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Distinct rich and diverse clubs regulate coarse
and fine binocular disparity processing: Evidence
from stereoscopic task-based fMRI

Kritika Lohia,1 Rijul Saurabh Soans,1,2,3,6,* Rohit Saxena,4 Kabir Mahajan,5 and Tapan K. Gandhi1

SUMMARY

While cortical regions involved in processing binocular disparities have been studied extensively, little is
known on how the human visual system adapts to changing disparity magnitudes. In this paper, we inves-
tigate causal mechanisms of coarse and fine binocular disparity processing using fMRI with a clinically vali-
dated, custom anaglyph-based stimulus. We make use of Granger causality and graph measures to reveal
the existence of distinct rich and diverse clubs across different disparity magnitudes. We demonstrate
that Middle Temporal area (MT) plays a specialized role with overlapping rich and diverse characteristics.
Next, we show that subtle interhemispheric differences exist across various brain regions, despite an
overall right hemisphere dominance. Finally, we pass the graph measures through the decision tree and
found that the diverse clubs outperform rich clubs in decoding disparity magnitudes. Our study sets
the stage for conducting further investigations on binocular disparity processing, particularly in the
context of neuro-ophthalmic disorders with binocular impairments.

INTRODUCTION

Stereopsis is a fundamental feature of the human visual system (HVS) that is essential for the reconstruction of the depth dimension of the

world. The HVS is able to compute this due to the horizontal separation of the eyes that introduce tiny horizontal differences in the retinal

images of objects. These differences – termed binocular disparities – are the first step toward the evaluation of stereopsis.1 Consequently,

understanding the underlying neural mechanisms of binocular disparities has important implications, particularly in the assessment and treat-

ment of eye disorders such as strabismus and amblyopia,2–11 interaction with virtual reality,12,13 and inverse problems in computer vision.14–16

Previous investigations on binocular disparities have revealed the presence of disparity-specific regions across dorsal and ventral visual

streams includingV3A,MT+/V5, V7, lateral occipital (LO) and intraparietal sulcus (IPS).17–22While these regions serve as the physiological basis

for stereoscopic depth perception, the underlying neural activity covaries with disparity magnitudes within detectable ranges23 across both

visual streams. Preston TJ et al.24 found a positive correlation of BOLD signal with the disparitymagnitude for dorsal visual streamwhile having

no correlation with the ventral visual stream. Subsequently, Wang F et al.25 utilized a larger range of binocular disparities to investigate this

disparity-response curve and confirmed the dominance of the dorsal visual stream; but, they did not find amonotonically increasing functional

magnetic resonance imaging (fMRI) response with the disparity magnitude. However, the observed correlation in these studies is not intrinsic

but instead arises as a result of specific causal interactions within their integrated network.26 Understanding these causal interactions would

provide valuable insights into the neural underpinnings of the variations in stereoacuity thresholds observed among different individuals.

For example, higher stereoacuity thresholds have been reported in patients with impaired eye alignment disorders such as amblyopia,7 stra-

bismus27 and induced anisometropic populations.28 Moreover, visually healthy controls could also exhibit sub-normal stereoacuity. Deepa

et al.29 reported that only around 13% of their tested populationmet the criterion for the normal level of stereopsis. Almost 45% of their study

population had borderline stereopsis and the remaining 42%had reduced stereopsis. If themeasuring test is kept the same, then perceptually

this can only happen if there is distinct neural processing of varying disparity sizes. Therefore, changes in effective connectivity can serve as

important biomarkers for extracting clinically relevant information frompatientswith impaired stereopsis. Recently, one study30 utilized resting

state fMRI to investigate causal interactions among several cortical regions in amblyopic patients. The authors report that the stereoscopic

anomalies present in the amblyopic patientsmay result from the changes in effective connectivity of the higher-order visual regions. However,

the use of resting-state functionalMRI (rs-fMRI) as an experimental designwould limit the interpretations of relationship between the topology
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of brain networks and the stereoscopic depth perception or to other aspects of brain function.31,32 Thus, it remains an open question how the

complex topological properties of human brain networks are related to adapting to changing disparity magnitudes. This holds significant

importance toward developing a holistic understanding of stereoscopic depth perception.

