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An extensive electrophysiological literature has proposed a pathological ‘slowing’ of neuronal activity in patients on
the Alzheimer’s disease spectrum. Supported by numerous studies reporting increases in low-frequency and
decreases in high-frequency neural oscillations, this pattern has been suggested as a stable biomarker with potential
clinical utility. However, no spatially resolved metric of such slowing exists, stymieing efforts to understand its rela-
tion to proteinopathy and clinical outcomes. Further, the assumption that this slowing is occurring in spatially over-
lapping populations of neurons has not been empirically validated.
In the current study, we collected cross-sectional resting state measures of neuronal activity using magnetoen-
cephalography from 38 biomarker-confirmed patients on the Alzheimer’s disease spectrum and 20 cognitively
normal biomarker-negative older adults. From these data, we compute and validate a new metric of spatially
resolved oscillatory deviations from healthy ageing for each patient on the Alzheimer’s disease spectrum.
Using this Pathological Oscillatory Slowing Index, we show that patients on the Alzheimer’s disease spectrum exhibit
robust neuronal slowing across a network of temporal, parietal, cerebellar and prefrontal cortices. This slowing effect
is shown to be directly relevant to clinical outcomes, as oscillatory slowing in temporal and parietal cortices signifi-
cantly predicted both general (i.e. Montreal Cognitive Assessment scores) and domain-specific (i.e. attention, language
and processing speed) cognitive function. Further, regional amyloid-b accumulation, as measured by quantitative 18F
florbetapir PET, robustly predicted the magnitude of this pathological neural slowing effect, and the strength of this
relationship between amyloid-b burden and neural slowing also predicted attentional impairments across patients.
These findings provide empirical support for a spatially overlapping effect of oscillatory neural slowing in biomarker-
confirmed patients on the Alzheimer’s disease spectrum, and link this effect to both regional proteinopathy and cog-
nitive outcomes in a spatially resolved manner. The Pathological Oscillatory Slowing Index also represents a novel
metric that is of potentially high utility across a number of clinical neuroimaging applications, as oscillatory slowing
has also been extensively documented in other patient populations, most notably Parkinson’s disease, with divergent
spectral and spatial features.
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Introduction
Alzheimer’s disease is a neurological disorder characterized by an
initial slow aggregation of amyloid-b protein deposits across the
neocortex, followed by a much more rapid pattern of hyper-phos-
phorylated tau accumulation. This pathological build-up of tau
‘tangles’ is mirrored by functional and structural neuronal degrad-
ation, which eventually leads to declines in cognition.1–4

Importantly, tau pathology is highly predictive of eventual cogni-
tive decline in older adults with suspected Alzheimer’s disease,
whereas links between amyloid-b accumulation and general or do-
main-specific cognitive declines are less supported.5–8 With the
increasing conceptualization of Alzheimer’s disease as a progres-
sive spectrum or continuum of pathological changes, objective
continuous measures of these changes are sorely needed for both
research and clinical evaluation. Among candidate measures for
this purpose, functional brain activity metrics have emerged as a
promising option, as these changes appear relatively early in the
course of the disease.2,9,10

Functional neuroimaging studies in Alzheimer’s disease have
overwhelmingly used functional MRI and focused on Alzheimer’s
disease-related changes during the resting-state. This literature
has generally reported that patients with Alzheimer’s disease ex-
hibit aberrant neural activity in default mode and medial temporal
regions.11–15 More generally, studies of global functional connectiv-
ity in these patients have found systematic decreases in commu-
nication between spatially disparate regions, paired with
increased local interactions.15 While these investigations have
been valuable for understanding the functional neural pathology
in patients with Alzheimer’s disease, they have largely ignored the
rapid and highly dynamic nature of neuronal information process-
ing in the human brain. Complementing this line of research, a
number of investigations have leveraged techniques with better
temporal precision to study Alzheimer’s disease. In particular, re-
search using EEG and magnetoencephalography (MEG) has proven
useful in understanding the temporal and spectral properties of
functional neuronal pathology in these patients.

The rhythmic patterning of neural activity, termed oscillations,
has been identified as a particularly useful characteristic to under-
stand functional pathology in patients with Alzheimer’s dis-
ease.16–22 Measured in cycles per second (i.e. Hz), the speed of such
oscillations provides a spectral signature of the underlying popula-
tion-level neuronal activity in cognitively normal adults,23–27 as
well as functional neuronal pathology in those with various neuro-
logical disorders.28–31 These spectrally defined patterns of neural

activity appear particularly relevant to the pathophysiology of
Alzheimer’s disease, as they have been found to covary strongly
with genetic32,33 and pathological34–37 hallmarks of the disease.
Electrophysiological investigations of patients with Alzheimer’s
disease have consistently reported stronger oscillatory activity in
the slower delta (1–4 Hz) and theta (4–7 Hz) frequencies, accompa-
nied by weaker oscillations in the faster alpha (7–13 Hz) and beta
(15–30 Hz) frequencies.16,17,19–22,38–45 As such, this pattern has been
termed a neuronal ‘slowing’ effect and is thought to bear meaning-
ful information regarding the pathological processes at play in
Alzheimer’s disease.

