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Simple Summary: As the dog shows unique and peculiar reproductive characteristics, assisted
reproductive techniques such as in vitro maturation and in vitro fertilization have not been well-
established compared with those of other mammals. Our recent work demonstrated the interplay
between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and cumulus-oocyte com-
plexes in dogs. Here, we provided for the first time a comprehensive proteomic analysis of OC-EVs.
A total of 398 proteins were identified in all OC-EVs samples. A functional enrichment analysis
indicated that these core proteins were involved in the key cellular metabolic process related to
oocyte maturation and embryonic development. The current comprehensive description of the
canine OC-EVs proteome would provide a fundamental resource for further understanding canine
reproductive physiology, the interaction of sperms with female counterparts during fertilization,
early pregnancy, and establishing an efficient system of in vitro embryo production.

Abstract: Dogs (Canis lupus familiaris) have unique and peculiar reproductive characteristics.
While the interplay between in vitro oviductal cell-derived extracellular vesicles (OC-EVs) and
cumulus-oocyte complexes in dogs has begun to be elucidated, no study has yet provided extensive
information on the biological content and physiological function of OC-EVs and their role in canine
oocyte development. Here, we aimed to provide the first comprehensive proteomic analysis of OC-
EVs. We identified 398 proteins as present in all OC-EVs samples. The functional enrichment analysis
using Gene Ontology terms and an Ingenuity Pathway Analysis revealed that the identified proteins
were involved in several cellular metabolic processes, including translation, synthesis, expression,
and protein metabolism. Notably, the proteins were also involved in critical canonical pathways
with essential functions in oocyte and embryo development, such as ERK/MAPK, EIF2, PI3K/AKT,
and mTOR signaling. These data would be an important resource for studying canine reproductive
physiology and establishing a successful in vitro embryo production system in dogs.

Keywords: canine oviduct; exosomes; extracellular vesicles; proteomics

1. Introduction

Cells release different types of extracellular vesicles (EVs) in the extracellular microen-
vironment [1]. They affect recipient cells directly through the transfer of bioactive cargo
(mRNA, proteins, and lipids) or indirectly through affecting the cellular epigenome [2,3].
EVs and exosomes have been isolated from various types of cells and biological fluids such
as saliva [4], blood plasma [5], and urine [6]. Concerning reproductive fluids, they can be ob-
tained from the uterine [7], seminal [8], follicular [9], and oviductal fluids [10]. Given their
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ubiquitous role, it has been proposed that EVs and exosomes isolated from reproductive
samples are closely related to gamete and embryo development [11,12]. In 2013, Al-Dossary
et al. dubbed the exosomes derived from the oviductal fluid as “oviductosomes” [13] based
on their site of origin. There is markedly increasing interest in understanding oviduct-
derived EVs for their potential physiological roles in the reproductive process, such as
sperm capacitation, oocyte maturation, and embryo development [10,14,15].

Our recent studies have demonstrated that canine in vitro oviductal cell-derived extra-
cellular vesicles (OC-EVs) affect not only the viability, proliferation rate, and gene/protein
expression of cumulus cells [16] but, also, exert regulatory functions on cumulus–oocyte
complexes (COCs) by enhancing oocyte development via the EGFR/MAPK signaling
pathway [17]. Moreover, the proteins derived from oviductal EVs could regulate the
physiological functions of gamete and embryos [18,19].

Previous proteomic research demonstrated the protein composition of the oviductal
fluid. Those proteomes have been suggested as a potential tool for understanding repro-
ductive physiology [20–24]. However, few systematic studies are unraveling the molecular
content of the OC-EVs to understand their possible roles in gamete/oocyte/embryo devel-
opment in the canine reproductive system. Therefore, this study would provide valuable
information regarding the protein content and its molecular function with the signaling
pathway in OC-EVs.

The proteomic content of oviductal EVs has been studied in different species. For ex-
ample, mouse oviductal fluid contains plasma membrane Ca2+-ATPase 4a and epididymal
sperm adhesion molecule 1, molecules that play an essential role in sperm capacitation and
fertility [15,25]. Similarly, in bovines, 319 proteins were identified in EVs from the oviduct;
several of these proteins were involved in fertilization and embryo development [10].