Ouranalysis isbasedonGranger causality (GC)33 – awidelyusedapproach inexploringbrainnetworkcausality – functional segregation (within-

network connectivity) and functional integration (between-network connectivity).34,35 Specifically, we use GC to construct directed networks to

derive degree (D) and participation coefficients (PC).36 Each node in the community structure has a distinct role depending upon their D and

PC.36,37 The high-degree nodes that tend to be closely connected among their communities are called the rich clubs,38 whereas the higher PC

nodes are called diverse clubs.39 Until recently, the rich club was thought to be critical for global communication and considered as an integrative

andstablecoreof brain regions that coordinates the transmissionof information across thenetwork.38,40However,BertoleroMAetal.39 suggested

that the higher PC nodes tend to interact even more strongly with other communities. While the brain network changes under different experi-

mental conditions,41–43 a comprehensive understanding of rich and diverse clubs can help identify the neural substrate of disparity magnitude

processing. Further, in order to investigate the existence of rich-diverse dichotomy under a clinically relevant range of disparity magnitudes, we

appropriately modify our digital version (digital stereoacuity test – DST44) of a random dot-based test – TNO (The Netherlands Organization)

and subsequently utilize itwithin the fMRI setting.We chose TNObecauseof its superior performance to contour-based stereotests.45,46 Although

TNOisoneof themostwidelyusedclinical tests formeasuringstereopsis, employingwell-controlledandclinicallycomparablestereoscopicstimuli

in an fMRI setting can further help aid clinicians in establishing a stronger correlation between TNO thresholds and the fMRI results of the patients.

Another obvious related question concerns the interhemispheric differences associated with disparity processing. Some studies23,47,48

have suggested bilateral and right hemispherically inclined roles of areas V3A and IPS, respectively, for the extraction and processing of

stereoscopic depth perception. Contrarily, Wang F et al.,25 reported the involvement of V3, V3A and MT + only in the right hemisphere.

Moreover, other studies19,49 have also identified a general dominance of the right hemisphere in the perceptual processing of stereopsis.

These studies provide mixed evidence regarding the processing of disparity across hemispheres. Interestingly, there have been no studies

addressing the interhemispheric differences specific to the processing of disparity magnitudes.

In this study, we hypothesized that: (1) there are unique rich anddiverse clubs catering toprocessingof different disparitymagnitudes; (2) if the

identified rich and/or diverse club members yield a greater disparity-decoding performance and rank higher in feature importance, they are

deemed to play significant roles in the processing of disparity magnitudes; (3) there are interhemispheric differences in the significant rich

and/or diverse club members across different disparity magnitudes. Overall, our hypotheses revolve around the idea that the rich and diverse

clubs play distinct roles in the complexbrain topology and further contribute to revealing unique anddistinct patterns during stereoscopic depth

perception.

RESULTS

Group-level fMRI activations across different disparity magnitudes

Figure 1 illustrates the overall experimental setup and the fMRI block design used in the static depth experiment. The psychometric curve

(Figure 2) showed an overall increase in percent correct responses with disparity magnitude except at 480 arc-sec wherein the performance

Figure 1. Overall experimental setup at the scanner

Participants lay in supine position in theMR scanner with their left- and right-hand index fingers placed on separate button pads (Lumina 3G controller) to indicate

the 3D-shape (‘k’ or ‘l’) in the static depth experiment. The fMRI block design (left inset view) shows the occurrence of two experimental blocks followed by a

fixation block wherein each block lasted for 20 s. The ‘k’ shape in the experimental block is for illustration purposes only. The actual ‘k’ or ‘l’ shape was visible

only when viewed stereoscopically with the NNL visual goggles (right inset view) and the superimposed red and blue films on left and right eye, respectively.
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was greater compared to 800 arc-sec condition. The 120 arc-sec condition showed a less than chance (Pc: Proportion correct = 0.33) perfor-

mance and was therefore excluded in further analyses. Next, we performed group analysis followed by cluster correction usingClustsim (refer

to STAR methods section) which revealed activation maps for contrasts 800 > SN (Figure 3A), 480 > SN noise (Figure 3B) and 240 > SN

