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Sustainable production of target compounds such as biofuels and high-value chemicals

for pharmaceutical, agrochemical, and chemical industries is becoming an increasing

priority given their current dependency upon diminishing petrochemical resources.

Designing these strains is difficult, with current methods focusing primarily on

knocking-out genes, dismissing other vital steps of strain design including the

overexpression and dampening of genes. The design predictions from current methods

also do not translate well-into successful strains in the laboratory. Here, we introduce

RobOKoD (Robust, Overexpression, Knockout and Dampening), a method for predicting

strain designs for overproduction of targets. The method uses flux variability analysis

to profile each reaction within the system under differing production percentages of

target-compound and biomass. Using these profiles, reactions are identified as potential

knockout, overexpression, or dampening targets. The identified reactions are ranked

according to their suitability, providing flexibility in strain design for users. The software

was tested by designing a butanol-producing Escherichia coli strain, and was compared

against the popular OptKnock and RobustKnock methods. RobOKoD shows favorable

design predictions, when predictions from these methods are compared to a successful

butanol-producing experimentally-validated strain. Overall RobOKoD provides users with

rankings of predicted beneficial genetic interventions with which to support optimized

strain design.

Keywords: synthetic biology, systems biology, metabolic engineering, strain design, constraint-based modeling

Introduction

The sustainable production of target compounds such as biofuels and high-value chemicals
for pharmaceutical, agrochemical, and chemical industries is becoming an increasing prior-
ity given their current dependency upon diminishing petrochemical resources. The challenge
of producing such compounds from microbial cells straddles both systems and synthetic
biology. The development of microbial cell factories first requires a comprehensive under-
standing of host cell metabolic functions through metabolic model construction, and subse-
quent in silico experimentation, using systems biology methods. This in silico experimentation
can suggest host cell manipulations that can be applied in vitro using synthetic biology
techniques, leading to increased production of the target compound (Koide et al., 2009).
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Target producing microbial strains are typically designed
using combinations of gene manipulations. These manipulations
include gene additions (often recombinant genes from other
organisms) and removal of genes via knockouts. Furthermore,
over-expression or inhibition of host genes can either increase or
dampenmetabolic flux through the reactions that their expressed
proteins catalyze. Successful application of such strategies can be
used to overproduce host-native targets (Ng et al., 2012; Li et al.,
2014) or produce non-host-native targets (Atsumi et al., 2009;
Angermayr et al., 2014; Yuan et al., 2014). Identifying successful
gene manipulation combinations has traditionally relied on static
network inspection, and experimental trial and error to test the
strategies (Varman et al., 2011). This approach is not optimal as it
limits the amount of network information that can be used, dis-
counts metabolic complexity, and therefore prevents predictions
of less intuitive metabolic modifications (Kitano, 2002).

Through modeling approaches, strain predictions can be
improved by taking into account full metabolic complexity dur-
ing the design phase. Designed strains can also be screened in
silico before they are engineered and tested in the laboratory. The
process involves iterative application of the following steps: (i)
characterization of the host metabolic network; (ii) identification
of gene additions to bridge native metabolism to the target; (iii)
optimization of the modified metabolic network through gene
addition, deletion, overexpression or dampening; (iv) trialing
successful predictions in the laboratory. This process affords the
potential to develop successful strains more cost effectively, and
time efficiently. This work focuses on step (iii), which involves
elements of network characterization in order to identify suitable
optimization strategies.

To characterize the metabolic network, genome-scale mod-
els (GEMs) can be used in conjunction with constraint-based
techniques. GEMs are computer-analyzable, structured knowl-
edge bases of genes, proteins, and metabolites present within
a given organism (Thiele and Palsson, 2010). GEMs therefore
encode the complexity of host cell metabolism and are avail-
able for an increasingly large number of organisms (Büchel et al.,
2013). Constraint based techniques, including flux balance analy-
sis (FBA) and flux variability analysis (FVA), provide quantitative
predictions of cellular behavior such as metabolic flux patterns
and cellular growth rates. These are computed by applying con-
straints, which can be assigned from experimentally measured
nutrient uptake rates (Orth et al., 2010) and intracellular fluxes
(Sauer, 2006), or inferred through interpretation of gene expres-
sion data (Lee et al., 2012). These predictions provide insights
into the metabolic pathways active under different growth con-
ditions (Liao et al., 2011), gene essentiality (Joyce and Palsson,
2008; Dobson et al., 2010; Heavner et al., 2012), and as a result,
the fitness optimality of a given strain (Harcombe et al., 2013).
More detailed introductions to these techniques can be found in
Boxes 1, 2.

