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Correlation guided Network Integration (CoNI)
reveals novel genes affecting hepatic
metabolism
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ABSTRACT

Objective: Technological advances have brought a steady increase in the availability of various types of omics data, from genomics to
metabolomics. Integrating these multi-omics data is a chance and challenge for systems biology; yet, tools to fully tap their potential remain
scarce.
Methods: We present here a fully unsupervised and versatile correlation-based method e termed Correlation guided Network Integration (CoNI)
e to integrate multi-omics data into a hypergraph structure that allows for the identification of effective modulators of metabolism. Our approach
yields single transcripts of potential relevance that map to specific, densely connected, metabolic subgraphs or pathways.
Results: By applying our method on transcriptomics and metabolomics data from murine livers under standard Chow or high-fat diet, we
identified eleven genes with potential regulatory effects on hepatic metabolism. Five candidates, including the hepatokine INHBE, were validated
in human liver biopsies to correlate with diabetes-related traits such as overweight, hepatic fat content, and insulin resistance (HOMA-IR).
Conclusion: Our method’s successful application to an independent omics dataset confirmed that the novel CoNI framework is a transferable,
entirely data-driven, flexible, and versatile tool for multiple omics data integration and interpretation.

� 2021 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

In the era of systems biology and high throughput multi-omics data
generation, there is an unmet need for effective tools and approaches
to compare and integrate these complex data sets [1,2]. Such tools are
particularly required for capturing genetic mechanisms associated with
metabolic disorders, which typically affect multiple layers of biological
regulations and different types of biomolecules.
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Present integration approaches to interrogate complex metabolic
networks [3] are built mainly on the integration of genetic information
through associative approaches or using prior additional knowledge.
Integrating multi-omics data on metabolic profiles and genetic infor-
mation was either attempted by directly correlating genetic variants or
transcripts with metabolites [4,5], by using prior knowledge to map
genes and enzymes on metabolic pathways [6e8], or by creating
deterministic models that abstract enzymatic reactions in metabolic
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pathways using gene or enzyme levels as rate-limiting denominators
[9e11]. However, all these approaches have limitations. Pathway
mapping approaches and deterministic models depend either on prior
knowledge or on multiple parameters, thus having high degrees of
freedom. Correlation-based models typically map direct one-to-one
relationships between molecules, but lack a suitable model that re-
flects biochemical pathways where enzymes or regulatory genes affect
the ratio between educts and products in biochemical reactions. A
further limiting factor is that metabolomicse targeted or untargetede
typically only captures a small fraction of the metabolome (a few
hundred to thousands of the more than 40,000 estimated metabolites)
[12], which dramatically limits the use of prior knowledge. Accordingly,
novel approaches to reveal distinct regulatory genes are warranted.
One area where sophisticated multi-omics data integration could be
advantageous is in the study of hepatic steatosis; pathological co-
morbidity of high body adiposity that is characterized by excess fat
accumulation caused by dysfunctional lipid metabolism [13]. Obesity-
induced ectopic fat disposition in the liver is a major risk factor in the
pathogenesis of type 2 diabetes by locally driving hepatic insulin
resistance [14]. However, exact molecular mechanisms that link both
pathophysiological conditions remain only partially understood. For the
development and implementation of efficient prevention and treatment
strategies against fatty liver disease and comorbid hepatic insulin
resistance, it is thus crucial to better understand the initial patho-
genesis and the exact mechanisms that link both comorbidities.
In this study, we present a novel statistical method for correlation-
based network integration (CoNI) of generic character and conceiv-
able for multiple approaches. In contrast to common correlation-based
methods, that typically estimate one-to-one relationships, we here
combine Pearson’s correlation with partial correlation to infer tran-
scriptional impact on metabolite pair correlations. We tested CoNI on
publicly available proteomics and lipidomics data (SI) and subsequently
applied CoNI to murine liver metabolome and transcriptome data sets,
and unraveled previously hidden geneemetabolite interactions e that
exert major changes to hepatic metabolite levels under normal dietary
conditions and obesogenic stress with established fatty liver disease
Figure 1: CoNI workflow. 1) Calculation of a full pairwise correlation matrix (A) and p
expression profiles; for each pair of the metabolites, partial correlation scores are compute
correlation matrices (B). 2) Calculation of K adjacency matrices by selecting metabolite pai
pair plus gene) and construction of an undirected, weighted graph with correlated metabo
connecting the two respective metabolite nodes determines the edge weight, indicated b
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and hepatic insulin resistance. Validation experiments in human liver
biopsy samples revealed that the expression of five selected candi-
dates associated with hepatic triglyceride levels, BMI, or insulin
resistance in humans was significant. In vitro knockdown experiments
confirmed that modulation of selected candidate genes affects
metabolite correlations. Overall, our new tool helped to unravel known
and potential new genes involved in the regulation of liver metabolism
and fatty liver disease along with hepatic insulin resistance under
excess energy supply.

2. RESULTS

2.1. CoNI: correlation guided Network Integration
The CoNI framework uses correlations and partial correlations to
combine two types of omics data (linker data, vertex data), thereby
generating a graph where the linker data form the edges and the vertex
data form the vertices or nodes. The linker data specifies the impact on
the interaction of the vertex data. The general concept of CoNI
(Figure 1) is to identify potential confounding variables (transcripts) by
estimating the effect of a controlling variable t (transcript) on the
correlation of two random dependent variables m1 m2 (metabolites).
Therefore, Pearson correlation coefficients rm1m2 are calculated for
each pair of metabolites. Subsequently, each gene’s linear effect is
estimated by comparing the partial correlation coefficient rm1m2*t with
rm1m2. For K transcripts and M metabolites, we thus generated one
correlation matrix MxM and K MxM matrices that contained the partial
correlation coefficients. Next, an adapted Steiger test [15] is applied to
estimate a significant effect of a transcript on the metabolite pair
correlation (p< 0.05), thereby generating K adjacency matrices. These
adjacency matrices are then combined to form an integrated graph
where the nodes to the metabolite pairs and the edges refer to the
controlling genes. A gene can thereby be mapped to multiple edges
and edges may consist of multiple genes. Finally, this gene e
metabolite pair network assembly is used to identify local controlling
genes (LCGs), i.e., genes locally enriched in a densely-connected
subgraph.
artial correlation analysis combining the metabolite concentrations with the transcript
d by subtracting an estimated regulatory effect for each gene k. This results in K partial
rs significantly altered by individual genes. 3) Selection of significant triplets (metabolite
lite pairs as nodes, and influencing genes setting up the edges. The number of genes
y the thickening of the line.
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2.2. Application and versatility of CoNI
The method presented here was applied to two independent data sets.
Besides the presented approach, where we applied CoNI to integrate
and compare hepatic metabolite and gene expression, we also applied
it to publicly available proteomics and lipidomics data [16,17]. We
identified local controlling proteins that e as confounders for lipid
correlation e changes in the lung lipidome of C57BL/6 mice under
fresh air and smoking conditions (see SI). These findings suggest that
we developed an entirely data-driven, flexible, and versatile tool for
multiple omics data integration and interpretation.