(Figure 3C). The clusters that survived the uncorrected cluster-forming p-threshold of p < 0.001 for overall alpha (probability that the given

cluster is greater than cluster-size threshold) threshold ofp< 0.05 for all three conditions are detailed in Table S1.We also observed consistent

activations in post-central and pre-frontal cortex pertaining to button-press50 and generic task executions51,52 in all disparity-task conditions.

Since these were not the primary focus of our research hypotheses, we only selected the clusters associated with stereoscopic depth percep-

tion task. Further, Table S2 shows the details of all ROIs derived from these clusters across both hemispheres.

Rich and diverse clubs across the right hemisphere

In the next step, we constructed networks by applyingGC to the ROIs derived (Table S2) from activation analysis. TheDavg and PCavg obtained

using BCT across all regions and disparity conditions for RH after removing the effects of shape are shown in Figures S1–S6. Next, we selected

the brain regions with high Davg (median-value over 80th percentile and above) and found that the diverse clubmembers included: (1) MT and

V4 during 800 arc-sec condition and (2) SPL and MT during 240 arc-sec condition and 3) MT, PIT and V3A during 480 arc-sec condition. By

selecting the brain regions with high PCavg (median-value over 80th percentile and above), we found that the rich club members included:

(1) V3, MT and SPL during 800 arc-sec, (2) MT and PIT during 240 arc-sec condition, and (3) PIT, V1 and MT during 480 arc-sec condition.

The common rich and diverse club members included: (1) MT during the 800 arc-sec condition, (2) MT during the 240 arc-sec condition,

and (3) regions MT and PIT during the 480 arc-sec condition. For further analysis, we used the Quade test with shape as a covariate coupled

with post-hoc tests (Tukey-Kramer) for pairwise comparisons across 3D conditions that showed: (1) Pin coefficient of V4 (F = 3.71, df = 2; p =

0.0285) was significantly different for the 800 and 480 arc-sec conditions (median: 16.344 &�11.155; p= 0.0211; see Figure 4A) respectively, (2)

Pin coefficient of V3A (F = 3.16, df = 2; p = 0.0496) was significantly different for the 800 and 240 arc-sec conditions (median: 11.55 & �10.448;

p = 0.0466; see Figure 4B) respectively. When shape is not considered as a covariate, following comparisons across 3D conditions are re-

vealed: (1) Din of V4 was significantly different (F = 3.79, df = 2; p = 0.0264) for the 240 and 480 arc-sec conditions (median rank: 46 & 28;

p = 0.0230) respectively, (2) Din of MT was significantly different (F = 5.57, df = 2; p = 0.0054) for the 240 and 480 arc-sec conditions (median

rank: 42.5 & 21; p= 0.005) respectively, (3) Dout of regions V2 (F = 3.24, df = 2; p= 0.0443) and SPL (F = 5.76, df = 2; p= 0.0045) were significantly

different for the 240 and 480 arc-sec conditions (median rank: 59.5 & 33; p= 0.041 andmedian rank: 60.5 & 25.5; p= 0.011), (4) Pin coefficient of

V2 was significantly different (F = 3.44, df = 2; p = 0.0365) for the 800 and 480 arc-sec conditions (median: 57 & 32; p = 0.0424) respectively, (5)

Pin coefficient of V3 was significantly different (F = 3.37, df = 2; p = 0.039) for the 800 and 480 arc-sec conditions (median: 58.5 & 26; p = 0.046)

respectively, (6) Pin coefficient of V4 (F = 4.95, df = 2; p = 0.0093) was significantly different for the 800 and 240 arc-sec conditions (median:

57.5 & 30; p = 0.0211) respectively and for 240 and 480 arc-sec conditions (median: 30 & 57.5; p = 0.017) respectively, and (7) Pin coefficient of

V3A was significantly different (F = 3.27, df = 2; p = 0.0428) for the 800 and 240 arc-sec conditions (median: 54 & 32; p = 0.04) respectively.