In this study, we aimed to describe the proteome of canine OC-EVs. This endeavor
is essential, given the unique reproductive characteristics of bitches compared with other
mammals: at ovulation, the oocyte is in prophase I and will undergo maturation into a
metaphase II in the oviductal canal after a period of 48–72 h [26,27]. Therefore, understand-
ing the protein composition of canine OC-EVs can provide valuable information for the
establishment of a successful in vitro maturation system.

Therefore, our efforts in this research were directed towards characterizing canine OC-
EV protein compositions by employing liquid chromatography-tandem mass spectrometry
(LC-MS/MS) and its potential physiological relevance following a functional analysis of the
resultant set of proteins. This comprehensive study in canine species will form a platform
to suggest the potential role of EVs in canine oocyte development and bring new insight
into the EV contributions to establishing stable assisted reproductive techniques in canine
reproduction.

2. Materials and Methods
2.1. Chemical

The chemicals used in this study were obtained from Sigma-Aldrich Co., LLC. (St. Louis,
MO, USA) unless otherwise stated.

2.2. Collection of Conditioned Medium and Isolation of Canine In Vitro Oviductal Cell-Derived
Extracellular Vesicles

In the present study, we collected the OC-EVs from oviduct cells that were obtained
from our previous research [16,17,28–30]. Each sample was isolated from different individ-
uals, and the cryopreserved in vitro oviduct cells maintained their epithelial characteristics
(positive for cytokeratin) after thawing, as described in our previous study [17]. In this
study, oviduct cells from three different individuals were used for collecting OC-EVs.
Briefly, the cryopreserved canine oviduct cells were thawed and cultured at the same vol-
umes of medium containing 10% fetal bovine serum (FBS) with 1 µg/mL of progesterone
(P4) for 24 h. The medium was then exchanged with the same volumes of medium contain-
ing exosome-depleted FBS (System Biosciences, San Francisco, CA, USA) with 1 µg/mL of
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P4 and cultured for an additional 24 h. Then, the supernatant was retrieved and centrifuged
for 30 min at 2000× g at 4 ◦C. The Total Exosome Isolation Reagent (Life Technologies,
Carlsbad, CA, USA) was used for collecting OC-EVs using the manufacturer’s instructions.
First, the cell supernatant was centrifuged at 2000× g for 30 min at room temperature
to remove any cells and debris. After that, the supernatant was transferred into a new
sterilized tube without disturbing the pellets, and the Total Exosome Isolation Reagent
was added proportionally (1:1) to the volume of supernatant using the manufacturer’s
instructions. The mixtures were vortexed and incubated at 4◦C overnight. The sample was
centrifuged at 10,000× g for 1 h, and the supernatant was discarded without disturbing the
exosomal pellets. The pellets were stored at 4 ◦C until further proteomic experiments.

2.3. Characterization of Canine In Vitro Oviductal Cell-Derived Extracellular Vesicles

The morphology and size of the OC-EVs was evaluated by transmission electron
microscopy, as previously described [16,17]. Briefly, the OC-EVs were obtained from
10 mL of the culture medium, and the samples were diluted in 200 µL of nuclease-free
water. The suspensions were then transferred to copper 200-mech Formvar-coated carbon
stabilized grids and allowed to adsorb to the grid for 4 to 5 min. After wiping out the
suspensions with filter paper, 5 µL of 1% aqueous uranyl acetate was applied to the grid
to stain the EVs for 30 sec, and then, the staining reagent was wiped out with filter paper.
After rinsing out the grids with drops of deionized water (3 times for 10 sec each), the
samples were allowed to air dry for 5 min. Finally, the analysis was performed using
a LIBRA 120 transmission electron microscope (Carl Zeiss, Oberkochen, Germany) at
110kV. The concentration, size, and intensity of the oviduct-derived EVs was evaluated by
NTA (Nanosight LM10, Malvern, UK). In brief, the purified EVs were diluted in ~1-mL
phosphate-buffered saline, and then, the mean, mode, standard error of the mean, and
concentration of particles were recorded by NTA 2.3 software (Nanosight LM10, Malvern,
UK). The concentration of particles was adjusted to achieve ~50 vesicles in one screen to
obtain appropriate counting for quantification. With the identical system setting values,
the measurements of the EVs were performed.

