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Abstract: Properties such as low specific gravity and cost make polymers attractive for many
engineering applications, yet their mechanical, thermal, and electrical properties are typically inferior
compared to other engineering materials. Material designers have been seeking to improve polymer
properties, which may be achieved by adding suitable particulate fillers. However, the design process
is challenging due to countless permutations of available filler materials, different morphologies, filler
loadings and fabrication routes. Designing materials solely through experimentation is ineffective
given the considerable time and cost associated with such campaigns. Analytical models, on the other
hand, typically lack detail, accuracy and versatility. Increasingly powerful numerical techniques are
a promising route to alleviate these shortcomings. A stochastic finite element analysis method for
predicting the properties of filler-modified polymers is herein presented with a focus on electrical
properties, i.e., conductivity, percolation, and piezoresistivity behavior of composites with randomly
distributed and dispersed filler particles. The effect of temperature was also explored. While the
modeling framework enables prediction of the properties for a variety of filler morphologies,
the present study considers spherical particles for the case of nano-silver modified epoxy polymer.
Predicted properties were contrasted with data available in the technical literature to demonstrate the
viability of the developed modeling approach.

Keywords: stochastic finite element analysis; Monte Carlo simulation; particulate polymer composites;
electrical conductivity; percolation threshold; piezoresistivity; temperature effects

1. Introduction

Since the middle of the 20th century, polymers have seen rapid deployment in consumer products
and industrial applications. Concurrently, researchers have sought to improve polymer mechanical,
thermal and electrical properties by adding appropriate fillers [1–4]. Carbon black (CB) [5,6], carbon
nanotubes (CNT) [7–10] and nano-silver particles [11–15] are some common fillers used for enhancing
mechanical, thermal and electrical properties of particulate polymer composites. Industrial applications
for such materials include high-voltage and temperature devices, heaters [16–18] and electromagnetic
interference (EMI) shielding [19–21]. The vast diversity of particle materials and morphologies (shape,
dimensions, size distribution) poses significant challenges for material designers seeking to effectively
develop multifunctional particulate polymer composites that meet desired properties. Analytical
and experimental methods are available to explore the material design space. However, analytical
methods typically have limited detailedness, accuracy and versatility, while experimental methods are
associated with substantial time and cost, making them less attractive. Therefore, new methods for
predicting the properties of filler-modified polymers are sought [22–29].
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Numerical techniques, especially finite element analysis (FEA), have become popular tools for
predicting mechanical [30–33] and thermal [34–36] properties of particulate polymer composites
using a representative volume element (RVE) concept. Also, several studies explored the electrical
properties of particulate composites using numerical approaches. Pike et al. [37] are pioneers, studying
electrical properties such as the percolation threshold, i.e., the minimum amount of filler required for
establishing a transfer of electrical charge, in polymer composites using two-dimensional numerical
models involving Monte Carlo (MC) simulation. Kirkpatrick [38] and Behnam and Ural [39] also
developed two-dimensional numerical models that enabled the prediction of electrical properties of
randomly oriented and dispersed CNT in conjunction with an MC approach. Various models have
been proposed based on resistor networks to facilitate the prediction of the electrical properties of
particulate polymer composites [40–48].

The transfer of electrical charge in polymer composites is largely controlled by the quantum
mechanical phenomenon of “electron tunneling” [49–53], that is, the transfer of electron electrical charge
may occur from one particle to another through an insulator barrier if the distance between the particles
is less than an explicit value. This effect brings forth a nonlinear current-voltage relation between two
particles. Given a sufficiently high particle concentration and suitable particle dispersion, electrical
paths in the form of a continuous conducting structure or network allow electrons and thus electrical
current to flow through the material [54]. The percolation model described in Reference [55] considers
two types of electrical barriers which are mimicked by electrical resistors, i.e., a tunneling resistance
and a contact resistance; the latter relates to particles in direct mechanical contact. The combination of
these resistances again gives rise to a nonlinear current-voltage behavior. Notably, it was observed that
electrical conduction in particulate polymer composites is affected by temperature [56,57], where an
increase in temperature led to an increase in electrical conductivity.