However, limitations persist in this extensive literature. First
and foremost, the few previous MEG and EEG studies that have
statistically tested for a neuronal slowing effect in Alzheimer’s dis-
ease have been restricted spatially20,46,47 and/or spectrally,47–49

limiting interpretation. Conversely, previous analyses reporting
co-occurring effects of increased low-frequency and decreased
high-frequency activity in Alzheimer’s disease16,17,19,34,37 have not
statistically tested whether these effects represent oscillatory
slowing within overlapping neuronal populations. A unified multi-
spectral, spatially resolved metric representing the slowing of
neural activity would be exceedingly useful in this regard. Second,
no continuous metric of this slowing has been conceived that
properly weights each functionally meaningful oscillatory rhythm
in a way that is unbiased by the natural differences in amplitude
across frequencies. While ratios of fast versus slow oscillatory
amplitudes have been suggested as such a metric,46 these ratios
do not control for bias introduced by frequencies with inherently
higher amplitudes, an effect which varies non-linearly across the
cortex. Spectrum compensation has been used towards this goal
in previous work,37 but a normalization that does not rely on the-
oretical data distributions (i.e. 1/f brain activity) that are now
known to be altered in numerous disease states would be prefer-
able.50–54

In this study, we leverage the high temporal and spatial preci-
sion of source-reconstructed MEG to provide the first direct evi-
dence for a spatially overlapping neural slowing effect in patients
on the Alzheimer’s disease spectrum. Importantly, this index was
normalized to spatially and spectrally comparable estimates of
neural power from a group of demographically matched cognitive-
ly normal participants, making it robust against non-uniform
amplitude biases across frequencies and brain regions. Termed
the pathological oscillatory slowing index (POSI; Fig. 1), this spa-
tially resolved continuous metric was generated per each biomark-
er-confirmed patient on the Alzheimer’s disease spectrum, and
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used to test for significant regions of cortical oscillatory slowing
in these patients, as well as significant relationships between
neuronal slowing, cognitive outcomes and regional amyloid-b
deposition. We hypothesized that significant slowing would be
found in cortical regions typically associated with early declines
in Alzheimer’s disease, including the middle and medial tem-
poral, inferior parietal and prefrontal cortices. In addition, we
expected that oscillatory slowing in these regions would relate to
worsened cognitive performance in patients on the Alzheimer’s
disease spectrum and would covary with the severity of regional
amyloid-b burden, indicating that this effect is indeed pathologic-
al in nature.

Materials and methods
Participants

The Institutional Review Board at the University of Nebraska
Medical Center reviewed and approved this investigation, and all
research protocols complied with the Declaration of Helsinki.
Written informed consent was obtained from each participant
(and, for participants in the Alzheimer’s disease spectrum group,
from their spouse/child informant) following detailed description
of the study. For individuals with diminished capacity to make an
informed decision regarding research participation, educated as-
sent was acquired from the participant, in addition to informed
consent of their legally authorized representative. All participants
completed the same experimental protocol. Exclusionary criteria
for both groups included any medical illness affecting CNS func-
tion, any neurological disorder (other than Alzheimer’s disease),
history of head trauma, moderate or severe depression (Geriatric
Depression Scale 5 10) and current substance abuse.

Alzheimer’s disease spectrum group

Forty-four participants were screened for recruitment into the
Alzheimer’s disease spectrum group after referral from a memory
disorders clinic where they were being treated for amnestic com-
plaints. Prior to being screened for this study, all such participants
were determined as having either amnestic mild cognitive impair-
ment (aMCI) or mild probable Alzheimer’s disease by a fellowship-
trained neurologist using standard clinical criteria.55 In addition to
one of these diagnoses, a positive biomarker (using whole-brain
quantitative amyloid-b PET scans) was also required for inclusion
into the final Alzheimer’s disease spectrum participant sample.
One participant was excluded from this group due to a major inci-
dental finding that was likely to impact cognitive function and an-
other disenrolled due to COVID-19-related health concerns. Four
additional participants were excluded after their whole-brain
amyloid-b PET scanning (see ‘Florbetapir 18F PET’ section) indicated
amyloid-b-negativity. After exclusions, 38 amyloid-b-positive par-
ticipants remained for inclusion into the Alzheimer’s disease spec-
trum group.

Healthy ageing comparison group

For comparison and normalization of the Alzheimer’s disease
spectrum group to an analogous group of cognitively normal older
adults, 20 additional participants who reported no subjective cog-
nitive concerns were screened for inclusion into the study.
Nineteen of these participants had received a biomarker test for
amyloid-b positivity within the past 5 years and were confirmed
biomarker-negative, while one participant received no such test,
but performed exceedingly well on all neuropsychological tests.
The 19 amyloid-b-negative participants were recruited based on

their prior enrolment in an unrelated anti-amyloid clinical trial in
cognitively healthy older adults; because they were discovered to
be amyloid-b-negative during the screening process, they were
excluded from participation. These participants did not report cog-
nitive disturbances, which was confirmed by our own detailed
neuropsychological assessments.

Demographics and domain-specific neuropsychological scores
for each group, as well as comparisons between groups, can be
found in Supplementary Table 1. Essential demographic factors
were matched across the groups with the exception of age, such
that patients on the Alzheimer’s disease spectrum were younger
than those in the cognitively normal group. As such, all statistical
analyses were performed with age included as a nuisance covariate.

Florbetapir 18F PET acquisition and analysis

Combined PET/CT data using 18F-florbetapir (AmyvidTM, Eli Lilly)
were collected following procedures described by the Society
of Nuclear Medicine and Molecular Imaging (3D acquisition;
single intravenous slow-bolus5 10 ml; dose = 370 MBq; waiting
period = 30–50 min; acquisition = 10 min).56 A GE Discovery MI
digital PET/CT scanner was used to acquire whole-brain quantita-
tive images of amyloid-b uptake. More details on the PET process-
ing pipeline can be found in the Supplementary material.