2.4. Preparation of Canine In Vitro Oviductal Cell-Derived Extracellular Vesicles Protein Fraction
by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis and in-Gel Tryptic Digestion

For the preparation of the extracellular protein fraction, the pellets containing OC-EVs
were suspended in 20-mM Tris-HCl (pH 8.0, 100 µL). The OC-EVs were incubated in a
denaturation buffer containing 2% sodium dodecyl sulfate (SDS) and 25-mM ammonium
bicarbonate for 1 h at room temperature. Then, the mixture was centrifuged for 10 min
at 18,000 rpm to remove cell debris. The protein concentration was determined by using
the bicinchoninic acid method. The 20 µg of crude protein mixtures of the OC-EVs were
fractionated by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-
PAGE) before protein identification (Figure S1). Tryptic digestion for the MS/MS analysis
was performed as previously described [31]. According to the molecular weight, SDS-
polyacrylamide gels were divided into a total of ten fragments. Sliced gels were destained
with a solution containing 50% acetonitrile and 10-mM ammonium bicarbonate. Then,
the gels were washed with distilled water, followed by 100% acetonitrile. A reducing
solution composed of 10-mM dithiothreitol was treated to the remaining proteins in each
gel, and an alkylation solution containing 55-mM iodoacetamide was added to break the
disulfide bonds in the proteins. After washing the gels with distilled water, the fragments
of the gels were digested with trypsin (Promega, Madison, WI, USA) at 37 to 38 ◦C for
16 h. Then, extraction of the digested peptides was performed with an extraction solution
(50-mM ammonium bicarbonate and 50% acetonitrile containing 5% trifluoroacetic acid
(TFA)). The final extracts were lyophilized, and the samples were dissolved in 0.5% TFA
for LC-MS/MS.
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2.5. Protein Identification with Liquid Chromatography with Tandem Mass Spectrometry Analysis

Digested peptide samples (10 µL) were concentrated using an MGU-30 C18 trapping
column (LC Packings, Amsterdam, The Netherlands) and eluted from the column. Then,
the concentrated tryptic peptides were directed onto a C18 reverse-phase column (10 cm ×
5 mm I.D.; Proxeon Biosystems, Odense, Denmark) at a flow rate of 120 nl/min. Peptides
were eluted by a gradient of 0–65% acetonitrile for 100 min. All MS and MS/MS spectra
were acquired in a data-dependent mode with an LTQ-Velos electrospray ionization Ion
Trap mass spectrometer (Thermo Scientific, Dreieich, Germany). Three MS/MS scans of the
most abundant precursor ions with the dynamic exclusion feature enabled were selected
from each full MS (m/z range 400–2000) scan. For protein identification, MS/MS spectra of
at least one peptide were analyzed by MASCOT v2.4 (Matrix Science, Inc., Boston, MA,
USA). Tolerance of the oxidation of methionine, carbamidomethylation of cysteines, two
missed trypsin cleavages, and the peptide was 0.8 Da, and mass tolerance of the fragment
was 0.8 Da for searching parameters. The genome sequence database was downloaded
from the National Center for Biotechnology Information and used for protein identification.
The mol% was calculated by using an exponentially modified protein abundance index
(emPAI) generated by MASCOT. The MS/MS analysis was performed at least three times
for each sample, and the MS/MS data were filtered according to a false discovery rate
(FDR) criterion of 1%.