In the context of FEA, the system of equations that represents electrical conductivity, i.e., Ohm’s
law, can be written for a linear electrical element as

Ie
i =

1
Re

(
Vi −V j

)
(1)

where Vi and Vj are the electrical potential (voltage) at nodes i and j, respectively, I and R are
correspondingly the current and resistance at element e. This expression can be written in matrix form
as follows:  Ie
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where Ke
i j is known as the electrical stiffness matrix, which is defined as
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]
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The effective electrical properties, i.e., the effective electrical conductivity of an RVE (representing
e.g., a particulate polymer composite), can be calculated as follows [44,45]:

ECi =
Ii ×D

(VL − VR)
(4)

ECeff =
n∑

i = 1

ECi (5)

where ECi and Ii are correspondingly the electrical conductivity, in units of Siemens per meter (S/m),
and electrical current density (units A/m2), at the i-th node located on the face of an RVE exposed to
an electrical charge. D is the RVE characteristic length. VL and VR are voltages that are applied to
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opposing RVE faces, i.e., a ‘back’ and ‘front’ side. ECeff is the effective electrical conductivity, with n
being the number of nodes located on each of the RVE faces exposed to an electrical charge.

The distribution of particles in polymer composites, and thus its electrical properties, are statistical
in nature. Hence, in this paper, a stochastic FEA (SFEA) framework was employed that enables
prediction of the effective electrical conductivity and percolation threshold of particulate polymer
composites. Interested readers are referred to Reference [58] for detailed information on the SFEA
framework concept, including a consideration associated with MC simulation and random number
generation for creating true randomness.

Applying mechanical strain to a polymer modified with a conductive filler such as nano-silver
particles may result in the phenomenon known as piezoresistivity, that is, resistivity changes
occur as the material is subjected to mechanical strain. This effect is the result of changing
distances between conductive particles, as well as changes in particle orientation for cases when
orientation matters, i.e., non-spherical particles (e.g., cylindrical, ellipsoidal, and disk-shaped particles).
Materials exhibiting piezoresistivity may be good candidates for making sensors that provide
deformation-based measurements.

Several numerical and analytical methods have been developed to investigate the piezoresistivity
of particulate polymer composites [59–63]. In many of these studies, a resistor network was created to
represent the particles and their electrical interaction; the polymer matrix was typically not explicitly
modeled as a continuum. Such a modeling approach, while expedient, fails to capture mechanical
interactions of the composite constituents, such as the deformation of particles due to arising stress/strain
in the composite, and hence, the final model predictions may be compromised. In contrast, the SFEA
framework employed in the presented study includes both the matrix material and embedded particles
in order to predict piezoresistivity. It is postulated that accurate results can thus be achieved since this
approach enables the calculation of particle locations, orientations, and deformations precisely as a
result of not only considering the global but also the local mechanical strain. Moreover, the effect of
material parameters Poisson’s ratio and Young’s modulus on piezoresistivity can be investigated.

Employing the SFEA framework, filler-modified polymers were herein modeled, and their
electrical properties predicted (i.e., conductivity, percolation and piezoresistivity), including the
effect of temperature. The composites comprised randomly distributed and dispersed filler particles.
Spherical nano-silver particles embedded in epoxy polymer were considered in this study. Modeling
results were compared with values from the technical literature in order to demonstrate the viability of
the developed modeling approach.