Neuropsychological testing

All participants completed a battery of neuropsychological tests,
after which raw scores for each participant were converted to
demographically adjusted z-scores based on published normative
data.57–60 The testing battery was developed in collaboration with
a clinical neuropsychologist specializing in memory disorders. We
focused on five cognitive domains impacted in patients with
Alzheimer’s disease: verbal memory, learning, attention and ex-
ecutive function, verbal function and processing speed (see the
Supplementary material for details). General cognitive status was
measured using the Montreal Cognitive Assessment (MoCA)61 and
the Mini-Mental State Examination.62

MEG recording and preprocessing

Participants were seated in a custom-made non-magnetic chair
with their head positioned within the MEG sensor array, and
rested with their eyes closed for 8 min. This recording duration is
more than double the current recommendations for healthy par-
ticipants63 and is on the higher end of what has been used historic-
ally in MEG studies of Alzheimer’s disease.19,33–35,37,43,64–68 All
recordings were conducted in a one-layer magnetically shielded
room with active shielding engaged. Neuromagnetic responses
were sampled continuously at 1 kHz with an acquisition band-
width of 0.1–330 Hz using a 306-sensor Elekta/MEGIN MEG system
equipped with 204 planar gradiometers and 102 magnetometers.
To control for general drowsiness, we collected the resting-state
data at the beginning of the visit, making it less likely that partici-
pants would be cognitively fatigued at the time of data collection.
In addition, an MEG technologist continuously monitored partici-
pants during data acquisition via real-time audio-video feeds from
inside the shielded room. Participants whose neural data or phys-
ical demeanour suggested that they had fallen asleep, or who
reported falling asleep or excessive drowsiness, were indicated as
such in our logs and asked to repeat the resting-state recording.
Each MEG dataset was individually corrected for head motion and
subjected to noise reduction using the signal space separation
method with a temporal extension (correlation limit: 0.950; correl-
ation window duration: 6 s).69 Only data from the gradiometers
were used for further analysis. For details regarding head surface
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digitization, coregistration, continuous head localization and pre-
processing, see the Supplementary material.

Each participant’s MEG data were co-registered with their own
high-resolution structural T1-weighted MRI data (Siemens Prisma
3 T; 64-channel head coil; repetition time: 2.3 s; echo time: 2.98 ms;
flip angle: 9�; field of view: 256 mm; slice thickness: 1 mm; voxel
size: 1 mm3) using an iterative closest-point rigid-body registration
in Brainstorm (09/03/2020 distribution)70 and, when necessary, these
fits were manually corrected following visual inspection.
Triangulated cortical surfaces were computed from the T1 MRI data
using FreeSurfer recon_all71 using default settings and imported
into Brainstorm. Individual cortical surfaces were down-sampled to
15 000 vertices (17 000 vertices including the cerebellum) for use in
MEG source imaging.

MEG analysis

After preprocessing, the MEG data were source-imaged using an
overlapping-spheres forward model, with source orientations un-
constrained to the cortical surface. This approach spatially aligns
the edge of each sphere nearest to its associated sensor with a
dilated version of the cortical envelope (meant to approximate the
inner surface of the skull) and has been found to produce compar-
able results to more computationally expensive boundary element
method approaches.72,73 A linearly constrained minimum variance
beamformer implemented in Brainstorm was used to spatially filter
the epoch-wise data based on the data covariance computed from
the resting-state recording. These source-level time-series data
were then transformed into the frequency-domain using Welch’s
method for estimating power spectral density (window = 1 s; 50%

overlap), grouped into canonical frequency bands (delta: 2–4 Hz;
theta: 5–7 Hz; alpha: 8–12 Hz; beta: 15–29 Hz) and these frequency-
wise maps were normalized to the total power across the frequency
spectrum. The norm of the three unconstrained orientations of each
of these maps was then projected onto a common FSAverage tem-
plate surface (including the cerebellum) for statistical comparisons
across participants.

These template-space neural MEG maps were used to compute a
new frequency-normalized slope metric of pathological slowing per
each participant and vertex, termed the POSI (Fig. 1). The first step of
this computation was to compute the frequency-wise patient spec-
tral deviation (PSD) per each Alzheimer’s disease spectrum patient
ið Þ and vertex ðvÞ:

PSD i; vð Þ ¼ Aði;vÞ � lðvÞCN

rðvÞCN
(1)

This step served to normalize the vertex-wise neural data with-
in each of the four frequency bands (i.e. delta, theta, alpha and
beta) per patient to the distribution of the cognitively normal
group. From these normalized maps, we then fit a linear model
across the four frequencies per participant and vertex using the
polyfit function in MATLAB and extracted the estimated slope.
These slopes represented the multi-frequency oscillatory slowing
of neural activity for each patient, relative to the cognitively nor-
mal group, and importantly, retained the native resolution of our
original source images. For interpretation, vertices with more
negative slope values would indicate a stronger oscillatory slowing
effect. Hypothesis-driven statistical comparisons were then com-
puted using these spatially resolved POSI maps.

Figure 1 Computation of the POSI. Sensor-level data were imaged to the cortical surface for all participants (top) and these spatially resolved maps
were decomposed into canonical frequency bands of interest per each vertex (bottom right). For each patient, these vertex-wise estimates of spectral
neuronal amplitude were normalized to the distribution of comparable data (i.e. from the same vertex and frequency band) from the cognitively nor-
mal group to generate spatially resolved maps of pathological spectral deviation (bottom middle). A linear model was estimated for these patient spec-
tral deviation scores as a function of frequency, and the slope of best fit was then extracted (bottom left) that represented the magnitude of neuronal
oscillatory slowing relative to the cognitively normal control group. Such a model was estimated per each vertex, which resulted in a spatially
resolved map of pathological oscillatory slowing for every patient.
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Statistical analysis and visualization