2.6. Bioinformatic Analysis for the Characterization of Identified Canine In Vitro Oviductal
Cell-Derived Extracellular Vesicles Proteins by Proteomic Methods

A Venn diagram (https://bioinformatics.psb.ugent.be/webtools/Venn (accessed on
14 February 2020)) was created by combining the gene proteins of each of the three canine
biological samples to identify the common proteins of the OC-EVs within these samples.
The overrepresentation analysis (Fisher’s exact test) of the common proteins identified
was performed using PANTHER (version 15.0 released 14 February 2020) with the FDR
correction method by applying a significance threshold of FDR < 0.05 [32]. The overrep-
resented GO terms, biological processes (BPs), molecular functions (MFs), and cellular
components (CCs) were summarized with REVIGO (reduce + visualize Gene Ontology,
http://revigo.irb.hr (accessed on 14 February 2020)) to avoid redundant GO terms [33].
The nomenclature of the BPs, MFs, and CCs used the terms of the Gene Ontology Con-
sortium [34]. The core analysis generated with the Ingenuity Pathway Analysis software
(IPA; http://ingenuity.com (accessed on 14 February 2020)) identified the biofunctions and
canonical pathways (p-value < 0.01, using the right-tailed Fisher’s exact test), as well as
the networks using the list of common proteins from three biological samples of canine
OC-EVs. Additionally, the molecular activity predictor analysis was used to identify the
relevant molecules associated with particular biofunctions based on a hypothesis-driven
approach.

3. Results
3.1. Characterization of In Vitro Oviductal Cell-Derived Extracellular Vesicles

OC-EVs were obtained using the well-established methodology described in our
previous research [16,17]. We confirmed that OC-EVs have a spherical shape of 150–180
nm in diameter (Figure 1a). A nanoparticle tracking analysis (NTA) identified particles
175.3 ± 5.7 nm in size with concentrations of 4.6 ± 0.3 × 108 particles/mL (Figure 1b).
The previously published work from our group showed that exosomal-specific markers
(CD9, CD81, and CD63) were expressed in OC-EVs [16,17]. Besides, the absence of the
non-exosomal-specific protein (calnexin) was confirmed in the samples in the previous
study. Therefore, these data indicated that the successful isolation and purification of
canine OC-EVs could be further applied to a proteomic analysis.

https://bioinformatics.psb.ugent.be/webtools/Venn
http://revigo.irb.hr
http://revigo.irb.hr
http://ingenuity.com
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Figure 1. Characterization of canine OC-EVs. (a) Morphological characterization of EVs isolated from in vitro cultured
oviduct cells using transmission electron microscopy (Scale bar = 100 nm). Black arrows indicate EVs. (b) Characterization
of EVs regarding particle size, concentration, and relative intensity using a nanoparticle tracking analysis (NTA). Data are
shown as means ± standard error of the mean. OC-EVs: canine in vitro oviductal cell-derived extracellular vesicles.

3.2. Functional Enrichment Analysis of Common Proteins Identified in Canine In Vitro Oviductal
Cell-Derived Extracellular Vesicles
3.2.1. Gene Ontology Analysis for Canine In Vitro Oviductal Cell-Derived Extracellular
Vesicle Proteomes

A comprehensive LC-MS/MS proteomic analysis was performed to evaluate the OC-
EV protein compositions. A total of 1038 proteins among the three groups were identified
(Table S1). The number of shared proteins identified in the OC-EVs of the three biological
samples evaluated was 398 (38.3% of the total) (Figure 2 and Table S2).
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Figure 2. Numbers of proteins identified in the samples derived from the canine in vitro oviductal cell-
derived extracellular vesicles. Venn diagram showing 398 shared proteins between three biological
samples of canine in vitro oviductal cell-derived extracellular vesicles.

Importantly, from those samples, several EV marker proteins, including heat shock
protein (HSP) 70, HSP90, and cytosolic proteins (annexins and Ras-related proteins), were
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identified. In contrast, calnexin (an intracellular protein used as a negative marker of EVs)
was not identified in the analysis, consistent with our previous Western blot results [17].
We describe the top 20 of the identified 398 shared proteins from the OC-EVs in Table S3,
and the protein with the highest percentage of relative abundance in these samples was
vimentin. A Gene Ontology (GO) analysis was conducted to gain insight into the potential
physiological relevance of EV proteins. This analysis identified 169 biological processes
(BPs; Table S4A) highlighting 84 parental BPs (Table S4B), 54 molecular functions (MFs;
Table S4C), including 42 parental MFs (Table S4D), and 65 cellular components (CCs; Table
S4E) also highlighting 42 parental CCs (Table S3F) using the list of all 398 shared proteins
from the OC-EVs. The top 10 nonredundant GO terms from these three categories are
shown in Figure 3.
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The GO analysis highlighted the physiological relevance of the OC-EVs proteins in the
metabolism. In addition, the overrepresentation analysis by PANTHER identified several
metabolic pathways, such as the tricarboxylic acid cycle, pentose phosphate pathway, and
ATP synthesis (Table S4G). The classes of proteins defined by PANTHER with the highest
fold enrichment were hydratase, Hsp90 family chaperone, and chaperonin (Table S4H).