2. Overview of SFEA Framework

In order to predict the effective electrical conductivity and percolation threshold of particulate
polymer composite, an SFEA framework was created using multiple programming languages.
A schematic of the framework is depicted in Figure 1.
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Visual Basic for Applications (VBA; Microsoft, Redmond, WA, USA) programming language was
used to create a domain that connects the various modules developed for the framework. The user
interacts with the framework via the “Front End”, which was written in VBA programming language.
The Front End enables the capture of information required for the analysis, including RVE size, particle
size distribution, electrical properties (e.g., the electrical resistivity of polymer matrix as well as filler,
electrical conductance between polymer matrix and particles, the tunneling distance and electrical
conductance between particles, electrical boundary conditions), and finally parameters defining the
mesh for the FEA model. Data captured by the Front End are stored in tabulated format within
a database. An Open Database Connectivity concept was used to enable accessing the Database
Management System (DBMS) module. This method facilitates access to the database at any time during
the numerical analysis. All information saved in the DBMS module is transferred to the Monte Carlo
Simulation (MCS) module, which is the core of the SFEA framework. The MCS module was developed
in tabulated format using VBA programming language, which enables storing input parameters as well
as saving results calculated by SFEA framework as illustrated in Figure 2. The subprocess shown in
Figure 1 is iterated as part of the MCS module in order to calculate the effective electrical conductivity
and probability of passing the electrical current from one side of an RVE to the other in order to
identify the percolation threshold as the volume fraction is increased. Once a user-defined terminating
number of iterations is reached, or the standard deviation of the dataset is below a threshold set by the
user prior to starting the SFEA framework execution, the MCS module stops iterating, and calculated
results are transferred and stored in the database, which can be accessed by the user from the Front
End. In typical fashion, increasing the number of iterations will increase the accuracy of predicting the
effective electrical conductivity as well as the percolation threshold for the simulated material system.
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The MC subprocess, as illustrated in Figure 1, starts with the Random Number Generator
(RNG) module, for which a schematic is shown in Figure 3. This module facilitates the process of
generating random numbers required for creating the particulate polymer composite morphology,
e.g., particles’ coordinates and size distribution. Interested readers are referred to Reference [58] for
additional information on how the RNG module creates random numbers that conform to a given
particle size distribution. The RNG module was developed in the general mathematical programming
environment MATLAB (MathWorks, Natick, MA, USA) with the goal of creating true randomness in
the SFEA framework.

Since in an actual material, particles do not intersect with each other, i.e., they cannot occupy the
same space, the RNG module performs a collision detection for the particles contained within the RVE.
If a newly added particle intersects with either the RVE surface or other particles already within the
RVE, the particle is rejected, and a new particle is created instead. This process continues until the
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volume fraction defined by the user in the Front End is satisfied. The RNG module stores the data in
tabulate format within a database which is accessed through the FEA module for creating the finite
element model.Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 22 
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The commercial FEA software package ANSYS Workbench (Version 19, ANSYS Inc., Canonsburg,
PA, USA) was employed for creating the material model. IronPython programming language was used
for developing a customized FEA module as shown in Figure 4. Since in ANSYS Workbench the model
generation environment (ANSYS DesignModeler) is separate from the FEA solution environment
(ANSYS Mechanical), two different customized modules were developed using JavaScript programing
language. The setup enables automating of the process of reading random numbers from the database,
creating the particulate polymer composite geometry (i.e., the RVE in DesignModeler), assigning
electrical properties to the polymer matrix and the particles, defining contact between particles and the
polymer matrix as well as contact between particles (i.e., ‘contact’ implies the tunneling phenomenon),
forming electrical boundary conditions, and setting parameters required for mesh generation. Results
in terms of electrical conductivity calculated for each iteration are transferred to the MCS module for
storage in tabulated format for further statistical analyses.
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3. Steady-State Electric Conduction Numerical Model

3.1. Electrical Conduction and Percolation Threshold Modeling

Steady-state electric conduction numerical modeling was performed using the SFEA framework
for predicting the effective electrical conductivity and electrical percolation threshold of particulate
polymer composites. In the present paper, material systems with spherical-shape particles were
modeled, and it was decided to predict the electrical properties of silver nano-particles embedded
in an epoxy polymer matrix. The electrical properties of particles and matrix as shown in Table 1
were considered for the model. Parameters determining particle sizes, for use with the RNG module,
were adjusted so that the filler conforms to a distribution with average particle diameters of 3 nm,
5 nm and 7 nm with a size variation of ±5 percent from the mean. These sizes were adopted from TEM
images presented in Reference [14], where nano-silver particles were reported to aggregate forming
clusters. The present modeling approach could thus serve to explore the properties of nano-silver
clusters or an assumed macro nanocomposite with well-dispersed and distributed nano-particles.
In terms of RVE size, a desirable dimension would ensure the true randomness of the model. Hence,
as suggested in Reference [61], the RVE size was set to ten times greater than the particle dimensions,
which was found to be large enough to satisfy randomness in the model.