Optimization of microbial strains is complex, requiring a bal-
ance between target production and cell viability (Lo et al., 2013).
This makes the problem a multi-objective optimization problem,
whereby metabolic flux of cellular growth and target produc-
tion must be considered simultaneously. Successful optimization

strategies therefore include gene modifications (knockouts, over-
expression, dampening) which re-route flux toward the target
product whilst minimizing the effect on flux toward synthesis of
metabolites required for cellular maintenance.

Amongst the more prominent methods used for identify-
ing knockout targets are OptKnock (Burgard et al., 2003) and
RobustKnock (Tepper and Shlomi, 2010). OptKnock aims to
optimize the maximum flux toward the target product whilst
retaining cell viability, using up to five reactions knockouts to
generate the strain solution. The method does not take into con-
sideration flux variability, and therefore whilst there may be a
reasonable maximal flux yield toward to target product, it is pos-
sible that the minimal flux toward the target product could be
zero. RobustKnock was developed to improve on this shortcom-
ing, by optimizing the minimal flux toward the target product,
again by applying up to five reaction knockouts. Limitations of
these methods include the prediction of only a single gene knock-
out strategy, and also no consideration of over-expression or
dampening targets, which are key aspects of successful strain
design (Dellomonaco et al., 2011). A complementary method,
optGene (later updated to optFlux (Rocha et al., 2010)), can be
used for overexpression analysis. Flux Variability Analysis has
been used in a number of studies for identifying overexpression
targets (Choi et al., 2010; Park et al., 2012), as well as more com-
prehensive strategies (Pharkya and Maranas, 2006; Feist et al.,
2010), although these have not been extensively used. Elementary
modes have also been used to identify suitable knockout targets
(Ballerstein et al., 2012; von Kamp and Klamt, 2014).

To integrate the requirements of predicting both knockouts
and over-/under-expressions, we introduce RobOKoD (Robust
Overexpression, Knockout and Dampening). RobOKoD takes
into consideration metabolite centrality and flux variability in
order to comprehensively identify potential knockouts and gene
over-/under-expressions, ranked by significance, and follow the
schematic presented in Figure 1. This ranking is a strength, as it
allows for further, manual analysis of the system to be used for
strain design.

The performance of RobOKoD was tested against that of Opt-
Knock and RobustKnock in their ability to predict an engineering
strategy for production of butanol from Escherichia coli using the
reverse β-oxidation cycle. The predictions were validated against
a successful, experimentally-validated butanol producing strain
developed by Dellomonaco et al. (2011).

Materials and Methods

Escherichia coli model
The model used in this study is a derivation of a core metabolism
model derived from the iAF1260 reconstruction of E. coli
metabolism proposed by Feist et al. (2007). The core metabolism
model of 95 native reactions was modified to include the β-
oxidation pathway—a total of eight genes catalyzing 30 addi-
tional reactions—to produce the model iNS142 (see Table 1).
This model contains 142 genes, 125 reactions, and 93 metabolites
(Figure 2). The model is available in Supplementary Folder 1 in
SBML format (Hucka et al., 2003).
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BOX 1

Flux Balance Analysis (FBA) allows the computation of fluxes, and cellular growth, by using a set of constraints. FBA uses the stoichiometric matrix (S), which is a matrix

consisting of rows of metabolites (m), and columns of reactions (n). An example based on the toy network in Figure B1a can be seen in Table B1a. The matrix is

usually sparse and filled with positive (negative) coefficients for metabolites produced (consumed) by a reaction. Linear programming is used to compute feasible fluxes

(v) through the network ensuring that a steady state is satisfied (Equation i), subject to a set of constraints (Equation ii) and optimizing (Z) a specific function (Equation

iii, where c is a vector of weights, typically a vector of zeros with biomass production set to 1). The minimum solutions of Equation (i) are elementary modes, which are

minimal sets of enzymes that can operate at steady state, also known as minimal functional units (de Figueiredo et al., 2009). If Equation (i) cannot be satisfied, then

FBA cannot be computed on the system.