Statistical comparisons were performed, covarying out the effect
of age, using SPM12. Initial tests using parametric general linear
models were performed to investigate significant effects of spatial-
ly resolved pathological oscillatory slowing (i.e. one-sample test
versus zero), effects of clinical determination on neural slowing
(i.e. unpaired t-test between aMCI and probable Alzheimer’s dis-
ease) and relationships between this spatially resolved slowing
and cognitive function (i.e. regression of MoCA scores on POSI
maps). To account for non-uniform spatial autocorrelation in the
data, avoid the assumptions of parametric modelling and avoid
selecting arbitrary cluster-forming thresholds, threshold-free clus-
ter enhancement (TFCE; E = 1.0, H = 2.0; 5000 permutations)74 was
performed, with multiple comparisons correction set to cluster-
wise PFWE5 0.05. TFCE clusters surviving at this threshold were
then used to create logical masks that were applied to the original
statistical contrasts (i.e. vertex-wise F-values) for visualization in
Brainstorm. Peak-vertex data from these clusters were extracted
and plotted using ggplot275 for interpretation of directional effects.
All region labels for interpretation of peak-vertex locations were
derived from the Desikan–Killiany atlas.76 In order to examine the
relative contribution of each frequency band to the interpartici-
pant variability of the POSI metric, band-limited power estimates
were correlated with POSI values at each vertex using Pearson’s r
and plotted on surface maps for visualization.

The peak-vertex data from the POSI–MoCA relationship were
also used to investigate the specific cognitive domains contribu-
ting to this effect, by computing post hoc regression models be-
tween POSI values at this peak and each domain-specific cognitive
function in R.77 To determine whether relationships between gen-
eral cognitive function and POSI values were attributable to do-
main-specific cognitive impairments, causal mediation analysis
with non-parametric bootstrapping (10 000 simulations) was con-
ducted in R using the mediation package.78 In addition to this more
sensitive peak-vertex analysis (i.e. due to the smaller number of
multiple comparisons to correct), we also regressed the POSI maps
on scores from each individual cognitive domain, beyond the
effects of age. Multiple comparisons correction for these tests used
TFCE and a final threshold of PFWE50.01 (PFWE5 0.05, Bonferroni-
corrected for the five cognitive domains).

To explore the potential clinical relevance of differing spatial
patterns of neural slowing, we performed k-means clustering of
the spatial POSI data. Details of this analysis can be found in the
Supplementary material.

Linear mixed-effects modelling to test for relationships be-
tween regional amyloid-b uptake and POSI values was performed
using the nlme package in R, with the following form: POSI � SUVR
+ Age, random = (�1 j Patient/Vertex). To test the importance of this
amyloid-b–POSI relationship for neuropsychological performance,
Pearson correlations were computed for each patient between ver-
tex-wise POSI and standardized uptake value ratio (SUVR) data then
normalized using the Fisher transform. These normalized coeffi-
cients were then related to performance on the three neuropsycho-
logical domains that were previously found to covary with POSI (i.e.
attention, verbal function and processing speed), above and beyond
the effects of age, using multiple regression (Amyloid-b � POSI �
Attention + Verbal + Processing Speed + Age; lm function in R).

The utility of the POSI for predicting Alzheimer’s disease path-
ology beyond that of more straightforward spectral power derivations
was tested using two approaches. First, we performed a vertex-wise
model comparison of the previously mentioned POSI–MoCA regres-
sion and a comparable linear model of band-limited power in all four
relevant frequencies (i.e. delta, theta, alpha and beta), and calculated
differences in the Akaike information criterion (DAIC; absolute values

4 3 considered meaningful). Second, we performed model compari-
sons between the previously mentioned POSI–amyloid-b linear
mixed-effects model and similar models for each of the four spectral
frequencies, again using DAIC as our outcome metric.

Potential effects of clinical determination were examined by
adding group (i.e. aMCI versus probable Alzheimer’s disease) as an
interacting factor in previously described statistical models, includ-
ing the vertex-wise POSI–MoCA regression, the peak-vertex regres-
sions of the POSI on domain-specific cognitive functions and the
linear mixed effects models of the amyloid-b–POSI relationship.

To test the relative contribution of established functionally
defined cortical networks80 to the POSI–SUVR relationship, we
included a new covariate in the previous linear mixed-effects
model, with the following form: POSI � SUVR + Age, random = (�1 j
Patient/Network/Vertex). For each of the seven networks in the Yeo
atlas (i.e. visual, dorsal attention, ventral attention, somato-motor,
limbic, default mode and fronto-parietal), we computed this model
without the vertices from the respective network and compared
this ‘missing-region‘ model to 100 models with an equivalent
number of missing vertices from locations outside of that network.
This resulted in 100 model comparison statistics (in DAIC) per net-
work, representing the contribution of that region to the POSI–
SUVR model, relative to equivalently sized random subsamples of
the rest of the cortical surface.

Data availability

The data that support the findings of this study are available from
the corresponding author, Dr Alex I. Wiesman, upon reasonable
request.

Results
Aligning with previous research, grand averages of the spectrally
and spatially resolved neural MEG maps revealed a subjective pat-
tern of increased amplitude in lower frequencies and decreased
amplitude in higher frequencies in patients on the Alzheimer’s
disease spectrum, as compared to the cognitively normal adults
(Supplementary Fig. 1). These same MEG maps were used to com-
pute spectral deviation maps for each patient on the Alzheimer’s
disease spectrum per canonical frequency band (Supplementary
Fig. 2).