3.2.2. Ingenuity Pathway Analysis for Canine In Vitro Oviductal Cell-Derived Extracellular
Vesicle Proteomes

To highlight the specific biological processes underpinning the function of the OC-EVs,
the Ingenuity Pathway Analysis (IPA) was used to identify the novel biofunctions, canoni-
cal pathways, and network of these enriched OC-EV core proteins. We performed a core
analysis using the dataset of 398 shared proteins against all identified 1038 proteins (Table
S2). The core analysis using the list of 398 shared proteins in the OC-EV proteomes iden-
tified 500 biofunctions, 120 canonical pathways, and 18 statistically significant networks
enriched with OC-EV core proteins (Table S5).

The main biofunctions were the initiation of translation of the protein, the decay of
mRNA, and the metabolism of the protein (Table 1 and Table S5A), giving support to our
previous GO analysis. The most statistically significant canonical pathways included EIF2
and the regulation of elF4 and p70S6K signaling (Table 2 and Table S5B), both involved
in protein synthesis. In this sense, the network with the highest number of molecules
identified (31/398) was associated with protein synthesis and RNA damage and repair, as
well as RNA post-transcriptional modification (Table S5).

Table 1. The top ten biofunctions identified using the list of 398 common proteins from three
biological samples of canine in vitro oviductal cell-derived extracellular vesicles.

Diseases or Functions
Annotation Defined by

Ingenuity Knowledge Base
Categories p-Value # Molecules

Initiation of translation
of protein Protein synthesis 2.81 × 10−52 49

Decay of mRNA RNA damage and repair 8.95 × 10−50 44
Nonsense-mediated

mRNA decay RNA damage and repair 7.67 × 10−48 42

Translation Protein synthesis 1.39 × 10−42 66
Metabolism of protein Protein synthesis 7.94 × 10−40 112

Synthesis of protein Protein synthesis 1.19 × 10−39 76
Translation of protein Protein synthesis 4.66 × 10−39 62

Necrosis Cell death and survival 5.92 × 10−39 171
Expression of protein Protein synthesis 6.81 × 10−37 65

Cell death of osteosarcoma cells Cell death and survival,
and organismal injury 5.45 × 10−32 34

# Molecules: represent those identified in the list of 398 common proteins from three biological samples of canine
in vitro oviductal cell-derived extracellular vesicles.

Next, the representative 120 canonical pathways (p-value < 0.01) and the top ten of
canonical pathways were provided in Table S5B and Table 2, respectively.

The key canonical pathways essential to oocyte maturation, folliculogenesis, and
embryo development were identified, including ERK/MAPK, EIF2, PI3K/AKT, and mTOR
signaling (Table 2 and Table S5B). In this regard, Figure 4 and Figure S2 show the canonical
pathways ERK/MAPK signaling and EIF2 signaling, respectively, highlighting in grey
color the common proteins identified in OC-EVs.
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Table 2. The top ten canonical pathways identified using the list of 398 common proteins from three
biological samples of canine in vitro oviductal cell-derived extracellular vesicles.

Canonical Pathway Defined by Ingenuity
Knowledge Base p-Value # Ratio

EIF2 Signaling 5.01 × 10−51 0.25
Regulation of eIF4 and p70S6K Signaling 3.98 × 10−27 0.20

mTOR Signaling 1.26 × 10−18 0.13
Coronavirus Pathogenesis Pathway 7.94 × 10−16 0.15

Remodeling of Epithelial Adherens Junctions 3.16 × 10−15 0.24
Actin Cytoskeleton Signaling 3.16 × 10−14 0.11

Epithelial Adherens Junction Signaling 1.58 × 10−13 0.13
Integrin Signaling 1.00 × 10−11 0.10