Sv = 0 (i)

lbi ≤ vi ≥ ubi, i = 1, . . . , n (ii)

Z = cTv (iii)

In the example network below (Figure B1a), c is given as an uptake rate of 10 units of metabolite a. In the center network Z = Target, and in the right-hand network

Z = Biomass. Reaction bounds are all assigned as lbi = 0, ubi = 1000. Meaning that each reaction through the network is irreversible. Computing FBA for Z = Target

we get 10 units of flux flowing through v2 and v3, producing v_Target = 10 units. For Z = Biomass we get 10 units of flux flowing through v3, v7, and v9, producing

v_Biomass = 10 units.

FIGURE B1a | Illustrating FBA for independent optimisation of target and biomass.

TABLE B1a | Stoichiometric matrix (S).

v1 v2 v3 v4 v5 v6 v7 v8 v9

a −1 0 0 0 0 0 0 0 0

b +1 −1 −1 −1 0 0 0 0 0

c 0 0 +1 0 0 0 −1 0 0

d 0 0 0 +1 0 −1 0 0 0

e 0 +1 0 0 −1 0 0 0 0

f 0 0 0 0 0 +1 0 −1 0

g 0 0 0 0 0 0 +1 +1 −1

bio. 0 0 0 0 0 0 0 0 +1

tar. 0 0 0 0 +1 0 0 0 0

RobOKoD
The RobOKoD method is based on the two following
assumptions:

(1) To achieve target production, carbon transfer within
the network has to be oriented toward pathways that
favor the target. Therefore, changes within the net-
work should aim to reduce carbon loss to peripheral
pathways.

(2) Flux variability of each reaction will differ depending on
whether the reaction is important for growth, generating
the desired product, both, or neither. Therefore, the func-
tionality of each reaction can be inferred by analyzing its
variability.

A simplified schematic of the method based on these two
assumptions can be seen in Figure 1 and additional details are
given in the next sections. First, a metabolite consumption test
(MCT) is applied which computes whether a given metabolite in
the target production pathway demonstrates flux loss to biomass
production. If flux loss is identified, all reactions that consume
that metabolite are flagged as potentially favored targets. Sec-
ond, flux variability analysis profiling (FVAp) is performed to
determine the flux variability of each reaction, at increments of
maximum biomass flux and then at increments of maximum tar-
get product flux. The profiles of each reaction are used to cal-
culate a score from which the importance of each reaction for
growth and target production can be estimated. Finally, MCT
and FVAp results are combined to rank potential modifications.
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BOX 2

Flux Variability Analysis (FVA). Box 1 showed an example of FBA, where a single set of fluxes was identified, which can maximize biomass production (Z). It can be seen

in the central network of Figure B2a, that this set of fluxes was just one of two possible solutions that could be selected to maximize Z—route A and route B. FVA allows

us to garner this additional information by identifying the minimum and maximum flux that each reaction can carry (Equation i). FVA can be implemented at the optimal

state whereby y = 1 (Equation ii), subject to flux constraints for each reaction (Equation iii) as demonstrated in the right-hand network in Figure B2a (Gudmundsson and

Thiele, 2010). Here the main information identified is which reactions are interchangeable. It is also common to compute FVA under suboptimal conditions (i.e., y = 0.95

as used in RobOKoD), which introduces a small amount of flexibility in the system and reduces the chances of optimal pathways being unrealistic when compared

in vivo.

vmax/vminvi (i)

γZ0 ≤ cTv (ii)

vlb ≤ v ≤ vub (iii)

FIGURE B2a | Illustrating implementation of FVA and how it can be used to identify alternative flux optima.

FIGURE 1 | Workflow of RobOKoD, illustrating the iterative application of the methods MCT and FVAp.

Modifications can consist of (i) gene deletions; (ii) changes of
environmental conditions; (iii) gene over-expressions; and (iv)
gene dampenings.

This strategy ensures that reactions that are vital for either
growth or target product production, or those that produce key
metabolites, are not selected as potential knockouts. Conversely,
reactions that (i) significantly divert carbon away from target

production; and (ii) consume a metabolite known to promote
flux loss from target production; are selected preferentially. Once
the first knockout is predicted, the model is modified to block
this reaction, and the same selection process is used to select the
second reaction to delete. This method can be applied iteratively
to predict a number of modifications that should enhance target
production whilst maintaining growth.
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TABLE 1 | Reactions and genes added to the core iAF1260 model to

implement the β-oxidation cycle.