2.3. Transcriptional and metabolic profiling of livers from chow and
HFD-fed mice
To investigate the effects of diet-induced obesity (DIO) on the liver
transcriptome and metabolome, we applied CoNI on data generated
from male C57Bl6/J mice either exposed to standard Chow diet or 58%
high-fat diet (HFD) for 22 weeks. Exposure to the high-fat diet resulted
in significantly higher body weight (BW, Chow 33.5 g � 1.6 g; HFD
49.2 g � 4.5 g, p < 0.0001, mean � SD) (Figure 2A). HFD-fed obese
mice showed increased plasma triglyceride and cholesterol levels
(Figure 2B,C), whereas hyperinsulinemic mice (Figure 2D) had
increased hepatic triglyceride (TAG) stores (Figure 2E, Table 1)
compared to chow-fed lean controls.
Hepatic metabolism was analyzed by transcriptional and metabolic
profiling using Affymetrix microarrays (Figure 2F) and the targeted
metabolomics AbsoluteIDQ� p180 kit (Figure 2G, Table S1). The
differential expression analysis of hepatic tissue revealed 989 signif-
icantly and differentially expressed genes between Chow and HFD
mice (Figure S1A, Table S2). Functional enrichment analyses based on
gene ontology (GO) of the up- and down-regulated genes revealed
numerous metabolic processes; lipid-related processes in particular
(Figure S1B, Table S2). We further identified 91 significantly altered
metabolites in HFD livers compared to Chow controls (Figure S1C,
Table S1). The most prominently regulated metabolite classes were the
sphingomyelins (SM, 67 % regulated), followed by phosphatidylcho-
lines (PC, 64 %) and the acylcarnitines (AC, 45 %). With principal
component analyses (PCA), we could reveal that the administered diet
was the main contributor to explain variance in gene expression
(Figure 2H) and the main driver of metabolite variance (Figure 2I) in
murine livers.

2.4. Correlation maps of diet-altered metabolites
To further investigate diet-induced changes in liver metabolism, we
generated a correlation map for each diet by calculating all metabo-
lites’ pairwise Pearson correlation coefficients (Figure 3A). We
observed a slight negative skew of the correlation coefficient distri-
bution for both diets (Figure S2A), as previously observed by Bartel
et al. [18]. We identified 2,488 significantly correlated metabolite pairs
for Chow and 2,322 pairs for HFD (non-adjusted p < 0.05), whereas
923 metabolite pairs were identified in both diets (Figure 3B).
Furthermore, 1,023 metabolite pairs showed a significant change in
their correlation from Chow to HFD, indicating that the administered
diet substantially alters the hepatic metabolism. We then deepened our
investigations and analyzed the class composition of the correlated
metabolite pairs (Figure 3C). The metabolite class with the maximum
change in correlated pairs was the sphingomyelins (Jaccard
Index ¼ 0.12). In contrast, amino acids (AA) mostly maintained their
correlations (Jaccard Index ¼ 0.76), indicating that they interact
independently of dietary conditions. Between classes, we generally
observed a substantial change in correlations with Jaccard indices
between 0.01 (PC e BA (biogenic amines)) and 0.71 (H (hexoses) e
MOLECULAR METABOLISM 53 (2021) 101295 � 2021 The Authors. Published by Elsevier GmbH. This is an open a
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AC) when Chow and HFD livers were compared. A striking difference
was observed in the correlated metabolite class pairs for AC and PC
with the highest absolute numbers of changes driven by the shift from
positive correlations under Chow diet to negative ones under HFD
(Figure 3A,C, and S2B), indicating massive changes in these metab-
olite classes under obesogenic conditions. In summary, the correlation
analyses revealed substantial diet-dependent changes in metabolite
regulation, which is in accordance with previously reported findings of
HFD-induced changes in metabolite concentrations in a circadian
manner over multiple tissues [19].

2.5. Estimating genetic impact on metabolic networks
Subsequently, we applied CoNI to assess the genetic impact on
metabolite correlations under both dietary conditions. Hence, gene
expression was integrated into pairwise metabolite correlations to form
two independent graphs (Figure 3D,E). The Chow graph was con-
structed of 485 triplets (gene and metabolite pairs) and the HFD graph
of 1,058 triplets (Table S3). Of the 175 metabolites used for the
analysis, more metabolites were connected in the CoNI network of
HFD-fed mice than the Chow controls (Chow n ¼ 133; HFD n ¼ 164
metabolites; Figure 3F), with an overlap of 127 metabolites. Of all
connected metabolite pairs (Chow n ¼ 407; HFD n ¼ 722), 67 were
identical in both diets revealing an extensive rewiring of hepatic
metabolism under HFD (Figure 3G). This alteration in hepatic meta-
bolism by HFD-feeding was also evident in the node degree distribu-
tion, the number of edges per node. The HFD network showed
consistently higher degrees than Chow (Figure S3A), which was also
observed when comparing the node degrees for the specific metabolite
classes (Figure S3B). The Chow network showed a trend towards
increased node degrees for PC and LPC compared to the other
metabolite classes, which was absent in the overall elevated distri-
bution of node degrees within the HFD network. A striking charac-
teristic of the inferred networks is that both tend to be organized in
communities (Figure S4A, B) or densely connected subnetworks,
which mainly reflect metabolite classes, but are partly reorganized on
dietary change (Figure S4C). This reorganization was also observed in
other network characteristics, such as the shortest path length
(Figure S5).
Analogous to the reorganization of metabolite interactions, the genes
forming the edges in both CoNI constructed graphs substantially
changed (Chow n ¼ 166; HFD n ¼ 319) with only five genes shared
between the networks (Figure 3H, S6A, B): Gm4553, Hnrnpm, Tap1,
Xpo7, and Eya3, from which Tap1 was the only one differentially
expressed between Chow and HFD. Furthermore, the comparison of
the number of genes that map to single edges revealed that most
edges consist of a single gene (85.75 % in Chow, 65.93 % in HFD),
with a maximum number of six genes per edge in Chow and five in
HFD (Figure 3I, Table S3). The distribution of individual genes over the
edges showed that most genes appeared in five or fewer edges
(Figure 3J). These results highlight the specificity of the genee
metabolite interactions and the substantial metabolic changes in the
liver upon HFD-induced obesity.
To further classify the genes affecting the correlations between
metabolite pairs in the independent networks, we performed a func-
tional enrichment analysis using KEGG pathways and GO biological
processes (Table S3). However, no informative categories were
identified for the chow network’s genes; the HFD network’s genes
were enriched in the KEGG categories ‘glycerolipid metabolism’ and
‘nonalcoholic fatty liver disease’ (NAFLD). Strikingly, these two cate-
gories were not significantly enriched for the 989 DEGs (Table S2).
Thus, CoNI could provide an improved reflection of the metabolic
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3
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Figure 2: Transcriptional and metabolic profiling of murine livers under normal conditions and obesogenic stress. Barplots comparing mice after 22 weeks of Chow
(n ¼ 10) or HFD (n ¼ 8) for (A) body weight, (B) plasma triacylglyceride (TAG), plasma cholesterol (C), plasma insulin (D), and hepatic TAG levels (E). Asterisks indicate the
significance of the differences between the factors (*p � 0.05; **p � 0.01; ***p � 0.001). Error bars show standard error of the mean (SEM) (F) Heatmap with 10,159 hepatic
mRNAs transcripts detected in chow-fed (black color, upper bar) and HFD-fed (red color, upper bar) mice. The lower color bar indicates individual body weights measured at the
end of the study (BWE). (G) Heatmap with concentrations of 175 detected metabolites. Metabolite classes are indicated in the right color bar: 40 acylcarnitines (AC), 76
phosphatidylcholines (PC), 14 lysophosphatidylcholines (LPC), 12 sphingomyelins (SM), 12 biogenic amines (BA), 20 amino acids (AA), and 1 hexose (H). PCA plot of transcript
expression (H) and metabolite concentrations (I) for Chow (black) and HFD (red). The amounts of variance explaining the differences are given in brackets.

