfer learning, Lasso, SVD, and TOBMI methods by RMSE,
MAE, and correlation R2, and methylation-expression correla-

tions. Because the main task of imputations is to recover biolog-
ically meaningful gene expression data for downstream analy-
sis, we also evaluated the effect of imputations on the identi-
fication of methylation-driving genes, prognosis-related genes,
clustering analysis, and survival prognosis. It is worth noting
that although only methylation and gene expression data are
illustrated in this study, our framework is capable of incorporat-
ing other omics data.

Experimental results on 16 cancer datasets confirmed that
our TDimpute method without transfer learning already outper-
formed the Lasso, SVD, and TOBMI methods in different eval-
uation metrics. By including transfer learning, the TDimpute
method can further improve its performance especially at high
rates of missing data. In addition, the ranking of the Lasso, SVD,
and TOBMI methods on imputation accuracy (RMSE, MAE, and
correlation R2) does not strictly agree with their performance in
preservation of methylation-expression correlations, clustering
analysis, and survival prognosis, but our TDimpute method con-
sistently performed the best in both imputation accuracy and
downstream analyses.

Besides the good performance in imputation accuracy and
downstream analyses, another main advantage of our proposed
method is its computational efficiency and convenience. Based
on GPU acceleration, our TDimpute method is capable of pro-
cessing a large-scale pan-cancer dataset including tens of thou-
sands of samples and hundreds of thousands of features, while
Lasso, TOBMI, and SVD are hindered by poor scalability due to
the computational complexity of distance matrix computations
and SVD operations. Based on the pretrained model, a transfer
learning framework can also accelerate the training process on
the target dataset.

In previous study of genome-wide association analysis with-
out directly measured gene expression [6, 33], gene expressions
could be imputed from genomic data to perform transcriptome-
wide association analysis that can reduce the multiple-testing
burden and identify associated genes. Recently, many studies
have been proposed to impute gene expressions from genomic
data, or even from pathology images [34]. In the future, the
predicted gene expression from other omics data, such as ge-
nomics, pathology, or/and radiomics, can also be integrated in
epigenome-wide association studies [35].
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Figure 5: Kaplan-Meier plot for the 2 clusters obtained from the Wilms tumor dataset imputed by TDimpute and TOBMI, respectively. Censored data are marked with
a small vertical bar in the graph.

Future work can focus on reducing the amount of model
parameters and integrating more related training samples. Be-
cause we only used the correlations between omics for impu-
tations, one possible direction is to leverage prior knowledge
of the gene-gene interaction network. The known relationships
between variables/genes have a demonstrated ability to signif-
icantly reduce model parameters by enforcing sparsity on the
connections of a neural network [36]. The performance of this
approach is dependent on the quality of the gene-gene net-
works, and more investigation needs to be done in this direction.

In the preprocessing step, we removed sites with low-
variance DNA methylation over all samples, which might re-
move some sites that are useful for specific cancer types. To
test whether the cancer-specific CpG sites from the pan-cancer
dataset are necessary for gene expression prediction, we up-
dated the neural networks by taking the top 20,000 variable CpG
sites specific to each cancer as auxiliary input (Fig. S8). Fig. S9
shows that the improvement is relatively limited with only 0.4–
1.4% decrease of RMSE, compared to the network without in-
cluding the cancer-specific sites. These results indicate that the
CpG sites with high variances (>0.05) over all samples are ade-
quate for predicting gene expression across different cancers.

Methods
Network architecture and model training

Neural network architecture
As shown in Fig. 1, TDimpute is a 3-layer neural network with
sizes of [27717, 4000, 19027]. The nodes between layers are fully
connected and the sigmoid activation function is adopted. The
loss function for training is the RMSE, which minimizes the dif-
ference between the experimentally measured and predicted
gene expression value:

RMSE
(
y, y0) =

√
1
N

∑N

i=1

(
yi − y0

i

)2
, (1)

where y0
i and yi are the experimentally measured and predicted

expression value for gene i, and N is the dimension of the output
vector (i.e., the number of genes). The network can be consid-

ered as a highly nonlinear regression function that maps DNA
methylation data (input) to gene expression data (output).

The network was trained using Adam optimizer with default
parameters (learning rate set as 0.0001) [37]. The method was
implemented with TensorFlow [38]. All the codes and pretrained
pan-cancer models are available on Github [39].

Transfer learning setting
To train the prediction model for 1 target cancer in TCGA, the
datasets of other cancer types were combined to generate a
multi-cancer model that was then fine-tuned by the target can-
cer data (Fig. 1). The data of the target cancer were excluded to
train the multi-cancer model as we needed to remove different
portions of the data for the target cancer to evaluate our im-
putation model. During the fine-tuning process, we reused the
network architecture and all the initialization parameters from
the pretrained model. Here, we did not freeze any layer because
this demonstrated better performance.