Reaction Gene(s) EC

Thiolase fadA, fadI 2.3.1.16

Hydroxyacyl-CoA dehydrogenase fadB, fadJ 1.1.1.35

Enoyl-CoA hydratase fadB, fadJ 4.2.1.17

Enoyl-CoA reductase fadE 1.3.8.1

Alcohol/acetaldehyde dehydrogenase frmA, adhP, adhE 1.1.1.1

All code was developed in Matlab to maintain compatibility
with the COBRA Toolbox (Schellenberger et al., 2011), and is
available in Supplementary Folder 1.

Metabolite Consumption Test (MCT)
Metabolite Consumption Test (MCT) identifies metabolites
within the optimal target production pathway that are also con-
sumed to produce biomass. TheMCT score is given in a two-step
process. First flux change (Xm) per metabolite (m) is calculated,
then an MCT-value of 1 is given to all reactions that consume
metabolites, denoted by a negative Xm. Xm is calculated accord-
ing to Equation (1). For each metabolite that is featured in the
optimal target producing pathway, for the example network in
Figure 3, that would be metabolites a, b, e, all producing and
consuming reactions are identified. Then per identified reaction,
a unitary constant c is calculated which identifies the reaction
as a producer (+1) or consumer (−1) of the metabolite dur-
ing biomass production, thereby indicating whether there is a
potential flux loss or gain from that reaction. Each reaction is
then weighted (w) according to whether it is vital for both tar-
get and biomass (0); or potentially used (1), or not used (0) for
biomass production. v is the maximum flux through the reac-
tion during biomass production. All reactions that consume a
metabolite m with a negative Xm-value are flagged with a 1 in
the corresponding column (see MCT column in Table 2).

Xm =

n
∑

i= 1

c(i) · w(i) · v(i)
max (1)

FVA Reaction Profile (FVAp)
Prior to FVAp, FBA is applied to predict the maximal theoreti-
cal yield of both biomass (ybm) and target product (ytarget). FVAp
is then performed which computes the flux variability of each
reaction: (1) at different percentage (0–100%) of ybm whilst opti-
mizing target product; and (2) at different percentage (0–100%)
of ytarget , whilst optimizing biomass. By computing FVAp the
flux capacity of each reaction is profiled over a range of target
constraints. The key areas of interest are the extremes of target
production, and biomass production. It can be seen in Figure 5

that the first and last quartile of the x axis for all examples holds
the key information from which beneficial genetic interventions
can be inferred.

Knockout Scoring
Knockouts were selected by computing a knockout ranking score.
The ranking score is calculated for each reaction using FVAp
at different percentage (0–100%) of ybm whilst optimizing tar-
get product (red shaded area). Let us denote with (vmax)

target|p
and (vmin)

target|p the maximal and minimal flux, respectively of
reaction i obtained through FVAp when requiring a percentage
p of ybm to be produced while maximizing for product. Like-
wise let the maximal and minimal flux of reaction i obtained
through FVAp when requiring a percentage p of ytarget to be pro-

duced while maximizing for biomass be defined as (vmax)
biomass|p

and (vmin)
biomass|p, respectively. It must be noted that the per-

centage p refers to either biomass or target product production
requirement depending on the objective function.

A suitable knockout target displays the key characteristics
shown in Figure 5A, where the first quartile of x axis 0-25%
of ybm (red shaded area) carries a lower v(i)max|target , than 75-
100% of ybm, which shows that the reaction is required to carry a
higher flux to sustain optimal biomass production. This charac-
teristic is captured in Equation (2) (biomass reaction activation).
A reduced variability in the fourth quartile also demonstrates a
stronger constraint on the flux to produce ybm, this is captured in
Equation (3) (product variability area). The final knockout scor-
ing RiKOr for each reaction was computed according to Equation
(4), which takes into account the features of both the biomass
reaction activation and product variability area.