Evidence for spatially overlapping pathological
oscillatory slowing in patients on the Alzheimer’s
disease spectrum

To determine which, if any, cortical regions exhibited a significant
oscillatory neuronal slowing effect in patients on the Alzheimer’s
disease spectrum, we computed the novel spatially resolved POSI
metric (Fig. 1; see the ‘MEG analysis’ section). Subjectively, this
index indicated slowing across every lobe of the brain in the
patients on the Alzheimer’s disease spectrum; however, the mag-
nitude of this effect varied substantially across the cortex
(Supplementary Fig. 3). Statistical analysis indicated a robust effect
in these patients across a distributed network encompassing the
bilateral middle temporal (MTC), inferior parietal (IPC), medial
temporal, dorsolateral prefrontal and cerebellar cortices (Fig. 2; see
also Supplementary Fig. 4 for enhanced interpretation of this effect
on the ventral cortical surface). The strongest evidence for this ef-
fect was found in the left (x, y, z: –64, –46, –7; PFWE5 0.001) and right
(48, –57, 9; PFWE = 0.001) MTC and the left (–38, –67, –24;
PFWE = 0.003) and right (34, –50, –25; PFWE = 0.005) cerebellum. In all
of these regions, the direction of this significant slope was such
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that the amplitude of neuronal activity decreased as a function of
frequency, providing robust support for a significant pathological
oscillatory slowing effect in spatially overlapping neuronal popula-
tions in patients on the Alzheimer’s disease spectrum. Correlation
of the POSI values with band-limited estimates of neural ampli-
tude indicated that all four frequencies (i.e. delta, theta, alpha and
beta) contributed to the interparticipant variability of this metric,
with beta and theta activity predicting the POSI most robustly
(Supplementary Fig. 5).

Spatially resolved pathological oscillatory slowing
predicts general and domain-specific cognitive
function in patients on the Alzheimer’s disease
spectrum

Next, we investigated the relevance of this neural slowing effect to
cognitive impairment among patients on the Alzheimer’s disease
spectrum. To test whether any spatial patterns of pathological oscil-
latory slowing related to general cognitive status, we first regressed
each patient’s MoCA scores on the vertex-wise POSI data. This
revealed a significant relationship in a left lateralized cluster encom-
passing the middle and superior temporal cortex (STC), IPC and
supramarginal (SMG) cortices (Fig. 3), with the most robust evidence
for such an effect in the left STC (–52, 15, –22; PFWE = 0.024) and SMG/

IPC (–38, –46, 39; PFWE = 0.032). In all cases, the nature of this relation-
ship was such that greater slowing of oscillatory neuronal activity
predicted poorer cognitive function (peak rpartial = 0.42). No evidence
for a significant effect of clinical determination (i.e. aMCI versus
probable Alzheimer’s disease) on this POSI–MoCA relationship was
found (all vertex-wise P’s 4 0.05, uncorrected). Additionally, a model
comparison approach indicated that the POSI was a better predictor
of MoCA scores than simple spectral power derivatives across the
vast majority of brain regions (Supplementary Fig. 6).

We then aimed to determine which cognitive domains might
account for the association of general cognitive status with patho-
logical oscillatory slowing. Towards this goal, we extracted POSI
scores from the vertex exhibiting the strongest relationship with
MoCA scores (left STC) and regressed these data on neuropsycho-
logical composite scores representing five cognitive domains (i.e.
memory, learning, attention, verbal function and processing
speed) known to be impacted in patients on the Alzheimer’s dis-
ease spectrum. Importantly, all five cognitive domains were sig-
nificantly correlated with MoCA scores (learning: r = 0.71; verbal
function: r = 0.83; memory: r = 0.35; processing speed: r = 0.69;

Pathological slowing significantly predicted attention
(rpartial = 0.44; P = 0.006), processing speed (rpartial = 0.36; P = 0.028)
and verbal function (rpartial = 0.34; P = 0.039), indicating that the

Figure 2 Regions of significant pathological oscillatory slowing in patients on the Alzheimer’s disease spectrum. Surface maps indicate the results of
a one sample test, controlling for age, of the vertex-wise POSI data against a null hypothesis of no significant slowing effect (i.e. an average slope of
zero). The colour scale bar on the right indicates the statistical (F) values of this test. Importantly, only vertices exhibiting a significant slowing effect
(PFWE 5 0.05) are shown in colour. Plots surrounding the surface maps represent the POSI relationships from the four vertices exhibiting the strongest
slowing effects at the level of each patient, with frequency (in Hz) on the x-axis and patient spectral deviation (in z-scores) on the y-axis. Light grey
lines represent lines of best fit from the linear model for each patient and the black line indicates the line of best fit across all patients, along with the
corresponding model confidence intervals in salmon. For each frequency band of interest, box plots represent conditional means, first and third
quartiles, and minima and maxima, and violin plots show the probability density. L/R = left/right.
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relationship between pathological oscillatory slowing and cogni-
tive declines in the Alzheimer’s disease spectrum group is primar-
ily due to deficits in these domains, rather than memory (P = 0.352)
or learning (P = 0.567). Supporting this dissociation, post hoc
Bayesian testing of the non-significant relationships between POSI
values and learning (BF01 = 2.24) and memory (BF01 = 1.73) indi-
cated evidence for the null hypothesis. Mediation testing using the
weighted average of the attention, processing speed and verbal
cognition scores revealed that the POSI–MoCA relationship was
fully mediated by impairments in these domains [DR2 = 0.493,
P50.001; indirect effect, average causal mediation effect = 14.10,
P = 0.001; average direct effect = 3.57, P = 0.488]. Interestingly, the
relationship between neural slowing and processing speed at
this location was moderated by clinical determination, such that
patients with probable Alzheimer’s disease exhibited a signifi-
cantly stronger pathological relationship (rpartial = 0.53) than
those with aMCI [rpartial = 0.12; Fig. 3, bottom right; t(33) = 2.41,
P = 0.022]. No other cognitive domains exhibited a significant
interaction effect of clinical determination.