Table 1. Electrical properties of the polymer matrix and filler particles [10].

Epoxy Matrix Nano-Silver Particles

Isotropic Electrical Resistivity [Ωm] 1.00 × 1010 1.59 × 10-8

Three-dimensional twenty-node electric solid elements (SOLID231) were used for generating the
mesh for two electric charge plates placed at the back and the front-side of the RVE, as illustrated in
Figure 5. The chosen element, which is based on an electric scalar potential formulation, has only one
degree of freedom (voltage) at each node and can be used for modelling irregular shapes without
losing accuracy. Three-dimensional ten-node quadratic tetrahedral electric solid elements (SOLID232),
carrying only one degree of freedom (voltage) were used for modelling the polymer matrix as well as
the filler. Nodes located in the plane of contact between the polymer matrix and the electrical charge
plates were merged to avoid any discontinuity in the model and increase result accuracy.
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Two forms of contact, i.e., particle-to-matrix and particle-to-particle, were implemented to
essentially establish a numerical resistor network. The modeling concept enabling a direct
particle-to-particle electrical current is schematically depicted in Figure 6. Interested readers are
referred to Reference [58] for further information on the contact element zone simulating direct
particle-to-particle contact (in the context of heat transfer). Three-dimensional six-node quadratic
surface-to-surface structural-thermal-electric coupled field elements (CONTA174 and TARGE170) were
used for modelling electric current conduction between the RVE constituents. Since structural and
thermal aspects were not the focus of the present analysis, KEYOPT (1) was used to set the required
degree of freedom for modelling electric contact. The surface electric interaction between the polymer
matrix and particles was defined employing the concept of ‘electric contact conductance’ (ECC) per
unit area as described by Equation (6).

J = ECC(Vt −VC) (6)

where J and ECC are the current density and electric contact conductance for an electric potential
(voltage), respectively; Vt and VC are correspondingly the voltages at the target and contact surfaces.
While the ECC can be a function of temperature and pressure existing at the contact, in this study,
temperature and pressure effects were neglected. A small ECC of 10−4 S/m2 was used for defining the
contact from the polymer matrix to particles and electric charge plates. Due to this contact setting,
the polymer matrix has only a minimal contribution to the effective electrical conductivity in the
resistor network, which is akin to other works employing a resistor network method [40–48]. However,
since the present authors seek to also explore the effects of applied mechanical strain and temperature
change on the effective electrical conductivity, representing the matrix in the numerical model is crucial
for enabling sequential multiphysics simulations.
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As mentioned previously, the electron tunneling effect dominates the electrical conductivity of
particulate polymer composites, and hence, modeling this effect with the SFEA framework is a key
aspect for predicting the effective electrical conductivity and percolation behavior. A script was written
in JavaScript programming language that automatically measures the distance between particles
within the RVE, as well as the distance between particles and electrical charge plates, for defining
another type of contact in ANSYS Mechanical. If the measured distance was less than an explicit
threshold, i.e., the tunneling distance, a contact was defined that permits a transfer of electrical charge.
The minimum distance required for transferring a charge can be measured experimentally [11,12].
The ‘tunneling’ contact was created using three-dimensional six-node quadratic surface-to-surface
structural-thermal-electric coupled field elements (CONTA174 and TARGE170), which allow ‘direct
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electrical conduction’ (DEC) between particles within the RVE when the distance between particles
and the distance between particles and an electric charge plate is less than the tunneling distance.
The ECC value was approximated based on Equation (7) [64].