Biomass reaction activation:

100%
∑

p1 = 75%

(

v(i)
max

)target
|p1 −

25%
∑

p2=0%

(

v(i)
max

)target
|p2 (2)

Product variability area:

100%
∑

p= 75%

(

v(i)
max

)target
|p−

(

v
(i)
min

)target
|p (3)

RiKOr =
biomass reaction activation

product variability area
(4)

Reactions that obtain a high RiKOr , are identified as a putative tar-
get for knocking out providing it is not a lethal target for the cell.
Identified target reactions for knocking out are first ordered by
RiKOr , before secondary sorting by MCT flags. An example of this
sorting can be seen inTable 2 based on the toy network presented
in Figures 3, 4.

Over-Expression Ranking
The characteristics of a strong over-expression target can be seen
in the lower quartile of x axis in Figure 5B, where at 0-25%
of ybm (red shaded area) v(i)min|target has a higher flux capacity

than 75-100% of ytarget (blue shaded area), v(i)min|biomass (target
extra flux, see Equation 5). A lower variability is also desirable
for optimizing target subject to 0-25% of ybm (target variabil-
ity, Equation 6) as it ensures that the minimum flux the reaction
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FIGURE 2 | Graphical representation of the metabolic network of

Escherichia coli included in iNS142. Red squares represent

reactions, and green, blue, and orange circles represent extracellular

metabolites, intracellular metabolites involved in carbon transfers, and

intracellular metabolites not involved in carbon transfers, respectively.

Directed arcs show irreversible reactions, whereas undirected arcs

show reversible reactions. Water is not shown for clarity of the

layout.

can carry is close to optimum. The final ranking (RiOEx) is deter-
mined using Equation (7), where reactions with the highest RiOex
are the most likely over-expression targets. An example of a
weaker over-expression target (corresponding to a lower RiOEx) is
shown in Figure 5C, which illustrates an over-expression that will
increase flux to both target and biomass. Negative RiOEx represent

potential dampening targets (see Figure 5D), which display the
opposite characteristics.

Target extra flux:

25%
∑

p1 = 0%

(

v(i)max

)target
|p1 −

100%
∑

p2 = 75%

(

v(i)
max

)BM
|p2 (5)
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FIGURE 3 | Metabolite Consumption Test (MCT) identifies metabolites

that are in the optimal target production pathway. The test has two parts,

first a flux change (Xm) score is computed using Equation (1). Taking

metabolite b as an example: v1 produces b but is needed for both target and

biomass production so weight (w1) = 0; v2 consumes b but is needed for

producing the target so w2 = 0; v3 consumes b, so w3 = 1; v4 consumes b,

so w4 = 1. These values are multiplied by the absolute value of maximum flux

calculated using FVA (vimax), and by a constant (c) = ±1 according to whether

the reaction produces or consumes the metabolite. Where Xm < 0 MCT = 1,

where Xm ≥ 0 MCT = 0. Reactions identified as suitable knockout targets

using RobOKoD are sorted firstly by Ri
KOr

and secondly by their MCT flag.

This means that reactions with an equal Ri
KOr

can be differentiated by a

secondary sorting against whether they directly consume a metabolite that is

important for the target production (see Table 2).

TABLE 2 | Using the toy network presented in Figures 3, 4 we computed

the MCT score and Ri
KOr

of the intracellular reactions.

Flux MCT score Ri
KOr

v3 1 0.8523

v4 1 0.8523

v6 0 0.8523

v7 0 0.8523

v8 0 0.8523

v2 0 0

v3, v4, v6, v7, and v8 all have the same FVAp profiles and therefore Ri
KOr

scores. Of the

top ranking reactions within this network v3 and v4 consume a metabolite that is impor-

tant for target production. These reactions are then sorted as a higher priority within the

equally ranked reactions to select as a knockout target.

Target variability:

25%
∑

p= 0%

(

v(i)
max

)target
|p−

(

v
(i)
min

)target
|p (6)

RiOEx =
target extra flux

target variability
(7)

OptKnock and RobustKnock
The OptKnock algorithm (Burgard et al., 2003) is available in
the COBRA Toolbox for Matlab, and RobustKnock algorithm
is available as a Matlab script from the original paper (Tepper
and Shlomi, 2010). Both are repackaged in Supplementary File 1
allowing for reproduction of the following results.