Spatially unrestricted (but more statistically conservative) tests
for relationships between the POSI and cognitive domain scores

across all vertices also indicated a robust and widespread effect of
neural slowing on processing speed, which spanned the IPC and
MTC bilaterally (Supplementary Fig. 7; peak: left IPC, –41, –65, 33;
PFWE = 0.006; peak rpartial = 0.40). No other cognitive domains exhib-
ited a significant relationship to neural slowing using this ap-
proach after corrections for multiple comparisons.

The spatial patterning of this slowing effect also provided
meaningful information regarding domain-specific cognitive
impairments. Spatial clustering identified five relatively distinct
spatial ‘subtypes’ of neural slowing in our patient group, and the
attentional abilities of participants varied significantly across
these subtypes [F(4,32) = 4.80, P = 0.004; Supplementary Fig. 8].
These spatial patterns did not significantly predict differences in
the other four domains.

Spatially resolved oscillatory slowing predicts the
severity of regional amyloid-b burden

We next examined whether the severity of this spatially resolved
pathological neural slowing effect covaried with the magnitude of
regional amyloid-b burden, by computing a nested linear mixed-

Figure 3 Relationships between pathological oscillatory neuronal slowing and cognitive function in patients on the Alzheimer’s disease spectrum.
Surface maps indicate the results of a regression of the vertex-wise POSI data against general cognitive function, as measured by the MoCA. The col-
our scale bar below the maps indicates the statistical (F) values of this test. Importantly, only vertices exhibiting a significant relationship between
POSI and MoCA scores (PFWE 5 0.05) are shown in colour. The scatterplot to the right of the surface maps represents the POSI–MoCA relationship from
the vertex exhibiting the strongest such effect (left STC; –52, 15, –22), with POSI residuals (in z/Hz) on the x-axis and MoCA residuals (in test units) on
the y-axis. Clinical determination of each patient is indicated by the colour of each data-point [aMCI = blue, probable Alzheimer’s disease (AD) = red].
The line of best fit for this relationship is overlaid in black, along with the corresponding confidence intervals in grey. Scatterplots below indicate
similar relationships using POSI data from the same peak vertex for predicting domain-specific cognitive function, with the y-axes representing at-
tention residuals on the left, verbal function residuals in the middle and processing speed residuals on the right (all in z-score units). Note that separ-
ate fit lines, confidence intervals and partial correlation coefficients are overlaid for each Alzheimer’s disease spectrum subgroup for the relationship
between the POSI and processing speed (bottom right), as a significant interaction effect of clinical determination on this relationship was present (no
such interaction was observed for attention or verbal function).
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effects model that incorporated shared spatial variability between
these metrics at the level of each patient. The relationship be-
tween neural slowing and amyloid-b burden was highly significant
[t(570037) = –61.97, P50.001], such that greater regional amyloid-b
burden was associated with stronger oscillatory slowing across
cortical regions, and this effect was greater in patients with prob-
able Alzheimer’s disease than those with aMCI [t(570036) = –9.52,
P5 0.001; Fig. 4]. The POSI was also a better predictor of regional
amyloid-b burden than simple spectral power derivatives in all
four frequency-bands (i.e. delta, theta, alpha and beta;
Supplementary Table 2).

The strength of the relationship between amyloid-b burden
and neural slowing also predicted domain-specific cognitive abil-
ities, such that patients with a stronger pathological (i.e. more
negative) relationship between these two metrics exhibited wors-
ened attention impairments (rpartial = 0.45; P = 0.007). Finally, by
parcellating the MEG and PET data using an established atlas of
human functional networks80 and probing the relative importance
of each of these networks to the neural slowing–amyloid-b rela-
tionship using a modified leave-one-out model comparison ap-
proach, we found that visual, limbic, dorsal attention and somato-
motor networks contributed to this effect more substantially than
ventral attention, fronto-parietal and default mode regions
(Supplementary Fig. 9).

Discussion
Despite decades of research, direct support for an oscillatory slow-
ing effect in spatially overlapping neuronal populations in patients
on the Alzheimer’s disease spectrum has been lacking. Further, a
singular continuous metric of oscillatory neuronal slowing has not
been developed, making it difficult to interpret whether such a
slowing effect is in fact pathological in nature (i.e. as evidenced by
relationships with cognitive decline and amyloid-b and/or tau bur-
den). Using extensive neuropsychological testing, quantitative
amyloid-PET and a novel continuous metric of spatially resolved
oscillatory slowing based on MEG, we find evidence for a robust os-
cillatory neuronal slowing effect in a bilateral network of middle
and medial temporal, IPC, dorsolateral prefrontal and cerebellar
cortices in patients on the Alzheimer’s disease spectrum.

Oscillatory slowing in left-lateralized MTC, SMG and IPC of
these patients significantly predicted poorer general cognitive sta-
tus (i.e. MoCA scores). Post hoc testing of these POSI data against
cognitive domain scores indicated that the relationship between
oscillatory slowing and cognitive decline was due to specific
effects on attention, verbal function and processing speed and not
the hallmark neuropsychological deficits of Alzheimer’s disease
(i.e. learning and memory). This indicates that, at least in the later
stages of the Alzheimer’s disease spectrum, neural slowing is a
better indicator of executive and attentional impairments, rather
than amnestic ones. It should be noted, however, that relation-
ships between neural slowing and memory are still possible, or
perhaps even likely, in the earlier preclinical or prodromal stages
of the disease when amnestic impairments are beginning to
emerge and are more variable across individuals. Further, spatial
variations in this oscillatory slowing over the cortex were strongly
related to the intensity of regional amyloid-b uptake, and the
strength of this relationship predicted attention function, indicat-
ing a link to proteinopathy and providing additional evidence that
this is a pathological effect. In some cases (e.g. POSI relationships
with processing speed and amyloid-b), these pathological effects
were stronger in patients with clinical determinations of probable
Alzheimer’s disease than those with aMCI, indicating a clinical
progression of these effects along the Alzheimer’s disease spec-
trum. These findings not only advance our understanding of

functional neuronal pathology in Alzheimer’s disease, but also
serve to validate a new measure of pathological oscillatory slowing
that can be applied to a diverse range of patient populations.