Original Article
phenotype induced by HFD (Figure 2AeE) that showed all hallmarks of
fatty liver disease.

2.6. Effective network genes
We next aimed to identify genes within our CoNI networks that locally
drive the observed changes in hepatic metabolism under obese con-
ditions. First, we defined local controlling genes (LCGs) as genes
significantly enriched within a local subgraph of correlating metabolite
pairs (see methods). With this approach, we could identify 20 LCGs in
4 MOLECULAR METABOLISM 53 (2021) 101295 � 2021 The Authors. Published by Elsevier GmbH. T
the Chow network and 59 LCGs in the HFD network (Table S3) with no
overlap. Combining these network characteristics with differential
gene expression, we found one LCG in the chow network (Ddx3x) and
seven LCGs from the HFD network (Myc, Arhgap24, Smim13, Rapgef4,
Cd82, Inhbe, and Gk) to be differentially expressed between the two
diet groups (Figure 4AeH, S6A, B, S7, Table 2, S3).
Subsequently, to uncover functional links to obesity and obesity-
associated diseases of the identified 79 LCGs in humans, we
queried the Type 2 diabetes knowledge portal [20]. For three LCGs of
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1 e Characteristics of the mouse cohorts (mean � SD).

Chow (n ¼ 10) HFD (n ¼ 8) p-value

Body weight (end) (g) 33.49 � 1.56 49.2 � 4.49 <0.0001
Liver triglyceride levels (mg/mg tissue) 4.13 � 0.9 9.4 � 3.11 0.0001
Plasma triglyceride levels (mg/dl) 44.09 � 6.84 54.49 � 8.43 0.0105
Plasma cholesterol levels (mg/dl) 45.74 � 6.84 121.24 � 18.78 <0.0001
Plasma insulin levels (ng/ml) 1.58 � 0.85 7.32 � 5.65 0.0057
the Chow network and 17 LCGs of the HFD network, we found single
nucleotide polymorphisms (SNPs) associated with obesity-related
traits and disease markers (Table S4, SI). Among the genes that
showed the most prominent associations with obesity-related SNPs
were Appl2 (Figure 4I), which mediates insulin signaling, endosomal
trafficking, adiponectin, other signaling pathways [21], and Cobll1
(Figure 4J), which was strongly associated with obesity- and type 2
diabetes-related markers [22,23]. Additionally, we found the differ-
entially expressed LCG Inhbe, a hepatokine, that had recently been
linked to insulin resistance in human livers [24].
We combined these eight differentially expressed LCGs with two genes
that had the strongest associations with diabetic relevant traits (Cobll1
& Appl2) to a candidate list of 10 genes. When we compared
metabolite concentrations of the ten sub-networks controlled by these
selected LCGs, we found substantial differences in the metabolite
levels between Chow and HFD (Figure 4AeJ). To test for the interre-
lation between the selected LCGs, we combined the isolated
metabolite-gene sub-networks and obtained three interconnected
subgraphs for HFD (Figure 4K). The metabolite sub-networks of the
Chow-derived LCG Ddx3x did not overlap with any of the metabolite
subgraphs of the HFD network-derived LCGs. The largest inter-
connected subgraph of the HFD network contained mostly PCs (24/27)
and was controlled by six genes, which is in accordance with our
previous observation that this metabolite class is highly regulated
under obesogenic conditions (Figure 3C). The importance of the highly
abundant PCs that had been previously associated with NAFLD [25]
was further supported by our KEGG enrichment where we found the PC
regulatory phospholipase D signaling pathway enriched in the HFD
network genes (Table S3). Importantly, this pathway was not signifi-
cantly enriched (p ¼ 0.32) for the 989 DEGs, although it was present
with 11 genes, of which four were also found in the HFD network. In
contrast, the metabolite sub-networks of the HFD-derived LCGs
Smim13 and Rapgef4 not only included BA, PC, LPC, and AC me-
tabolites, but also their subgraphs were interconnected by an over-
lapping mixture of AA. An impaired AA metabolism was previously
linked to NAFLD and liver fibrosis [26,27]. The third HFD sub-network
was under the control of the LCG Inhbe and contained only AC which is
known to be involved in fat metabolism, especially in the carnitine
shuttle transporting long-chain fatty acids into mitochondria [28]. We
found Cpt1a, Cpt1b, and Cpt2 as known regulators of the carnitine
shuttle that differentially expressed between chow and HFD, but not as
part of the CoNI predicted networks.
We next investigated whether the hepatic expression of the selected
target genes is associated with the three metabolic parameters, serum
insulin, liver TAG, and body weight in Chow and HFD-fed mice. In
addition to the ten LCGs with significant differential expression and/or
an association with human obesity-related SNPs (Figure 4), we further
selected Tap1 for validation as it was the only gene present in both
CoNI-derived graphs that were differentially expressed between Chow
and HFD-fed mice (Table 2, S3). We generated and tested a linear
regression model for each candidate mRNA and the metabolic
MOLECULAR METABOLISM 53 (2021) 101295 � 2021 The Authors. Published by Elsevier GmbH. This is an open a
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parameters including diet as a cofactor and an interaction term
including diet-mRNA interactions and two diet-specific regression
models (Figure S8-S10). All linear models significantly predicted the
metabolic parameter (Table S5A-C), which could mostly be explained
by the diet. Accordingly, we found for the interaction model and the
diet-specific model, a diet-dependent effect on the metabolic
parameter for almost all genes except Myc. To test whether this fre-
quency of significant predictions would also be expected with a
randomly selected gene list, we performed an enrichment analysis for
all 989 DEGs (Figure S1A, Table S2) and all genes mapped to one of
the diet-specific networks (Figure S11). We found that the Chow
network genes were highly enriched to predict BW, whereas the HFD
network genes significantly predicted plasma insulin and liver TAG
levels. Although the eleven genes from the candidate list were less
enriched than the full network genes, they still outperformed the
differentially expressed genes in the HFD condition. The candidate
gene list was (except Ddx3x and Tap1) exclusively selected from the
HFD network. Taken together, our data support the diet-dependent
differences in our omics datasets and point toward specific roles of
the selected LCGs in hepatic metabolism.