ρtunl =
h2

e2
√

2mλ
exp

(
4πd

h

√

2mλ
)

(7)

where m and h are the electron mass and Planck’s constant, respectively; λ and e are correspondingly
the polymer barrier height and the quantum of electricity; and d is the parameter defining the
tunneling distance. Upon the material system reaching percolation, Equation (7) affects the material
electrical resistivity, imposing a nonlinear behavior between tunneling distance and electrical resistivity.
As suggested in Reference [11], the barrier height can vary from 1 eV to 4 eV. In this study, λ was
chosen as 1.5 eV. The technical literature describes a range of experimentally measured tunneling
distances [11–13] varying from 0.5 to 5 nm. For the present analysis, a tunneling distance of 1 nm
and 1.5 nm was set for assessing percolation behavior and effective electrical conductivity. As shown
in Figure 7, electrical conductivity diminishes for tunneling distances greater than 1.5 nm for the
considered barrier height value of 1.5 eV.
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Figure 7. Electrical conductivity versus tunneling distance for different polymer barrier heights λ,
based on Equation (7).

In terms of RVE boundary conditions, a low electrical potential of 0.2 V was applied between the
electric charge plates. In the case of electrical percolation, this boundary condition produces direct
current (DC) flowing between the electrical charge plates. It is a necessary condition that the average
current density on all nodes located on the sides of the RVE with an electrical charge plate, i.e., the total
current entering and exiting the RVE, is equal. Figure 8 depicts an example of an electrical current
density distribution that was simulated after a percolation condition was achieved. It is interesting to
note that the minimum number of electrical paths required for achieving percolation is one. Therefore,
in models with low filler loading, a large portion of particles may not influence the electrical properties
of the polymer composite. Particles located in the electrical path are known as “backbone” particles [38]
with non-zero current [46].
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3.2. Electrical Piezoresistivity Modeling

The developed SFEA framework was also employed for exploring electrical piezoresistivity effects
of particulate polymer composites. For this part of the study, the average particle diameter was set to
3 nm with a size variation of ±5 percent from the mean. An RVE size of 30 nm was found to be sufficient
to achieve random material systems. For the deformation-based analyses, mechanical properties for
the filler and matrix were used as shown in Table 2.

Table 2. Mechanical properties of nano-silver particles and the polymer matrix.

Epoxy Matrix Nano-Silver Particles

Density [kg/m3] 1280 10,300
Modulus of Elasticity [GPa] 3.0 476

Poisson’s Ratio 0.4 0.36

A static structural numerical model was created using a three-dimensional ten-node quadratic
tetrahedral structural solid elements (SOLID187) for generating the finite element mesh for particles
and the matrix, as depicted in Figure 5. Three-dimensional eight-node surface-to-surface contact
elements (CONTA174 and TARGE170) were used for defining the contact between particles and the
matrix, restraining any relative displacement between a particle and the surrounding matrix.

The following boundary conditions were applied to the static structural numerical model to
simulate the displacement and deformation of particles within the RVE. A Cartesian displacement
boundary condition was applied to the RVE that restrained nodes located on one face from moving
perpendicular to the face while permitting displacements in the transverse direction. Another uniform
Cartesian displacement boundary condition was applied to the opposing face that forced all the nodes
located on this surface to displace by an explicit value in the direction perpendicular to the surface,
again with the freedom to displace laterally. To restrain the RVE from rigid body motion, a Cartesian
zero displacement boundary condition was applied to one of the RVE’s corners.

The above boundary conditions enabled applying mechanical strain to the material system and
predicting changes in composite morphology. A script was developed using JavaScript programming
language that facilitates extracting the geometry data of the deformed body (i.e., particle sizes and
location coordinates) and the saving of this information in tabulated format. This data was used
for generating a post-deformation steady-state electric conduction numerical model (as explained
in the previous section) in order to calculate the effective electrical conductivity of the deformed
material system.
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3.3. Thermal-Electrical Numerical Model

The developed SFEA framework was further used to explore the effects of temperature on the
effective electrical conductivity of a particulate polymer composite. The same material system was
herein used as described in the section on piezoresistivity modeling above. In addition to mechanical
properties, the coefficients of thermal expansion, as shown in Table 3, were used for the nano-silver
and epoxy material.

Table 3. Thermal coefficient of expansion of fillers and the matrix.

Epoxy Matrix Nano-Silver Particles

Coefficient of Thermal Expansion [K−1] 45 × 10−6 18.0 × 10−6

A sequential structural-thermal numerical model was created for calculating the effective electrical
conductivity of particulate polymer composites subjected to temperature change. The same element
types, as well as mesh properties described in the previous section, were employed for this modeling
approach since the utilized elements possess the degrees of freedom required for considering
temperature in the numerical model.