Our finding of a spatially resolved oscillatory slowing effect in
distinct regions of the temporal, parietal and prefrontal cortices in
patients on the Alzheimer’s disease spectrum provides strong evi-
dence that the classical effect of increased low-frequency and
decreased high-frequency activity in these patients does in fact
represent a slowing of neuronal activity in spatially overlapping
cell populations. While the spatial resolution of modern non-inva-
sive neuroimaging limits our ability to conclude that this is neces-
sarily occurring at the single cell or columnar level, it can now be
said that such an effect is observed with the same neuronal popu-
lation on the scale of local processing (e.g. at the level of individual
gyri and sulci). By weighting our slowing metric both spatially and
spectrally to comparable neuronal activity in a biomarker-negative
group of cognitively normal older adults, we also show that this ef-
fect is not biased by natural frequency-wise differences in oscilla-
tory amplitude. Additionally, as the weighted POSI scores retain
this slowing information at the level of each patient, we are also
able to use these whole-brain slowing maps to provide evidence
for the pathological nature of this effect. Specifically, we found
that oscillatory slowing in the temporal and parietal cortices pre-
dicted worse attention, processing speed and verbal function, as
well as a measure of global cognitive function (i.e. MoCA scores) in
patients on the Alzheimer’s disease spectrum. A spatial clustering
analysis also uncovered five relatively distinct spatial ‘subtypes‘ of
neural slowing in our sample and indicated that participants with
different slowing subtypes exhibited systematic differences in at-
tentional abilities. This finding is preliminary due to our limited
sample size, but might indicate a valuable future direction for this
work in using the POSI to differentiate disease subtypes in patients
on the Alzheimer’s disease spectrum.

This slowing effect also related robustly to a hallmark feature
of Alzheimer’s disease: regional accumulation of amyloid-b pla-
ques, and the strength of this pathological relationship predicted
attentional abilities. This provides additional evidence for the
pathological nature of spatially resolved oscillatory slowing in
Alzheimer’s disease and indicates a potentially exciting new line
of research into the epidemiological timeline and mechanisms of
this relationship. A limited literature has explored the relation-
ships between band-limited neural activity and proteinopathy in
patients with Alzheimer’s disease. In a small sample of amyloid-b-
positive patients with Alzheimer’s disease (n = 7), Coomans et al.36

found a bidirectional relationship between spectral neural power
and tau pathology, such that greater regional tau deposition pre-
dicted increased delta activity but decreased theta and alpha activ-
ity. This suggested a potential relationship between Alzheimer’s
disease proteinopathy and a generalized slowing of neural activity,
which our findings confirm, albeit with amyloid-b pathology ra-
ther than tau. Another study by Ranasinghe et al.34 related band-
limited neural synchrony (i.e. the statistical similarity of neural ac-
tivity between regions) to regional amyloid-b and tau pathology,
and found that hypersynchronous neural activity in the delta and
theta range in patients with Alzheimer’s disease colocalized with
both tau and amyloid-b, whereas hyposynchrony in the alpha
band colocalized only with tau. Additional work confirmed the
alpha–tau relationship post-mortem.35 Although they did not test
for such an effect statistically, these studies suggested a potential
relationship between Alzheimer’s disease proteinopathy and slow-
ing of neural connectivity, indicating that the effects we report
herein might propagate to interregional neural communication.
Thus, computing our novel metric of neural slowing on band-lim-
ited functional connectivity data and then relating this to
Alzheimer’s disease proteinopathy would be a valuable next

A. I. Wiesman et al.2184 | BRAIN 2022: 145; 2177–2189

https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab430#supplementary-data
https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awab430#supplementary-data


direction for this work. It should also be noted that these studies
all leveraged the substantial variability of PET and MEG metrics
across cortical regions, rather than across participants, for statis-
tical modelling. In contrast, Nakamura et al.37 tested for differences
in spectral neural power between participants with and without
amyloid-b positivity who were either asymptomatic or in the pro-
dromal stages of the disease. In contrast to our findings, they
found that amyloid-b-positive participants exhibited stronger
alpha activity in prefrontal cortices compared to those who were
amyloid-b-negative. However, this discrepancy is very likely due to
differences in patient populations, as our group was at a more
advanced stage of the disease. Future research investigating neur-
al slowing in participants who are healthy and/or in the preclinical
stages of Alzheimer’s disease would thus be useful to resolve this.

Our observed relationship between amyloid-b burden and
neural slowing in these patients implies a relative shift towards
macro-scale hypoexcitability in brain regions with higher amyloid-
b accumulation. Previous work has found a hyperexcitable effect
of amyloid-b on neural activity in the preclinical-to-prodromal
stages of the disease in humans33,37,81 and in non-human animal

and in vitro Alzheimer’s disease models that do not fully recapitu-
late the late-stage disease process.82–89 This effect shifts towards
hypoexcitability at later stages of Alzheimer’s disease,33,90–92 signi-
fying synapse failure and neurodegeneration. Given that patients
were required to exhibit clinically significant cognitive impair-
ments for inclusion in our study, our findings provide further sup-
port for a shift towards a hypoexcitable effect of amyloid-b on
neural activity in the later stages of Alzheimer’s disease, repre-
sented here as a macro-level shift towards activity in slower fre-
quencies. The logical next step in this line of research is to model
this neural slowing–amyloid-b relationship in a cohort of cogni-
tively normal older adults, with the expectation that regional
amyloid-b burden would instead predict a relative acceleration of
neural activity in the preclinical/asymptomatic stages of
Alzheimer’s disease pathology.