Protein Ubiquitination Pathway 2.51 × 10−11 0.08
Glycolysis I 7.94 × 10−11 0.35

Ratio: # of common proteins from three biological samples of canine in vitro oviductal cell-derived extracellular
vesicles/# of molecules that define the canonical pathway based on the Ingenuity Knowledge Base.
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Figure 4. Common proteins identified in the three replicates of canine in vitro oviductal cell-derived extracellular vesicles
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The OC-EVs are involved in distinguishable functions of core proteins. For example,
the molecule activity predictor analysis identified several proteins that belong to the
canonical pathway (ERK/MAPK signaling) and participate in oocyte maturation and
cumulus cell expansions (Figure 5).
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Figure 5. Molecules associated with the canonical pathway (CP) ERK/MAPK signaling in the function of two stages of
oocyte development. The Ingenuity Knowledge Base defines both CPs. (a) The relationship between MAPKs, RAS, and
Hsp27 with oocyte maturation in ERK/MAPK signaling. (b) The relationship between MAPKs with the expansion of the
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bio-function. The solid line is for direct interaction, and the dashed line is for indirect interaction.

As described in Figure 5a, multiple factors, including MAPK1, ERK1/2, P38 MAPK,
RAS, and HSP27, are involved in oocyte maturation [35–38]. Concerning the expansion of
the cumulus–oocyte complex, P38 MAPK, MAPK1, and ERK1/2 derived from OC-EVs are
involved in this process (Figure 5b), which is consistent with our recent findings [16,17].

4. Discussion

Canine oocyte maturation possesses a unique event in which ovarian follicles release
immature prophase I oocytes, requiring an additional 48–72 h to undergo maturation
in the oviductal canal [26,27,32]. The interaction between the oviduct secretome and
oocytes is pivotal to the meiotic and cytoplasmic maturation of the oocytes. Hence, as a
continuation of our previous studies, we characterized the OC-EVs and analyzed their
protein contents to better understand their involvement in the oocyte maturation process
in this unique species. The current results dig into the pathways controlled through the
OC-EVs to regulate the canine oocyte maturation and early embryo development. Several
studies have been reported on the molecular cargo of the oviductal EVs in different species;
however, there is a lack of information in canine species.

In bovines, a mass spectrometry analysis identified 319 proteins in the oviductal EVs,
where 97 proteins were exclusively expressed in in vivo EVs, 47 proteins were expressed
only in vitro, and 175 proteins were common [10]. A functional analysis of the resultant pro-
teins revealed essential pathways involved in sperm–oocyte binding and fertilization [10].
Additionally, a mass spectrometry and DAVID functional annotation clusters analysis iden-
tified 336 clusters of proteins in bovine oviductal EVs (170 were differentially abundant
across the estrous cycle) that suggested the involvement of the proteins in metabolism and
gamete–oviduct interactions [39]. Furthermore, a shotgun proteomics and bioinformat-
ics analysis identified the proteome of bovine oviductal fluid and revealed 266 secreted
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proteins (109 (41%) of them were shared for both in vivo and in vitro conditions). Our
LC-MS/MS results showed a total of 1038 proteins in the three biological samples, sharing
398 common proteins. In fact, the qualitative proteomics of EV cargoes are highly variable
in both biological and technical replicates, with a higher incidence among the former. We
observed 40% identical proteins in our three samples, a number within the range (35–60%)
of overlapped peptide lists from pairs of technical replicates [40]. Tiruvayipati et al. [41]
recently reported that only 17% could be detected as common proteins within the same
cell line, which is very smaller than what we detected (~40%). Moreover, they found that
there is an average variance (i.e., relative standard deviation) between the quantitative
protein analysis within the same line up to 47%. Furthermore, the issue of interbiological
(47%) and intrabiological variations (45%) was recently highlighted within the urinary-
derived EVs [42]. Indeed, LC-MS is regarded as a highly complex analytical technique, and
the proteomics experiments based on this technique can be subject to a large variability
despite recent advances in technological and computational tools [43]. Therefore, future
studies with larger sample sizes are required to facilitate more accurate estimations among
biological variations and to reduce the biological variability among the samples.