Mechanical boundary conditions were set akin to the piezoresistivity model. In addition,
a body temperature was applied to the RVE, enabling the simulation of a temperature change from
ambient conditions, i.e., an initial temperature of 22 ◦C, to an elevated temperature. The applied
mechanical-thermal boundary conditions thus impose the thermal expansion of both the particles
and polymer matrix, and in consequence, changes in the location and size of particles, which in turn
may affect the material electrical properties. The JavaScript program described in the previous section
was again used for extracting and saving particle locations and sizes for performing a steady-state
electric conduction numerical model for calculating the effective electrical conductivity following a
temperature change.

4. Results and Discussion

4.1. Effective Electrical Conductivity and Percolation Behavior

The effective electrical conductivity for an epoxy nanocomposite with nano-silver particles was
computed using the aforementioned properties for filler volume fractions ranging from 3 vol% to
30 vol% with an interval of 3 vol%. The first step of the analysis was performing a convergence
study where the effective electrical conductivity of the composite was determined for a few different
levels of mesh refinement. Results shown in Figure 9 are for the case of 21 vol% filler loading and
particle size and tunneling distance 3 nm and 1.5 nm, respectively. It was observed that the effective
electrical conductivity changed by less than 5 percent when increasing the number of nodes from
approximately 210,000 to 290,000, and hence, the mesh refinement corresponding to 210,000 nodes was
deemed to be sufficiently fine for being employed in the SFEA framework for all volume fractions.
Due to the stochastic nature of the chosen modeling approach, numerous model runs are needed for
calculating the effective properties; therefore, minimizing the number of nodes in the model is critical
for maintaining acceptable computing times required for a problem solution. Note that the spatial
particle distribution generated by the SFEA framework was already investigated in Reference [58].
Interested readers are referred to this publication for a discussion on the performance of this modeling
framework to generate randomly distributed particles inside the RVE.

As mentioned previously, the RVE effective electrical conductivity is computed and stored in each
model iteration. This data is used for statistical analyses, such as calculating the unbiased standard
deviation and variance for a dataset reflecting the mean effective electrical conductivity for a given
material configuration. Abiding by the MC simulation concept, the mean of the effective electrical
conductivity results from a set of model iterations was calculated and taken as the final effective
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electrical conductivity for a given filler volume fraction. For example, Table 4 shows the mean effective
electrical conductivity and statistical analyses performed for a material system with a filler volume
fraction of 30%, filler particle size of 3 nm, and tunneling distance of 1.5 nm. Simulation data are
further depicted in Figure 10 in the form of a normalized Probability Distribution Function (PDF),
which suggests that the results are closely normal distributed. Readers are referred to Reference [58] for
a discussion on how data calculated by the SFEA framework conforms to a normal distribution based
on statistical analysis results and acceptance criteria such as mean, median, skewness, and kurtosis
values. Note that in the present work, being mindful of required computational resources and solutions
times, the number of model iterations was limited to 25 for each material configuration.
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Table 4. Effective electrical conductivity results and statistical analyses for a silver/epoxy nanocomposite
with a particle size of 3 nm, tunneling distance of 1.5 nm, and 30 vol% filler loading.

Mean Value [S/m] 3.163 × 106

Median Value [S/m] 3.239 × 106

Standard Deviation [S/m] 0.218 × 106

Variance [S/m] 1.03 ×1011

Skewness [/] 0.432
Kurtosis −0.383

95% Confidence Interval [S/m] 0.090 × 106

Simulation results can be considered continuous random variables, and therefore, it is possible
to calculate the probability of a specific effective electrical conductivity happening within an explicit
interval using Equation (8).

P(a ≤ X ≤ b) =

∫ b

a
f (χ)dχ (8)

where P is the probability of an effective electrical conductivity occurring within an interval a and
b; f (χ) and χ are the PDF of the data set and a continuous random variable, respectively. Hence,
a Cumulative Distribution Function (CDF) can be computed for each of the various filler volume
fractions for a specific material system. For example, Figure 11 depicts the CDF graph for the material
system corresponding to Figure 10.
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filler loading.