Results

As a case study, RobOKoD was applied to design an E. coli strain
with a reverse β-oxidation cycle for butanol production. These
results can be recreated by unzipping the code in Supplementary
File 1, and running the test script iNS142_butanol.m in Matlab
[requires the COBRA Toolbox (Schellenberger et al., 2011), and
if RobustKnock is to be tested, the Tomlab solver (Tomlab Opti-
mization Inc., Västerås, Sweden)]. This test script runs RobOKoD
over a maximum of five iterations of knockout scoring, imple-
menting the highest scoring knockout, generating a results doc-
ument and reaction FVA profile plots for each iteration in the
directory iNS142_butanol_results, and outputting an updated
SBML model in which the knockouts have been implemented.
It subsequently runs over-expression ranking, again generating
output in the iNS142_butanol_results directory. OptKnock and
RobustKnock are then run in order to compare predictions from
each method. Knockout scoring, over-expression rankings, and
FVA profiles for all relevant reactions (such as those illustrated in
Figure 3) can then be inspected manually.

MCT allows the identification of reactions which consume
metabolites present in the optimal target production pathway
that demonstrate flux loss toward biomass. These reactions are
flagged in the listing of potential knockouts with a value of 1,
allowing these reactions to be identified preferentially, out a set
of reactions with the same knockout score. In this network, pyru-
vate was identified as a key metabolite where flux loss to biomass
production could occur, 11 reactions were then identified that
consume pyruvate.

FVA profiles representative of the different situations com-
monly encountered are shown in Figure 5. Knockout targets
(Figure 5A) are identified based on fixed biomass optimal tar-
get FVAp (red profile). As the percentage of fixed biomass
increases, the flux through the reaction increases to accommo-
date a higher biomass requirement, and the variability of the
flux narrows. Strong overexpression targets (Figure 5B) show the
opposite behavior of knockouts, whereby the flux through the
reaction reduces as the percentage of fixed target is reduced as
biomass is optimized (blue profile). Weak overexpression targets
(Figure 5C) show similar characteristics, but are not required

to carry a flux for the target to be optimized. Dampening tar-
gets (Figure 5D) are characterized by their ability to carry higher

flux through a reactions at low percentage of fixed target with
optimized biomass, than at both a high percent of fixed target
and optimized biomass, and a low percent of fixed biomass and

optimized target.
It is noted that some reactions obtain identical scores, hence

their deletion are predicted to have the same impact on the sys-
tem. This is for instance the case for two consecutive reactions of
an unbranched, linear pathway. More generally, this is observed
for the subsets of reactions that carry perfectly correlated fluxes
(Heiner, 2009; Feist et al., 2010). A feature of RobOKoD is
therefore its ability to identify such subsets of reactions. The cor-
responding knockouts are expected to result in a similar phe-
notype, hence the modification to perform for such subsets of
reactions should be evaluated in the light of technical consid-
erations. The most practical modifications should be selected,
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FIGURE 4 | FVA is performed to compute the flux variability of

each reaction: (1) at different percentage (0–100%) of ybm
whilst optimizing target product; and (2) at different percentage

(0–100%) of ytarget, whilst optimizing biomass. Each iteration

develops a profile of v
(i)
min and v

(i)
max across the range of flux space.

In this example an input flux of 10 units through v1 is fixed, and

the network optimized to situation 1 (top profile), or 2 (bottom

profile).

whilst the resulting strain should still be amongst the optimal
producers.

For comparison purpose, the well-established algorithms Opt-
Knock and RobustKnock were applied on the same model to
predict the optimal strain for butanol production. For each
method, the maximum number of modifications was fixed to
five, since constructing such a strain can still be managed
experimentally. The optimal producer strains predicted by each
method are listed in Table 3 and are compared to the most effi-
cient producer strain which has been experimentally validated
(Dellomonaco et al., 2011). OptKnock and RobustKnock pre-
dicted strains that were theoretically unable to produce butanol
during growth, and in the case of OptKnock, not viable for
growth.

Table 4 compares the functionality modifications of the pre-
dicted in silico cells, and the experimental strain. It appears
that RobOKoD automatically captures most of the functional
modifications experimentally carried out. In particular, it pre-
dicted that fermentation pathways (pfl, ldhA) should be knocked
out to avoid diversion of carbon and reduced cofactors toward
by-products of poor interest. Moreover, by highlighting the com-
peting interests of oxygen uptake pathway between the produc-
tion of biomass and butanol, RobOKoD was able to indicate
an anoxic condition change, similar to the experimental strain

which knocked-out fumarate reductase and was grown under
microaerobic conditions.