2.7. Network genes are associated with human hepatic
metabolism
To assess the translational relevance of the selected eleven candidate
genes identified with the CoNI approach presented here, we validated
them in human-derived liver biopsies. The expression of the eleven
candidate genes was quantified by qPCR analyses in human liver bi-
opsies of 170 patients. Anthropometrics and metabolic characteristics
of these participants, which covered a wide range of hepatic triglyc-
eride content, are shown in Tables S6A, B. Hepatic gene expression
levels were then correlated with liver fat content and BMI. Associations
of hepatic mRNA levels with insulin resistance (HOMA-IR) were addi-
tionally analyzed for a subgroup of 77 subjects. Significant associa-
tions of gene expression and metabolic traits were found for five of the
eleven genes (Figure 5, Table 3). Expression of GK, INHBE, and TAP1 in
human livers was positively associated with BMI (Figure 5), which was
in accordance with their increased expression in the livers of HFD-fed
mice (Table S2). In contrast to its reduced hepatic expression in obese
mice, we found that MYC’s expression increased with BMI in human
livers (Figure 5). The expression of SMIM13 correlated significantly
with liver fat content (Figure 5). Strikingly, the expression of the LCG
INHBE in the human livers was not only significantly associated with
BMI, but also with liver TAG content and HOMA-IR (Figure 5); thus
showing the strongest impact on cellular metabolism of all LCGs
selected for validation. These findings show that five out of eleven
murine-derived LCGs were associated with metabolic traits in humans.
Finally, to test whether the expression of our candidate genes had an
impact on cellular metabolite levels, we selected five representative
genes to perform siRNA-mediated knockdown (KD) experiments fol-
lowed by metabolic profiling using the AbsoluteIDQ� p180 Kit in
HepG2 cells. All five specific siRNAs significantly reduced target mRNA
levels compared to a nontarget-siRNA (Figure S12A). After processing
and filtering out metabolites under limits of detection (LOD), 107
metabolites were analyzed in total (Figure S12B). We observed a batch
effect caused by performing the experiments on two consecutive days
with n ¼ 3 replicates each, which we tried to minimize using ComBat
[29]. Differentially regulated metabolites were estimated by ANOVA.
After FDR correction, only the KD of Rapgef4 and Gk caused significant
effects on two and six metabolites, respectively (Table S7), but none of
those were part of the predicted LCG sub-networks (Figure S12C). For
Inhbe, none of the predicted ACs passed the LOD filter. Since the Chow
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 5
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Figure 3: Hepatic metabolite correlations under Chow and HFD feeding. (A) Pairwise metabolite correlation matrix showing the correlation coefficients obtained for Chow
(black) in the upper right and for HFD (red) in the lower left triangle. The metabolite classes are indicated by the respective color bars. Black boxes mark correlations between AC
and PC in Chow and HFD. (B) Venn diagram showing significantly correlating metabolite pairs that differ and overlap between Chow and HFD. (C) Metabolite class comparison of
significantly correlated metabolite pairs in Chow and HFD. The sizes of the Venn diagrams correspond to the number of metabolite pairs. (D, E) Integrated graphs generated using
CoNI for Chow (D) and HFD livers (E). The nodes of the graphs refer to metabolites and edges to genes that significantly affect metabolite correlations. Node colors reflect the
metabolite class. Unconnected nodes are displayed at the bottom. (F) Comparison of connected metabolite nodes between Chow (black) and HFD (red). (G) Comparison of
significantly correlated metabolite pairs between the two graphs. (H) Comparison of genes contained in edges of both graphs. (I) The number of genes per edge and (J) number of
edges per gene in both graphs.
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Figure 4: Local controlling genes (LCGs) and associated metabolite subgraphs. (AeJ) Metabolite subgraphs for the selected LCGs in murine livers. Node colors refer to the
different metabolite classes; the respective heatmaps show the concentrations of node metabolites. Gene expression levels of the respective LCG are displayed in the upper colo
bar for Chow (black) and HFD (red). Blue edges denote edges that contain the LCG in the sub-graph, grey edges are void of the LCG. LCGs were identified in the Chow (A) and HFD
(BeJ) network from which eight were differentially expressed depending on the diet (A-H) and for three genes SNPs associated with obesity and related disease markers could be
identified (E,I,J). (K) Combined LCG network. Edges display direct gene e metabolite connections. Edge colors refer to diet, i.e., Chow (black) or HFD (red).
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Figure 5: CoNI identified genes correlate with hepatic lipid metabolism in humans
selected genes: GK, INHBE, MYC, SMIM13, and TAP1 compared to BMI (log) (upper row) an
mRNA expression of INHBE correlated with HOMA-IR, n ¼ 77 (bottom row). Confidence
colored red.

Table 2e Characteristics and selection criteria for the eleven genes further
subjected to validation experiments: identification as LCG, present in a
specific network; identification as obesity and type 2 diabetes-related
genetic variant (SNP) and differential hepatic expression between chow and
HFD mice (log2FC and p).