The developed SFEA framework was used for predicting effective electrical conductivities of
different material systems, i.e., for particle sizes, D, of 3 nm, 5 nm and 7 nm and tunneling distances,
d, of 1 nm and 1.5 nm. The corresponding results are depicted in Figure 12. As mentioned earlier,
each predicted data point represents the mean value of 25 model iterations. Figure 12 also shows
experimental data, taken from Reference [14], for a specific nano-silver epoxy material before and
after thermal treatment. While the experimentally observed percolation threshold was between
5 vol% and 6 vol%, percolation was predicted to occur at higher filler loadings (i.e., >10 vol%) for the



Nanomaterials 2020, 10, 1754 13 of 21

simulated material systems. Above percolation, the predicted and experimental data are qualitatively
and quantitatively in good agreement, especially for the test data obtained for the nanocomposites
after thermal treatment. As mentioned above, a material morphology with clustered silver particles
was observed in Reference [14], whereas the present modeling approach generated homogenously
distributed and well-dispersed particles, which is likely the cause for the differences in percolation
behavior between experiments and modeling results. Nevertheless, despite morphological differences,
the SFEA framework was able to simulate material systems that closely mimic actual material behavior.
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Figure 12. Predicted effective electrical conductivity versus filler volume fraction for silver/epoxy
nanocomposites with different particle sizes (D) and tunneling distances (d). Experimental (Exp.) data
(square symbols) are taken from Reference [14], with (a) and (b) indicating tests before and after thermal
treatment, respectively.

Effective electrical conductivity data above percolation were plotted in Figure 13 to explore the
influence of the key independent modeling parameters (i.e., filler loading, tunneling distance and
particle size). From this graph, it can be inferred that, expectedly, filler loading chiefly influences
effective electrical conductivity. For the range of considered particle sizes and tunneling distances,
both parameters were found to also have significant influence. Given that the tunneling distance
is difficult to quantify compared to particle size and filler loading, and considering its impact on
modeling outputs, careful consideration should be given when exploring material designs.

Besides effective electrical conductivity, it is also of interest to assess the influence of the key
independent modeling parameters on the percolation behavior. An arbitrary yet sensible effective
electrical conductivity value of 1.0 S/m was set as the threshold for deciding that electrical conduction
through the RVE is established, i.e., electrical percolation is achieved. Furthermore, the probability of
reaching the percolation threshold for any given volume fraction was calculated using Equation (9).

Pth(E) =
A
N

(9)

where Pth is the probability of reaching the percolation threshold for a given material system; A and N
specify the number of model iterations that the effective electrical conductivity was above the threshold
value and the total number of iterations, respectively. Corresponding results are summarized in
Figures 14 and 15. Similar to the electrical conduction behavior, these results indicate the substantial
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effect that tunneling distance and particle size have on reaching percolation, with particle size being
the most significant parameter.
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threshold of 1.0 S/m.

4.2. Piezoresistivity Behavior

A possible application of silver/epoxy nanocomposites are sensors; for example, for measuring
deformation. Hence, in the second part of the present research, the SFEA framework was used to
investigate the piezoresistivity behavior of these nanocomposites. The piezoresistive behavior of
conductive filler modified polymers can be rather complex. For example, the applied tensile strain
does not simply cause the distance between filler particles to increase; while filler proximity increases
between some particles, it also decreases simultaneously between other particles due to Poisson’s effects
in a continuum material, as illustrated in Figure 16. An analysis was conducted imposing a mechanical
strain of up to 90,000 microstrain upon a material system with a particle size of 3 nm, RVE size of
30 nm, tunneling distance of 1.5 nm, and filler loading of 30 vol%. Electrical resistivity data were
computed considering three different Poisson’s ratios for the polymer matrix, i.e., 0.35, 0.4, and 0.45.
Corresponding results are shown in Figure 17 along with non-linear Gaussian curve fits. Note that
each data point in this figure was computed using a single iteration of the SFEA framework. As shown
previously, results for a specific material system are subject to considerable stochastic variation, which
becomes rather evident in the plotted datasets. Nevertheless, it can be seen that the material systems
are sensitive to applied strain in a non-linear fashion, which is in agreement with previous modeling
work on other nanocomposites with conductive platelet fillers [59]. After an initial increase in resistivity
by approximately 2.5% at about 20,000 microstrain, a decrease in resistivity by roughly 10% over the
initial value was predicted at the maximum applied strain. The data show that the matrix Poisson’s
ratio has only minor effects over a large portion of the assessed strain range. From the presented results,
two shortcomings pertaining to a potential sensor material can be noted. First, the sensor response
cannot be linked uniquely to a certain strain value as resistivity initially rises before decreasing at
higher strain values. Secondly, the considerable stochastic variation in response behavior between
different samples of the same material configuration requires careful sensor calibration.
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4.3. Temperature Effect on Effective Electrical Conductivity