In addition to the knockout predictions, RobOKoD was also
able to predict over-expression and dampening targets. It pre-
dicted that enzymes catalyzing the reactions associated with the
reverse β-oxidation cycle should be over-expressed, consistent
with the experimental strain where the activity of transcriptional
inhibitors of this pathway are dampened (fadR, atoC(c), crp∗,
and 1arcA strains). Moreover, RobOKoD also predicts that a
number of transport reactions (or rather genes encoding the rel-
evant transport proteins) should be dampened, hence providing
additional modifications that could enhance butanol production.
These dampening predictions, less intuitive, were not carried
out in the experimental strain and have not been experimentally
verified.

Table 5 compares the molar production of butanol per mole
of glucose uptake, when the objective of the cell is to opti-
mize biomass. It shows that RobOKoD predicted the most suc-
cessful butanol strain design, with molar ratio values similar
to that achieved in the experimental strain. Neither OptKnock
or RobustKnock predicted successful strains, and in the case of
OptKnock, the strain was predicted to be no longer viable.

The strain predicted by RobOKoD was developed iteratively
by automatically knocking out the highest ranked suggested
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FIGURE 5 | Typical FVA profiles characteristic of knockout targets

(A), strong overexpression targets (B), weak overexpression

targets (C), and dampening targets (D). The red profiles show FVAp

of each reaction at different percentages of (0–100%) of ybm whilst

optimizing target product. The blue profiles show FVAp at different

percentages of (0–100%) of ytarget whilst optimizing biomass. Knockout

targets (A) are identified using (75–100%) of ybm (corresponding to the

fourth quartile of x axis) with target optimization: where v
(i)
max|target

increases as ybm increases, coupled with a reduced variability between

v(i)max|target and v(i)min|target. Strong overexpression targets (B) are

identified using (0–25%) of ybm optimizing target, and (75–100%) of

ytarget optimizing biomass (corresponding to the first quartile of x axis),

where v(i)max|target (red) has a higher flux carrying capacity than

v(i)max|biomass (blue), again with reduced variability between v(i)max|target

and v(i)min|target. Weak overexpression targets (C) show similar

characteristics, with a smaller difference between v(i)min|target and

v(i)min|biomass and a larger variability between v(i)min|target and

v(i)min|target. Profiles of dampening targets (D) are the reverse of

overexpression targets.

TABLE 3 | Gene modifications, based on the reactions predicted by the

three computational methods, and their comparison with those

successfully applied experimentally (Dellomonaco et al., 2011).

Method Gene modifications [1gene(reaction)]

OptKnock 1eutE (ACALD) 1nuoH(NADH16) 1amtB(NH4t) 1pflA(PFL)
1pitB(PIt2r)

RobustKnock 1lldP(D_LACt2) 1focA(FORti) 1pgi(PGI) 1satP(SUCCt2_2)
1sucD(SUCOAS)

RobOKoD Anoxic conditions(O2t), 1pflA(PFL), 1eutE (ACALD), 1dld(LDH_D),
fadA+, yqeF+

Experimental RB02(fadR atoC(c) crp* 1arcA 1adhE 1pta 1frdA)

1yqhD 1eutE yqeF+ fucO+

knockout target, that also was flagged by MCT as a potential
route for flux loss from the butanol production pathway. This
was to prevent selection bias for trialing its validity. It is strongly

TABLE 4 | Functional similarities captured in the gene manipulations

predicted by each method.

Gene Function OptKnock RobustKnock RobOKoD

1adhE Alcohol/acetaldehyde

dehydrogenase

X

1pta Phosphotransacetylase X

1frdA Fumarate reductase

(respiration)

X

1yqhD Alcohol dehydrogenase X

1eutE Acetaldehyde

dehydrogenase

X X

recommended to use the method more flexibly, looking at the
FVAp graphs that are produced for the reactions, knowledge of
the organism, and the scorings in order to decide on suitable
knockouts.
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TABLE 5 | Molar ratio of glucose:butanol produced in predicted strains.