Gene LCG Network SNP log2FC p adjusted

Arhgap24 yes HFD no 0.99 0.02
Cd82 yes HFD no 0.5 0.03
Gk yes HFD no 0.73 0.01
Inhbe yes HFD yes 1.2 0.02
Myc yes HFD no �1.31 0.04
Rapgef4 yes HFD no �1.23 <0.00
Smim13 yes HFD no �0.89 0.01
Ddx3x yes Chow no �0.6 0.01
Cobll1 yes HFD yes �0.33 0.24
Appl2 yes HFD yes 0.63 0.15
Tap1 no Chow/HFD no 1.04 <0.00

Original Article

8 MOLECULAR METABOLISM 53 (2021) 101295 � 2021 The Authors. Published by Elsevier GmbH. T
and HFD CoNI networks were predicted as genetically controlled
metabolite correlations, we next compared metabolite correlations
between control and siRNA KD data. For all five genes tested, we
observed a loss of metabolite correlations after KD in cells
(Figure S12D). Comparison of correlation graphs from all significant
correlations in the control group with the correlations affected by the
respective KD (Fisher’s z transformation) revealed that a minimum of
14 (Gk) up to 228 (Appl2) edges were affected by the KD (Figure 6A).
We then extracted the correlation sub-networks build by the metab-
olites from the initial LCG’s sub-networks (Figure 5) and compared
their edges to the ones found in the KD sub-networks. For all four sub-
networks with detectable metabolites, we found a significant reduction
in correlated metabolites (Figure 6B). For Appl2 and Rapgef4, no edge
remained in the KD networks, for Cobll1 and Gk only 3 of 25 and 3 of
15, respectively, could be found after KD. Finally, we compared all
metabolite pairs predicted with CoNI between control and KD condi-
tions (Figure 6C). For each gene, we found that between two to nine
. Pearson correlation analysis of human hepatic gene expression (log mRNA) for five
d hepatic TAG content in mg/100 mg tissue (log) (middle row), n ¼ 170. Human hepatic
bounds for the selected models are denoted by dashed lines. Significant p-values are
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Table 3e Associations between hepatic biopsy gene expression levels and
metabolic traits BMI (N ¼ 170), hepatic TAG (N ¼ 170), and HOMA-IR
(N ¼ 77) in human liver samples. Significant p Values (< 0.05) are
highlighted in bold.

Genes BMI p BMI r2 HOMA-IR p
(log)

HOMA-IR r2
(log)

TAG p
(log)

TAG r2
(log)

RAPGEF4 0.75138 0.0006 0.23293 0.01892 0.70119 0.00088
ARHGAP24 0.09284 0.01672 0.86126 0.00041 0.08886 0.01713
GK 0.00222 0.05435 0.10077 0.0355 0.08875 0.01715
COBLL1 0.86194 0.00018 0.73025 0.00159 0.15734 0.01187
INHBE 0.00014 0.08261 0.00781 0.09061 3E-05 0.09904
CD82 0.89931 0.0001 0.64076 0.00292 0.10298 0.01575
TAP1 0.00656 0.04316 0.1444 0.02819 0.10229 0.01581
SMIM13 0.06884 0.01957 0.18164 0.02366 0.01693 0.03348
DDX3X 0.54836 0.00215 0.64243 0.00289 0.96771 1E-05
MYC 0.00636 0.04347 0.22892 0.01924 0.7102 0.00082
APPL2 0.30545 0.00625 0.97038 2E-05 0.61441 0.00151
metabolite pairs significantly changed their correlation. Furthermore,
for Appl2, Cobll1, and Gk, we also saw a general reduction of
metabolite correlations between control and KD cells.
In summary, for eight of the eleven selected candidate genes, we could
validate functional associations with hepatic metabolism by showing
correlations of human hepatic transcript levels with hallmarks of
clinical obesity or insulin resistance to changes in cellular metabolite
correlations after siRNA KD in vitro. Of the three LCGs harboring SNPs
that are associated with obesity or type 2 diabetes, COBLL1 and INHBE
could be confirmed with at least one performed validation experiment.

3. DISCUSSION

We here present with our CoNI approach a novel, fully unsupervised,
and data-driven method that allows for the integration of different
Figure 6: siRNA KD of LCGs perturbes metabolite correlation networks. (A) Correla
significant correlations in control experiments. Red edges denote correlations significantl
tabolites mapped to LCG subgraphs from CoNI applied to murine data. Red edges deno
conditions. (C) Correlation coefficients of predicted metabolite pairs from murine CoNI netw
upon LCG knockdown.