While exciting, these findings are not without limitations. First,
the spatial resolution of MEG in detecting neural sources farther
away from the sensors is relatively low, particularly for data
recorded from gradiometers. Although the robust oscillatory slow-
ing effect that we observed extended into parahippocampal

Figure 4 Relationships between pathological oscillatory neuronal slowing, regional amyloid-b uptake and cognition in patients on the Alzheimer’s
disease spectrum. Surface maps on the top left indicate the mean vertex-wise uptake of amyloid-b (Ab), measured by quantitative 18F florbetapir PET,
in SUVRs. The spatial correspondence between this regional amyloid-b uptake and the pathological oscillatory slowing effect is indicated by the plot
on the top right, where the individual model fit (with corresponding confidence intervals) between these measures over all cortical vertices is indi-
cated for each patient by the coloured fit lines and the overall model fit (again with confidence intervals) is overlaid in black. The comparable plot on
the bottom left indicates the significant interaction effect of clinical determination on the POSI–amyloid-b relationship. The plot on the bottom right
indicates the impact of the magnitude of this pathological relationship (x-axis) on attentional abilities (y-axis), with the partial correlation coefficient,
line-of-best-fit and corresponding confidence intervals overlaid. Note that more negative values on the x-axis indicate a stronger pathological rela-
tionship between regional amyloid-b burden and neural slowing. For all plots, clinical determination is indicated by the colour of each data-point/fit
line (aMCI = blue, probable Alzheimer’s disease = red).
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cortices bilaterally, we are unable to make strong claims here
about whether such a slowing effect exists in the hippocampus
proper, as might be expected. Targeted studies using data recorded
from magnetometers (i.e. rather than gradiometers) and/or recent
advances in MEG sensor technology,93 coupled with discrete mod-
els of medial temporal cortex structures, might better address this
question. Second, although we made efforts to include as wide a
range of patients on the Alzheimer’s disease spectrum as possible,
our inclusion requirement of clinically significant cognitive impair-
ments likely limited our sample to relatively late stages of the dis-
ease. As mentioned above, expanding our sample size and
extending study recruitment to earlier preclinical and/or prodromal
participant groups will provide key insights into the non-linear
effects of amyloid-b on neural function across the Alzheimer’s dis-
ease spectrum, and might also reveal additional, more variable/sen-
sitive relationships between neural slowing and cognition. A more
detailed assessment of the relationships between spatial subtypes
of neural slowing and variations in clinical presentation would also
be possible with a larger and more heterogeneous patient sample,
and might enhance our understanding of the neural bases of less-
common Alzheimer’s disease variants (e.g. posterior cortical atro-
phy, logopenic variant primary progressive aphasia and behaviour-
al/dysexecutive predominant subtypes). Third, while our novel
neural slowing metric did relate to many clinical and pathological
hallmarks of Alzheimer’s disease in this study, it is clear that add-
itional research regarding its specificity and sensitivity are required.
If these studies indicate a strong clinical potential for this metric,
then this approach to modelling multi-spectral functional neural
pathology as a single continuous metric at the level of individual
patients might lend itself exceedingly well to a clinical setting,
similar to the current approach of reading normalized PET scans by
neurologists or radiologists.

Before closing, the potential utility of the POSI for future re-
search and clinical use should also be noted. The POSI represents a
robust multi-spectral derivative of simple MEG resting-state
recordings and can be computed at the level of individual patients,
making it an ideal candidate for the tracking of functional neural
changes and clinical progression. Further, we found this metric to
be a better predictor of both general cognitive function and region-
al amyloid-b burden than simple spectral power derivatives, signi-
fying the potential value of this approach. Although we
conceptualize and validate this metric in patients on the
Alzheimer’s disease spectrum, a number of other neurological and
psychiatric disorders have been characterized by similar neuronal
slowing patterns. Most notably, patients with Parkinson’s disease
have exhibited a robust slowing effect in previous MEG/EEG stud-
ies94–97 that track cognitive decline longitudinally.98 Children born
very preterm have also shown similar neuronal changes,99 as have
individuals with neuropathic pain.100,101 However, these studies
suffer from similar shortcomings regarding spatial specificity and
links to clinical outcomes. Using the POSI, a much clearer, more
spatially resolved understanding of these neuronal pathologies is
possible, with hopes of progressing these lines of research towards
clinical intervention and early detection.
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alpha, delta, and theta oscillations govern cognitive processes.
Int J Psychophysiol. 2001;39(2-3):241–248.

25. Baillet S. Magnetoencephalography for brain electrophysi-
ology and imaging. Nat Neurosci. 2017;20(3):327–339.

26. Ward LM. Synchronous neural oscillations and cognitive proc-
esses. Trends Cogn Sci. 2003;7(12):553–559.

27. Buzsaki G, Draguhn A. Neuronal oscillations in cortical net-
works. Science. 2004;304(5679):1926–1929.

28. Wiesman AI, O’Neill J, Mills MS, et al. Aberrant occipital dy-
namics differentiate HIV-infected patients with and without
cognitive impairment. Brain. 2018;141(6):1678–1690.
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