The current pathway analysis results indicated the involvement of the proteins in
cell growth, metabolism, immunomodulation, and extracellular matrix components. A
functional analysis revealed the possible relations of the proteins to the local immune
system, gametes maturation, fertilization, and early embryo development [44]. Several
studies unveiled the molecular contents of oviductal EVs and were reviewed in Almiñana
and Bauersachs [45]. In felines, EVs contain three-fold more proteins than in bovines and
are enriched in proteins related to energy metabolism, membrane modification, and repro-
ductive function. A total of 1511 protein groups were identified through ultraperformance
liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) [46]. Notably, a
comprehensive analysis of bovine oviduct EVs revealed significant differences in hundreds
of differentially expressed genes in frozen and fresh oviduct epitheliums [19].

Oviduct EVs exert physiological actions on different spatial levels (Figure 6). Lee
et al. [16] indicated that oviduct EVs upregulated the EGFR/MAPK signaling pathway
in the canine cumulus cells on the level of oocyte maturation,. Moreover, oviduct EVs
enhanced oocyte maturation and cumulus cell viability and proliferation, as well as re-
duced the production of reactive oxygen species and apoptotic rates. Additionally, ac-
cording to our previous studies [16,17,28], we found that oviduct cells exposed to proges-
terone significantly improved the oocyte and cumulus cell development via the EGFR and
MAPK(ERK)1/3 signaling pathways. Therefore, we assumed that progesterone would
partially modify the protein content of EVs in this study. In the current study, the OC-EVs
analysis identified several proteins that belong to ERK/MAPK signaling (Figure 5), such as
MAPK1, ERK1/2, P38 MAPK, RAS, and HSP27. These pathways are involved in oocyte
and cumulus proliferation and expansion [17,35–38]. Paradoxically, canine oviduct EVs at
high concentrations might perturb oocyte maturation through targeting the TGFβ pathway
via mir-375 [47]. On the embryonic level, oviduct EVs transferred mRNA and microRNA
(miRNA) and altered the bovine embryo transcriptome [19]. In a murine model, supple-
menting an embryo transfer medium with oviduct EVs improved birth rates by preventing
apoptosis and promoting differentiation [48]. On the oviduct level, a juxtracrine effect of
oviduct EVs on the surrounding oviduct cells is also possible. An in vitro model showed
that a culture with EVs derived from the oviductal mesenchymal cell line increased the num-
ber of ciliated cells in the Mullerian epithelial cell line, suggesting a juxtracrine/paracrine
effect of oviduct cells in modulating their cell functions [49]. On the sperm level, as pre-
viously mentioned, EVs regulate sperm functions and capacitation [13,15,46,50], while
there is scant information about the effects of oviduct EVs on canine sperm functions. A
recent report showed that using dog oviduct EVs improved their post-thaw motility and
prevented a premature acrosome reaction of red wolf spermatozoa [51].
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Figure 6. The proposed paracrine and juxtracrine actions of the oviductal cells-derived extracellular vesicles (OC-EVs) on
the oocyte, sperms, embryos, and the oviduct cells. OC-EVs can mediate cargo transfer to the cells, such as the MAPK/ERK
pathway, actin, and cofilin, for oocyte maturation and meiosis. Metabolic enzymes such as protein kinase (PK) and GAPDH
can affect sperm metabolism as well. Moreover, some other proteins such as HSP90 and endoplasmic reticulum-related
proteins can affect early preimplantation embryo development.

Notably, several proteins were detected as associated with the actin cytoskeleton
(Table S3), such as actin, cofilin, transgelin, and lamin. The cofilin-actin pathway is essential
for meiotic development and cytokinesis during oocyte maturation [52]. A previous
study suggested that actomyosin-cofilin pathways regulate meiotic spindle migration and
cytokinesis during bovine oocyte maturation [53]. During cytokinesis, the intermediate
filament vimentin (Table S3) contributes to the cleavage furrow, crucial for normal cell
division. A slight distortion in the normal regulation of vimentin and other intermediate
filament assembly/disassembly is associated with cytokinetic failure, aneuploidy, and
binucleation, resulting in cell cycle distortion and cellular senescence [54,55].