MOLECULAR METABOLISM 53 (2021) 101295 � 2021 The Authors. Published by Elsevier GmbH. This is an open a
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omics data types based on a combined correlation approach followed
by the construction of integrated hypergraphs. Our method is the first
to introduce a new paradigm in correlation-based data integration.
Molecular interrelationships are not inferred as paired interactions, but
as triplets where one interactor is estimated as a controlling variable of
the other two. This allows for a more natural reconstruction of
metabolic networks where we estimate genes affecting correlations
between metabolites. With the CoNI-driven integration of tran-
scriptomics and metabolomics data from murine livers, we identified
and unraveled previously hidden local controlling genes (LCG) that
exerted major changes to hepatic metabolite correlation levels. In a
well-characterized human cohort, we confirmed the translational
relevance of these LCGs for human liver metabolism in obesity. Sub-
sequently, in vitro experiments showed that the siRNA-mediated KD of
selected LCGs perturbs correlation networks. In addition to the liver
dataset, the CoNI-derived reconstruction of known and potentially
novel protein-lipid interactions in murine lungs under clean air and
smoking conditions (SI, Figures S11e13) demonstrated that our
method is a versatile framework that can be applied to various data
integration problems. We also postulate that CoNI can be applied not
only to various kinds of omics data, but also to other nonbiological data
where the aim is to investigate factors affecting network interactions.
Our approach studies presented here are completely data-driven,
which makes them applicable to various kinds of paired multivariate
datasets from the same samples.
The requirement of paired samples is a conceptual limitation of CoNI,
but in turn, allows the application on datasets without different con-
ditions or temporal resolution like large cohort data. A further limitation
is that Pearson’s and partial correlations are prone to outliers which
may increase the false positive predictions. This effect can be reduced,
with increasing sample sizes. Additionally, although we here use
partial correlation to uncover genes as confounding factors for
tion networks generated from metabolite correlations in HepG2 cells. Edges refer to
y altered by siRNA-mediated knockdown of an LCG. (B) Correlation subgraphs of me-
te edges only present in the control; blue edges denote significant correlations in KD
orks in Control and KD condition. Red pairs denote correlations that significantly change
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metabolite correlations, our method is unsuitable to infer any causality;
thus interactions estimated with CoNI do not necessarily reflect
directed regulations. The high computational costs become more and
more insignificant with the increase of available high throughput
computing. However, the major limitation that we perceive lies in the
limitations of available datasets. In particular, for the prediction of
genetic and metabolic interactions, the lack of detectable metabolites
e either in targeted or untargeted metabolomics approaches e limits
the capabilities to recover real molecular interaction, thus creating
abstractions of molecular interaction networks. In contrast, prior
knowledge-based approaches, that are successful in modeling specific
pathways or biochemical reactions [30] face their limitations for the
identification of novel or indirect interactions; in particular, when
available data are incomplete. We here applied CoNI to a very unbal-
anced set of data e 180 targeted metabolites and thousands of
transcripts e but successfully integrated these.
The CoNI networks allowed us to define LCGs that presumably play a
role in the development of liver steatosis and hepatic insulin resistance
in diet-induced obesity. None of the Chow or HFD LCGs was present in
both networks, which is in accordance with recent findings that show
the genetic control of metabolic networks widely being altered by diet
[19]. Furthermore, for some of the LCGs, an involvement in lipid
metabolism or diabetes-related traits had already been discussed. The
membrane-associated protein Tap1 was recently linked to the initiation
and propagation of liver inflammation and insulin resistance in mice
[31], which is in accordance with our finding of an association between
hepatic TAP1 expression and BMI in humans. We found that the
expression of the phosphotransferase enzyme glycerol kinase (Gk)e a
gene that had been proposed as a regulator for several lipids [32] e
was increased in the livers of obese mice and humans, thus sug-
gesting an adaptive mechanism to handle the increased hepatic lipid
load. This hypothesis is supported by the finding that overexpression of
Gk favors recycling of free fatty acids leading to increased fat storage
in rat hepatoma cells [33e35]. Also, Myc seems to be involved in the
regulation of hepatic glycolysis [36,37]. Under HFD exposure, Myc
overexpression in transgenic mice normalized glycemia, insulinemia,
and the expression of genes involved in hepatic metabolism [38]. The
potential regulatory role for the putative hepatokine Inhbe was
confirmed by the strong associations of its hepatic expression with
metabolic traits in humans. This is in accordance with previous reports
identifying Inhbe as a diet-responsive gene in the rodent liver, regu-
lated by HFD feeding, fasting, or refeeding [39e41]. Recently,
Sugiyama et al. [24] demonstrated that the siRNA-mediated knock-
down of Inhbe in obese insulin-resistant Lepdb mice decreased fat
mass and respiratory quotient, thus suggesting enhanced whole body
fat usage. We here link Inhbe to the regulation of AC, which is also
known to interfere with hepatic insulin sensitivity [28,42].
Only one of the genes selected for validation was among the top 100
differentially expressed genes between Chow and HFD. Here, we could
not only identify genes involved in the metabolic rearrangement of the
liver under HFD feeding that would have been remained undiscovered
by traditional approaches, but also link them to metabolic pathways.
Future studies that clarify the impact of the LCG expression changes on
hepatic metabolite levels in humans are warranted, but are beyond the
scope of this study.
Overall, our results indicate that the data integration approach, CoNI, is
a useful methode to successfully integrate transcriptional data into
metabolic networks to ultimately facilitate the identification of gene
candidates involved in hepatic steatosis and comorbid hepatic insulin
resistance in mice and humans. CoNI can be used to integrate various
types of multidimensional omics data, and it can make them available
10 MOLECULAR METABOLISM 53 (2021) 101295 � 2021 The Authors. Published by Elsevier GmbH. T
for useful holistic analyses in various fields of health research and
beyond.

4. METHODS

4.1. Ethics statement
In vivo experiments were performed without blinding of the in-
vestigators. All studies were based on power analyses to assure
adequate sample sizes and performed with approval by the State of
Bavaria, Germany, under the following protocol numbers: 55.2.1-54-
2532-75-13. The clinical study has been approved by the Ethical
Review Board of the University Hospital Tübingen, and all human
participants provided informed written consent.

4.2. Animals
All experiments were performed in 20 adult male C57BL/6J mice
purchased from Janvier Labs (Saint-Berthevin, Cedex, France). Mice
were maintained on a 12-h lightedark cycle with free access to water
and a standard Chow diet (Altromin, #1314). To promote diet-induced
obesity (DIO), mice were ad-libitum fed with a 58 % high-fat diet (HFD)
(Research Diets, D12331) for 22 weeks. Two mice from the HFD cohort
with body weights comparably lower to those of the other HFD-fed
mice (BW at week 22: 37.5 g and 33.3 g) were excluded from all
further analyses. Mice were fasted for 5 h and then sacrificed by
cervical dislocation for organ withdrawal. Livers were removed
immediately, flash-frozen in liquid nitrogen, and stored at�80 �C until
further analysis. Two animals were excluded from the study cohort
owing to their comparatively lower body weight gain on HFD.

4.2.1. Plasma analysis
Blood was collected in tubes containing 50 mL EDTA and then
centrifuged at 2000�g and 4�C for 10 min. Plasma was collected and
stored at �80�C until further testing. Plasma triglycerides (TAG),
cholesterol, and nonesterified fatty acids (NEFA) were measured by
commercial enzymatic assay kits (WAKO Chemicals, Neuss, Germany).
Insulin was measured by the ultrasensitive murine insulin ELISA kit
(Merck Millipore, Darmstadt, Germany).

4.2.2. Hepatic triglyceride content measurements
Hepatic triglyceride content was determined after chloroform/methanol
(2:1) extraction by using the triglyceride assay kit according to the
manufacturer’s protocol (Wako Chemicals).

4.3. Metabolomics

4.3.1. Tissue homogenization and metabolite extraction
Frozen murine liver samples were weighed, and metabolites were
extracted as previously described in ice-cold extraction solvent, an 85/
15 (v/v) ethanol/10 mM phosphate buffer pH 7.5 mixture at a ratio of
3 mL solvent per 1 mg tissue weight [43]. The liver samples were
homogenized using a Precellys24 homogenizer (PeqLab Biotech-
nology, Erlangen, Germany) thrice for 20 s at 5,500 rpm and 4�C, with
30 s pause intervals to ensure constant temperature, followed by
centrifugation at 4�C and 10,000�g for 5 min. Subsequently, 10 mL of
the supernatants were used for metabolite quantification.