Assessing the effects of temperature on the effective electrical conductivity is important
when considering applications of silver/epoxy nanocomposites. The material response at different
temperatures is affected by two physical phenomena: (i) changes in tunneling distance due to thermal
expansion effects, and (ii) the effect of temperature on electron activity. With respect to the former



Nanomaterials 2020, 10, 1754 17 of 21

phenomenon, a rising temperature changes the material volume, and therefore the distances between
particles depending on the thermal-mechanical properties of the matrix and particle filler. The other
contributing phenomenon, electron activity changing with temperature, has been described in terms of
tunneling current density for intermediate voltages, where eV ≤ λ, as given by Equation (10) [65].

J(V, T) = J(V, T0)

1 +

3× 10−9
× d2T2

λ− V
2


 (10)

where J, V, and T are current density, voltage, and temperature in degrees Kelvin, respectively;
T0 represents absolute zero Kelvin (−273.15 ◦C).

Since the developed SFEA framework explicitly considers both the matrix and particulate filler,
it enables studying the effects that both phenomena have on a nanocomposite’s electrical conductivity.
Taking the same material system as in the previous section, a temperature change was applied
to the model ranging from ambient 22 ◦C to 76 ◦C. Electrical conductivity data were computed,
and results are shown in Figure 18 considering only thermal expansion effects, whereas the influence
of temperature on electron activity as described by Equation (10) is included in the data shown in
Figure 19. As in the previous section, each data point in these figures represents only a single model
run in order to demonstrate the extent of stochastic data variation. The data shown in Figures 18 and 19
indicate that thermal expansion effects cause a slight reduction in electrical conductivity over the
given temperature range (less than 2%). However, when considering electron activity, the model data
exhibits a moderate increase in electrical conductivity (by about 7%). Clearly, both thermally-induced
phenomena are counteractive.
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5. Conclusions

A stochastic finite element analysis framework was developed that enables predicting the
electrical conductivity behavior of polymer composites with electrically conductive fillers. The analysis
framework establishes a resistor network that encompasses a continuum representation of both the
matrix material and filler particles. As such, the modeling approach enables estimating the composite
percolation behavior, and provides a means to simulate piezoresistivity and temperature effects.
Due to the parametric nature of the model, the influence of key parameters, such as particle size and
tunneling distance, can expediently be explored. The capabilities of the modeling framework were
demonstrated considering epoxy nanocomposites reinforced with silver particles. Model outputs
were contrasted with available numerical and experimental results, and good qualitative agreement
and acceptable quantitative agreement were ascertained. Reasons for quantitative differences are
seen in the nanocomposite morphology created by the model, i.e., well-dispersed and homogenously
distributed filler particles, which is in contrast with experimental works featuring materials with a
typically clustered nanoparticle morphology. Future work will explore the effects of particle clustering,
which can be implemented in the model by expanding the particle collision algorithm in the model
generation step to not only avoid particle intersection but also enforce particle clustering. The analyses
that were performed with the stochastic finite element analysis framework and presented in the present
contribution demonstrate the advantages of the developed modeling approach in terms of versatility,
time, and cost for exploring different materials systems as compared to experimental campaigns,
analytical models, and other numerical techniques.
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