Additionally, some metabolic enzymes were also detected, such as pyruvate kinase
and glyceraldehyde-3-phosphate dehydrogenase (Table S3), which are key players in
glucose metabolism in the cell [56]. A Gene Ontology analysis (Table S4) and IPA (Table S5)
showed that OC-EVs contain proteins associated with different biological processes and
canonical pathways involved in carbohydrate, lipid, and protein metabolism. Similarly,
recent findings suggest that EVs regulate metabolism in COCs and/or embryos [11,23,39].
Besides, proteins associated with the pathways involved in embryonic development [57,58],
such as actin, cyclin-dependent kinases, and several intermediate filaments, were also
detected (Table S5).
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The results also showed that OC-EVs contain numerous ribosome and RNA-binding
proteins and other proteins involved in the process of protein synthesis, which may possess
different RNAs to regulate gene expression and RNA degradation. They might transfer
ribosomal constituents to the COCs and/or embryos (Figure 3) [59]. Moreover, protein
processing in the rough endoplasmic reticulum is a fundamental process needed for cell
survival in which the synthesis, folding, post-translational modification, transport, and
sorting of proteins and some lipids occur [60,61]. Several proteins associated with rough
endoplasmic reticulum functions were detected in the isolated EVs, such as endoplasmin
(HSP90), 40S ribosomal protein S26, and 60S ribosomal protein L13a (Tables S1 and S2).

A functional analysis of the OC-EVs revealed processes related to cell death and
survival (Table 1), indicating the possible role of EVs in regenerative effects on damaged
cells of the oviductal canal, including the oocytes and/or the embryos [62]. Notably,
studying the proteomics of oviductal EVs highlights the possible effects on embryonic
development. Several studies reported the positive effects of oviduct-EVs on embryonic
development in different species. In bovines, oviduct epithelial cell-derived EVs increased
the embryo cell number (trophectoderm and inner cell mass) and the post-vitrification
survival, in addition to the alteration of essential transcripts expression [14,63], rendering
them superior quality. Moreover, in vitro-produced embryos were able to uptake in vivo
oviduct EVs during the culture and increased the blastocyst rate, prolonged the embryo
survival, and improved the embryo quality, and this was confirmed through the functional
proteomics analysis [10].

Collectively, the extensive characterization of the protein cargo of OC-EVs revealed
proteins that are associated with oocyte maturation and embryo development competence.
Additionally, they may be associated with a variety of signaling processes that occur
between the oocyte and cumulus cells, as well as cell death and survival. Our findings
provide a strong basis for highlighting the potential function of OC-EVs as a paradigm for
establishing a reliable system for in vitro oocyte maturation, in vitro fertilization, and the
in vitro culture of preimplantation embryos in canine species.
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5/11/2/573/s1, Figure S1: SDS-PAGE protein separation. Figure S2: Common proteins identified in
the three replicates of canine in vitro oviductal cell-derived extracellular vesicles that participated
in the canonical pathway EIF2 signaling. Table S1: List of proteins identified in the canine in vitro
oviductal cell-derived extracellular vesicles from three different individuals. Table S2: List of common
proteins identified in the three replicates of the canine in vitro oviductal cell-derived extracellular
vesicles. Table S3: Top 20 of the identified 398 shared proteins from three biological samples of
the canine in vitro oviductal cell-derived extracellular vesicles. Table S4: Gene Ontology (GO) and
PANTHER analysis of the protein clusters of the in vitro oviductal cell-derived extracellular vesicles.
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Abbreviations

EVs Extracellular vesicles
OC-EVs In vitro oviductal cell-derived extracellular vesicles
COCs Cumulus–oocyte complexes
EGFR Epidermal growth factor receptor
MAPK Mitogen-activated protein kinase
LC-MS/MS Liquid chromatography-tandem mass spectrometry
NTA Nanoparticle tracking analysis
HSP Heat shock protein
GO Gene Ontology
BPs Biological processes
MFs Molecular functions
CCs Cellular components
IPA Ingenuity Pathway Analysis
FBS Fetal bovine serum
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
TFA Trifluoroacetic acid
FDR False Discovery Rate
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