Hyper-parameter tuning
For our neural network, we selected the BRCA dataset to op-
timize all hyper-parameters by RMSE through 5-fold cross-
validation. Here, we optimized the hyper-parameters based
on the BRCA dataset and then applied the optimal hyper-
parameters to all cancer types. Based on the pan-caner dataset
(excluding the BRCA dataset), we first optimized the pretrained
model to determine the architecture of the neural network, i.e.,
the number of hidden layers, the hidden layer size, and the
epochs to stop training. Details on the performance analysis for
each hyper-parameter are provided in Table S6 and Fig. S10 in
the supplementary material. For the fine-tuning process on the
BRCA dataset, the only hyper-parameter we need to choose is
the training epoch because the network architecture was de-
termined by the pretrained model. Fig. S11 shows the conver-
gence process of different levels of missingness on the valida-
tion dataset of BRCA.

Finally, we selected the following hyper-parameters for the
pan-cancer model: 1 hidden layer (selected from 1 and 3) includ-
ing 4,000 nodes (from 500, 1,000, 2,000, 4,000, and 5,000), Sigmoid
activation function (from Tanh, Relu, and Sigmoid), epochs of
300 (from 50, 100, 150, 300, and 500), and batch size of 128. For
the fine-tuning stage, 150 epochs (from 50, 100, 150, 300, and 500)
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were used and the batch size was set as 16 because of small
sample sizes under large missing rates. Dropout was not used
because it decreased the performance [40].

Training and testing datasets

In the transfer learning for each target cancer type of TCGA,
32 cancer types in the TCGA dataset (except the target cancer
type) were used as the source domain dataset for pretraining a
model. During the test, to simulate the performance under dif-
ferent missing rates, we used 5 fractions (10%, 30%, 50%, 70%,
90%). At each missing rate, we used the sample function (with-
out replacement) in Pandas [41] to get 1 fraction (i.e., 1.0 minus
the missing rate) of the target cancer samples as training set and
the remaining samples as testing set with gene expression re-
moved. On the training set, we fine-tuned the models that were
then tested on the testing set to predict the gene expression.
The predicted values were then compared with the actual val-
ues to evaluate the model performance. To remove random fluc-
tuations, we used a bootstrapping strategy to repeat this process
for 5 times and reported the mean performance.

Performance comparison

We compared our method with other imputation methods, in-
cluding Lasso [7], TOBMI [5], and SVD methods [2]. The default
or suggested parameters were used for these methods. We also
evaluated the performance by using the mean expression of
each gene for reference.

Preservation of methylation-expression correlations
and methylation-driving genes

Here, we used the squared Pearson correlation coefficient R2

to evaluate the effect of imputation methods on the corre-
lations between DNA methylation and gene expression. For
each gene, we only considered the CpG site with the strongest
correlation. Based on the methylation-expression regulation,
many studies have been conducted to identify cancer-related
DNA methylation-driving (hyper- and hypomethylated) genes
[42]. Hence, we also evaluated the effects of imputation meth-
ods on the identification of methylation-driving genes. The
methylation-driving genes (i.e., significantly correlated CpG-
gene pairs) were defined with the R2 ≥ 0.5 and FDR − q ≤ 0.05.
According to the correlated pairs from the original gene expres-
sion data, we can compute the area under precision-recall curve
(PR-AUC). We also computed the overlap between the top 100
ranked genes identified from the imputed datasets and original
full datasets.

Preservation of prognosis-related genes

A common task in the analysis of gene expression data is the
identification of prognostic genes. To evaluate the effect of dif-
ferent imputation methods on the identification of potentially
prognosis-related genes, we built univariate Cox proportional
hazard regression models to select statistically significant genes
correlated with overall survival. With the Cox model, each gene
is assigned a P-value describing the significance of the relation
between the gene and the target cancer, and genes with P-values
≤ 0.05 were defined as prognosis-related genes. Similar to the
evaluations by the methylation-driving genes, PR-AUC and over-
lapped top 100 genes were used to evaluate all imputation meth-
ods.

In addition, we compared our identified genes with the list of
prognosis-related genes from THPA [30] through the enrichment
fraction:

EF = (NTrue/Nselected) / (NActive/NTotal) , (2)

where NTrue is the number of genes appearing in both THPA
and our top Nselected ranked genes, and NActive and NTotal are the
number of prognosis-related genes and total number of genes in
THPA, respectively.