Method Molar ratio (glucose:butanol)

OptKnock 1:0

RobustKnock 1:0

RobOKoD 1:0.9

Experimental 1:0.8

Discussion

These results illustrate two limitations of OptKnock and Robust-
Knock. First, the knockout predictions are deterministic, not
ranked, and a unique set of knockouts is predicted. As shown by
these results, different knockouts which may give similar pheno-
types cannot be identified by these algorithms. With RobOKoD,
a score is attributed to each modification, and one can readily
check whether some modifications are expected to result in sim-
ilar phenotypes and select those that can be more easily imple-
mented experimentally. Secondly, OptKnock and RobustKnock
are unable to predict over-expression or dampening strategies,
which are of prime interest to increasing or decreasing flux
down key pathways, respectively. However, it is argued that using
a range of available techniques may help to build up a more
comprehensive understanding of the system, and comparing the
results obtained by different methods (e.g., Burgard et al., 2003;
Choi et al., 2010; Tepper and Shlomi, 2010; Park et al., 2012)
would be the most valuable strategy for designing producing
strains.

It is also important to note that constraint-based modeling is
not appropriate in all instances for prediction of suitable strains
for target molecule production. FBA, a key method of assess-
ing the functionality of a given strain, has the flaw whereby side
reactions are not predicted to be carrying flux in silico as this
would reduce the optimal resources that are routed to growth. An
example being FBA run on yeast not producing ethanol under an
intuitively appealing set of constraints (Westerhoff et al., 2009).
This means that only solutions for target production pathways
which are heavily coupled with growth can be identified. This
is not an issue in most cases since a viable strain is desired
but limits the applicability of this framework in particular cases,
for example, when there is a need to decouple production from
growth. It also means that the false negative rate for in silico
strain predictions is high, with many successful laboratory strains
not appearing so when translated to an in silico model. In future
the field needs to look more toward different ways of predicting
metabolic fluxes. Combining kinetic and stoichiometric models
of the metabolic system (Chowdry et al., 2014) provides addi-
tional levels of constraints (including enzyme inhibition and acti-
vation) and is expected to improve the prediction of effective
interventions. A longer term goal is therefore the production of
detailed, large-scale kinetic models of the whole metabolic system
(Stanford et al., 2013).

When running OptKnock and RobustKnock, it was clear
that OptKnock was more user friendly, owing to it being
made available in the COBRA Toolbox for Matlab and
therefore applicable to a number of MILP (mixed integer linear

programming) solvers. This was not the case for RobustKnock,
which required a non-standardized model structure and the use
of a specific solver, Tomlab, which has limited free access. An
additional goal of designing RobOKoDwas therefore to ensure its
accessibility and robustness by reusing freely-accessible solvers,
extensively validated COBRA Toolbox methods, and standard-
ized model formats such as SBML.

A necessary future direction for both RobOKoD and existing
tools such as OptKnock and RobustKnock will be to move to
making predictions regarding knockouts, over-expressions, etc.
at the level of the gene, rather than, as currently, at the level of the
reaction. Due to the presence of both isoenzymes and promiscu-
ous enzymes, it is clear that there is not a 1:1 mapping between
gene and reaction. Consequently, manipulation of a given gene is
likely to affect a number of reactions. Modification of this method
to consider the gene-protein-reaction (GPR) relationships that
are present in many genome-scale metabolic models will be a
priority for future development.

To summarize, RobOKoD provides an additional tool to
aid the task of designing strains for the (over)production of
target products. It is able to predict and rank knockouts, over-
expressions, and dampening targets. While predicting an opti-
mized set of gene modifications to implement, unlike other
methods, RobOKoD also provides lists of candidate modifica-
tions, along with graphical flux variability profiles, allowing the
user to manually validate the set of predictions. Such a flexi-
ble approach—particularly when used in conjunction with other
analysis methods mentioned previously—will allow for sensible
gene manipulation approaches to be taken into the laboratory.
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Reaction Abbreviations

Model reaction ID Reaction name EC

ACALD Acetaldehyde dehydrogenase (acetylating) 1.2.1.10

er_027 Alcohol dehydrogenase (to butanol) 1.1.1.1

LDH_D D-lactate dehydrogenase 1.1.1.27

NADH16 NADH dehydrogenase (ubiquinone) 1.6.5.3

NH4t Ammonia reversible transport n/a

O2t O2 transport via diffusion n/a

PFL Pyruvate formate lyase 2.3.1.54

PIt2r Phosphate reversible transport via proton symport n/a
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