4.3.2. siRNA knockdown and metabolite extraction in HepG2 cells
Cells were cultured in DMEM supplemented with 10% fetal bovine
serum and antibiotics (penicillin 100 IU/ml and streptomycin 100 mg/
ml) in 5% CO2 at 37 �C. At 70e80% confluence, cells were transfected
with five different human SMARTpool On Target plus siRNA clones (L-
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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006727-00, L-021435-02, L-009511-00, L-020477-02, L-016272-
01; Dharmacon, Lafayette, USA) or ON-TARGETplus Nontargeting Pool
(D-001810-10) using DharmaFECT #4 (Dharmacon) for 48 h and
subjected to metabolite extraction in an ice-cold 80/20 (v/v) methanol/
water mixture as described previously [44]. Subsequently, 20 mL of the
supernatants were used for the metabolite quantification. Each target-
specific siRNA and the nontarget control was transfected and
measured in six biological replicates.

4.3.3. RNA extraction and qPCR in HepG2 cells
RNA was extracted from HepG2 cells after siRNA KD using the Nucle-
oSpin RNA isolation kit (MachereyeNagel, Düren, Germany). Equal
amounts of RNA were reverse transcribed to cDNA using the QuantiTect
Reverse Transcription kit (Qiagen, Hilden, Germany). Gene expression
was analyzed using TaqMan probes for APPL2 (Hs01565861_m1),
COBLL1 (Hs01117513_m1), GK (Hs02340007_g1), INHBE (Hs00368
884_g1), RAPGEF4 (Hs00199754_m1), and HPRT (Hs02800695_m1)
as the housekeeping gene with the respective TaqMan mastermix
(Thermo Fischer Scientific, Inc., Rockford, IL USA). qPCRs were carried
out using a Quantstudio 6 real-time PCR system (Applied Biosystems).
Gene expression was evaluated using the D-D Ct method.

4.3.4. Fluorescence-based DNA quantification in cell homogenates
To normalize the obtained metabolomics data from cell homogenates
for differences in cell numbers, the DNA content was determined using
fluorochrome Hoechst 33342 (ThermoFisher Scientific, Schwerte,
Germany) and a GloMax Multi Detection System (Promega, Mannheim,
Germany) from a small aliquot taken before the final centrifugation
step, as previously described [44].

4.3.5. Metabolite quantification by AbsoluteIDQ� p180 kit
The targeted metabolomics approach was based on liquid
chromatography-electrospray ionization-tandem mass spectrometry
(LC-ESI-MS/MS) and flow injection-electrospray ionization-tandem
mass spectrometry (FIA-ESI-MS/MS) measurements using the
AbsoluteIDQ� p180 kit (BIOCRATES Life Sciences AG, Innsbruck,
Austria). The assay allows simultaneous quantification of 188 me-
tabolites out of 10 mL tissue lysate or 20 mL cell lysate, and includes
free carnitine, 39 acylcarnitines (Cx:y), 21 amino acids (19
proteinogenic þ citrulline þ ornithine), 21 biogenic amines, hexoses
(sum of hexoses e about 90e95% glucose), 90 glycerophospholipids
(14 lysophosphatidylcholines (LPC) and 76 phosphatidylcholines (PC)),
and 15 sphingolipids (SMx:y). The abbreviations Cx:y are used to
describe the total number of carbons and double bonds of all chains,
respectively [43,45]. For the LC-part, compound identification and
quantification were based on scheduled multiple reaction monitoring
measurements (sMRM). The method of AbsoluteIDQ� p180 kit has
been proven to be in conformance with the EMEA-Guideline “Guideline
on bioanalytical method validation (July 21st, 2011)” [46], which im-
plies proof of reproducibility within a given error range. Sample
preparation and LC-MS/MS measurements were performed as
described in the manufacturer manual UM-P180. The limits of
detection (LOD) were set to three times the values of the zero samples
(PBS). The lower and upper limits of quantification (LLOQ and ULOQ)
were determined experimentally by Biocrates. The assay procedures of
the AbsoluteIDQ� p180 kit and the metabolite nomenclature have
been described in detail previously [47]. Metabolite concentrations
were calculated using internal standards and reported in mM.
MOLECULAR METABOLISM 53 (2021) 101295 � 2021 The Authors. Published by Elsevier GmbH. This is an open a
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4.4. Transcriptomics

4.4.1. RNA preparation and microarray analysis
Microarray data were obtained from liver samples of 10 chow and 8
HFD-fed mice. Total RNA was isolated from tissues employing a
commercially available kit (NucleoSpin RNA, #740955, Machereye
Nagel, Düren, Germany). Total RNA (150 ng, RIN>7) was amplified
using the WT PLUS Reagent Kit (Affymetrix, Santa Clara, US). Amplified
cDNA was hybridized on Mouse Clariom S arrays (Affymetrix). Staining
and scanning were performed according to the Affymetrix expression
protocol. Expression console (v.1.4.1.46, Affymetrix) was used for
quality control and to obtain annotated normalized RMA gene level data
(Gene Level - SST-RMA). Genes with low expression levels (probe
intensity< 40 in 5 out of 18 samples) were removed from the data set.
For probe sets with identical values across all samples, only one probe
set was kept in the final gene sets. Before calculating the partial
correlation coefficients, genes with high within-group variance
(variance > 0.5) were excluded from the downstream analysis to
reduce the number of identified false positives because of noisy
expression patterns. This resulted in 10,159 gene expression profiles
that were used in the downstream analysis.

4.5. Human data

4.5.1. Patients with liver tissue samples
For the analysis of gene expression in human liver tissue samples, a
cohort of 170 men and women of European descendent undergoing
liver surgery at the Department of General, Visceral, and Transplant
Surgery at the University Hospital of Tübingen (Tübingen, Germany)
was included in the present study. Participants fasted overnight before
collection of the liver biopsies, and in a subgroup of 77 individuals,
fasting plasma samples for the calculation of the homeostasis model
assessment of insulin resistance (HOMA-IR) were also obtained as
proposed by Matthews et al. [48]. Characteristics are shown in
Table S5A for the whole group and in Table S5B for the subgroup with
fasting plasma samples. All patients tested negative for viral hepatitis
and had no liver cirrhosis. Only samples from normal, nondiseased
tissue, judged by an experienced pathologist, were used. Informed,
written consent was obtained from all participants, and the Ethics
Committee of the University of Tübingen approved the protocol (239/
2013BO1) according to the Declaration of Helsinki. Liver samples were
taken from normal, nondiseased tissue during surgery, immediately
frozen in liquid nitrogen, and stored at �80 �C.

4.5.2. Determination of liver tissue triglyceride content
Liver tissue samples were homogenized in phosphate-buffered saline
containing 1% Triton X-100 with a TissueLyser (Qiagen, Hilden, Ger-
many). To determine the liver fat content, triglyceride concentrations in
the homogenate were quantified using an ADVIA XPT clinical chemistry
analyzer (Siemens Healthineers, Eschborn, Germany), and the results
were calculated as TAG(mg)/100 mg tissue weight.