Effects on clustering analysis and survival analysis

We evaluated the relations of genes to cancer survival by P-value
output from the univariate Cox models. By using the top 100
genes, their expression values were used to divide samples into
2 clusters by the K-means method. Clustering performance was
assessed by means of the ARI, a measure of agreement between
the predicted clustering labels (by imputed datasets) and the ac-
tual clustering labels (by original datasets). We further made sur-
vival predictions with significantly related genes (P ≤ 0.05) by
using the ridge regression regularized Cox model implemented
through the glmnet package [43] in R, a model suitable for fit-
ting regression models with high-dimensional data. The per-
formance of the Cox model was assessed by the Harrell con-
cordance index (C-index), which measures the concordance be-
tween predicted survival risks and actual survival times.

Availability of Source Code and Requirements

Project name: Transfer learning for imputing missing RNA-seq
data from DNA methylation
Project home page: https://github.com/sysu-yanglab/TDimpute
Operating system(s): Platform independent
Programming language: Python
License: MIT
biotoolsID: TDimpute
RRID:SCR 018306

Availability of Supporting Data and Materials

The datasets and pretrained pan-cancer models supporting the
results of this article are available in the Synapse with ID:
syn21438134 [44]. Snapshots of our code and data further sup-
porting this work are openly available in the GigaScience reposi-
tory, GigaDB [45].

Additional Files

Figure S1. Mean absolute error of each imputation method.
Results were averaged across 16 imputed cancer datasets.
TDimpute-self indicates the TDimpute trained and predicted on
the target cancer dataset. TDimpute-noTF indicates the TDim-
pute trained on the pan-cancer dataset (excluding the target
cancer) and predicted on the target cancer dataset. The error
bars show the standard deviation.
Figure S2. RMSE on 16 imputed cancer datasets with different
missing rates. The results were averaged over 5 random repli-
cates. The error bars show the standard deviation.
Figure S3. The squared Pearson correlation coefficients R2 be-
tween each sample of the imputed data and the original full data
on 16 imputed cancer datasets with different missing rates. The

https://github.com/sysu-yanglab/TDimpute
https://scicrunch.org/resolver/RRID:SCR_018306
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results were averaged over 5 random replicates. The error bars
show the standard deviation.
Figure S4. The squared Pearson correlation coefficients R2 be-
tween gene expression and methylation sites on 16 imputed
cancer datasets with different missing rates. The results were
averaged over 5 random replicates. Dashed black line is drawn
as a reference indicating the correlations from the original full
dataset. The error bars show the standard error of the mean.
Figure S5. ARI on 16 imputed cancer datasets with different
missing rates. The results were averaged over 5 random repli-
cates. The error bars show the standard error of the mean.
Figure S6. C-index on 16 imputed cancer datasets with different
missing rates. The results were averaged over 5 random repli-
cates. The error bars show the standard error of the mean.
Figure S7. Kaplan-Meier plot for the 2 clusters obtained from the
UCEC dataset imputed by TDimpute and SVD, respectively.
Figure S8. The architecture of transfer learning–based neural
network (TDimpute) with cancer-specific CpG sites as auxiliary
input. The input at the fine-tuning stage consists of 2 parts: the
cancer-specific part takes the highly variable CpG sites from the
target cancer as input, and the transfer part takes the commonly
variable CpG sites from the pan-cancer dataset as input.
Figure S9. RMSE values of each imputation method with top
20,000 CpG sites as input. For SVD, TOBMI, Lasso, and TDimpute-
self, the top 20,000 variable cancer-specific CpG sites are used as
input, while the input of TDimpute includes both the pan-cancer
and cancer-specific CpG sites. Results were averaged across 16
imputed cancer datasets. The error bars show the standard de-
viation.
Figure S10. Loss curves for different hidden layer shape.
Figure S11. The loss curves of different missing rates on the val-
idation dataset of BRCA.
Table S1. PR-AUC for detecting methylation-driving genes on
imputed cancer datasets over 16 cancer types.
Table S2.1. Overlap of top 100 methylation-driving genes from
imputed dataset and full dataset.
Table S2.2. Overlap of top 100 methylation-driving genes be-
tween imputed dataset and full dataset over 16 cancer types.
Table S3. PR-AUC for detecting significantly prognostic gene on
imputed datasets over 16 cancer types.
Table S4.1. Overlap of top 100 significantly prognostic genes
identified by univariate Cox model between imputed datasets
and full datasets.
Table S4.2. Overlap of top 100 prognostic genes identified by
univariate Cox model between imputed dataset and full dataset
over 16 cancer types.
Table S5. The enrichment factors of the top 100 ranked genes
in the gene list from The Human Protein Atlas across 16 cancer
types.
Table S6. Hyper-parameter analysis for hidden layer shape, the
number of hidden layers, and training epochs on pan-cancer
dataset (excluding BRCA dataset).
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