4.5.3. Real-time PCR
For real-time (RT)-PCR and quantitative RT-PCR analyses of hepatic
mRNA expression in liver biopsies, frozen tissue was homogenized in a
TissueLyser (Qiagen), and RNA was extracted with the RNeasy Tissue
kit (Qiagen) according to the manufacturer’s instructions. Total RNA
treated with RNase-free DNase I was transcribed into cDNA using a
ccess article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1
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first-strand cDNA kit, and PCRs were performed in duplicates on a
LightCycler480 (Roche Diagnostics, Mannheim, Germany). The human
primer sequences that were used are shown in Table S8. Data are
presented relative to the housekeeping gene Rps13 using the D-D Ct
method.

4.5.4. Quantification of blood parameters
Plasma insulin was determined on the ADVIA Centaur XPT chem-
iluminometric immunoassay system. Fasting plasma glucose con-
centrations were measured using the ADVIA XPT Clinical chemistry
analyzer (both from Siemens Healthineers, Eschborn, Germany).

4.6. Data availability
The microarray data have been submitted to the GEO database at NCBI
(GSE137923: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc).
All other data generated or analyzed during this study are available
within the study and its supplementary information file. Human data
are not available at the patient level because of data protection
regulation.

4.7. Statistics

4.7.1. Metabolite data analysis
After removal of metabolites with nonimputable concentration levels
(>5 % missing values), TwoGroup from the R metabolomics package
[49] was used to compare the log2-normalized concentration levels
between the Chow and HFD-fed mice. The siRNA KD altered metab-
olites in HepG2 cells were compared using a two-way ANOVA with
experiment day as an additional covariate. Unless otherwise stated, all
metabolites showing a BenjaminieHochberg [50] corrected p-value
less than 0.05 were defined to differ significantly with respect to their
concentration. For the downstream analysis, the log2-transformed
metabolite concentrations were scaled using the square root of the
standard deviation as a scaling factor (Pareto scaling) [51].

4.7.2. Differential gene expression analysis of murine liver samples
After log2-transformation, the R package limma [52] (linear model for
microarray data) was applied to infer differential expression between
the two diet groups. We defined all genes with BenjaminieHochberg
corrected p-value less than 0.05 to be significantly deregulated.

4.7.3. Human data analyses
Data that were not normally distributed (ShapiroeWilk W-test) were
logarithmically transformed. Univariate associations between param-
eters were tested using Pearson correlation analyses. To adjust the
effects of covariates and identify independent relationships, multivar-
iate linear regression analyses were used. The statistical software
package JMP 14.0 (SAS Institute, Cary, NC) was used.

4.7.4. Correlation analyses
For each metabolite pair, Mi and Mj given, M, i¼ 1,. ,n, j¼ 1,. ,n,
isj; with n metabolites, the Pearson correlation coefficients were
obtained with R package ‘Hmisc’. Significant differences in metabolite
correlations under different dietary conditions were tested using
Steiger’s test [15] function of R’s cocor package [53].

4.7.5. Identification of main influencing factor
Principal component analysis (PCA) was performed on each set to
find the main factor separating the samples. Tested factors were as
follows: Bodyweight measured at the end of the study (BWE), liver
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triglyceride level (TAG), and administered diet. To assess whether the
factors differ between Chow and HFD, we applied the Wilcoxon signed
rank test.

4.7.6. Pathway enrichment analysis of differentially expressed
genes
Transcriptional enrichments were calculated using the R package
ClusterProfiler [54] to test for overrepresented GO [55] biological
process terms. We summarized terms that were completely contained
in another term with respect to the enriched gene list.

4.8. Regression models predicting body weight, plasma insulin,
and liver TAG
Models were fitted and analyzed using MATLAB 2020b. The signifi-
cance of enriched models for each gene group was estimated using
Fisher’s exact test.
4.8.1. Partial correlation based network integration (CoNI)
The framework (Figure 1) includes three steps carried out for each
treatment group independently: 1) Performing pairwise correlation
analysis on metabolite data set; 2) Partial correlation analysis
combining the metabolite concentrations with the gene expression
profiles; and 3) Construction of undirected, weighted graph.

1) Correlation analysis. First, for M metabolites, the MxM cor-
relation matrix was calculated. Here, for subsequent analyses, only
metabolite pairs showing a Pearson correlation p-value < 0.05
were selected.
2) Partial correlation based gene extension. For each pair of
selected metabolites, Mi and Mj given, M, i ¼ 1, . ,M, j ¼ 1, .
,M, isj and each gene Gk with k ¼ 1, .,K the partial correlation
r(MiMj*Gk) reflecting the correlation between Mi and Mj after
removing the linear effects of gene Gk were calculated using R’s
package ppcor [56]. Such a combination was denoted as a triplet.
Steiger’s test was adapted to select triplets, where the partial
correlation coefficient differed significantly from the correlation
coefficient of the respective metabolite pair. The original test as-
sesses the significance for the difference between two correlation
coefficients that have one variable in common. The significance
depends on the intercorrelation between the two variables that are
not shared, which has to be provided as an additional parameter.
To use this test and compare a partial correlation coefficient and a
correlation coefficient, the test was applied twice. The provided,
additional parameter in the first test was the correlation between Mi
and Gk, and in the second test, the correlation between Mj and Gk.
To be selected, the triplet had to significantly reject the null hy-
pothesis (Bonferroni adjusted p-value < 0.05), stating that the
correlation coefficients did not differ in both tests. The method
cocor.dep.groups.overlap of R’s cocor package [53] was used to
perform the testing.
3) Undirected graph construction and clustering. Next, an
undirected and weighted graph was generated where nodes are
formed by metabolites and genes set up the edges. Edges were
drawn if a metabolite pair correlated and this correlation was
significantly influenced by at least one gene. Several genes can
connect more than two correlating metabolites and a pair of me-
tabolites might also be connected by more than one gene. The
number of genes connecting the two respective metabolite nodes
determines the edge weight.
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4.8.2. Local controlling genes (LCGs)
Starting from each node in the network, the appearance of each gene
in all edges connecting nodes with a distance � two was counted.
Statistical significance was estimated using a binomial distribution
test. P-values were Bonferroni corrected for multiple testing and genes
with adjusted p-value < 0.05 were defined as LCGs.

4.8.3. Communities
To find densely connected subgraphs in the graph, the fast greedy
modularity optimization algorithm implemented in the igraph package
[57] was applied.
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