Figure 2. Behavioral performance of the participants for the stereoscopic task

The psychometric curve showing increase in performance of participants (N = 20) with the disparity magnitude under the fMRI stereoscopic depth

perception task.
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Rich and diverse clubs across the left hemisphere

We follow a similar analysis for LH as we did for RH. The Davg and PCavg are illustrated in Figures S7–S12. The brain regions included in the rich

club included: (1) V2, V3A andMTduring 800 arc-sec condition, 2) V1, V3A andMTduring 240 arc-sec condition and, 3) MT and V3Aduring 480

arc-sec condition. Meanwhile, the diverse club included: 1) MT and V4 during 800 arc-sec condition, (2) MT and PIT during 240 arc-sec con-

dition, and (3) V1, SPL and MT during 480 arc-sec condition. Further, MT is the only common rich and diverse club region across all disparity

conditions. TheQuade test with shape as a covariate coupledwith post-hoc tests for pairwise comparisons across 3D conditions revealed that

the Pout coefficient of V1 is significantly different (F = 3.93, df = 2; p = 0.0234) for the 800 and 240 arc-sec condition (median: 17.448 and

�18.551; p = 0.017; see Figure 5) respectively. When shape is not considered as a covariate, following comparisons across 3D conditions

are revealed: (1) Pout coefficient of V1 is significantly different (F = 4.92, df = 2; p = 0.0095) for the 800 and 240 arc-sec condition (median

rank: 64 and 28; p = 0.017) respectively and the 800 and 480 arc-sec condition (median rank: 64 and 28; p = 0.0278) respectively and (2)

Pout coefficient of V2 is significantly different (F = 3.41, df = 2; p = 0.0376) for the 800 and 480 arc-sec condition (median: 55 and 33; p =

0.048) respectively.

Decoding disparity magnitude with diverse club members across right hemisphere

The input features of DT consisted of both Pin and Pout coefficients of all ROIs and all disparity conditions (800 arc-sec, 480 arc-sec, and

240 arc-sec) as described in STAR methods section. Figure 6B shows the DT model that was trained to classify disparity conditions

based on the above-mentioned features. The model identified the best parameters (criterion: entropy, max depth: 4, min sample: 2

and splitter: best) using a 5-fold grid search cross validation to optimize the hyperparameters and was able to classify with precision:

0.9523, recall: 0.944, and F1 score: 0.944. The weight assigned to each feature (i.e., feature importance) by the decision tree algorithm is

mentioned in Figure 6A.

Decoding disparity magnitude with rich club members across right hemisphere

Unlike the Pin and Pout coefficients across each node, the Din and Dout features did not result in accurate classification. The performance

of the decision tree model was poor with precision: 0.462, recall: 0.412, and F1 score: 0.40. Consequently, to investigate whether this

low performance was due to the higher similarity in the processing of any two disparity magnitudes or the poor decoding of disparity

magnitudes by rich clubs, we trained the decision tree classifier pairwise. The model performance, however, above chance level (>33%),

A B

C

Figure 3. Group fMRI activation patterns for 29 visually healthy participants

(A) Group activations for the GLM contrast [800 > SN] at the cluster defining threshold of p= 0.001 (cluster >53 voxels for it to be significant at p< 0.05), (B) Group

activations for theGLM contrast [480 > SN] at the cluster defining threshold of p= 0.001 (cluster >46 voxels for it to be significant at p< 0.05), (C) Group activations

for the GLM contrast [240 > SN] at the cluster defining threshold of p= 0.001 (cluster >45 voxels for it to be significant at p< 0.05). The details of activation clusters

are mentioned in Tables S1 and S2.
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was still worse when compared to diverse clubs in all three pairwise conditions – class 1 vs. class 2 (precision: 0.65, recall: 0.66, and F1

score: 0.649), class 2 vs. class 3 (precision: 0.45, recall: 0.458, and F1 score: 0.386) and class 1 vs. class 3 (precision: 0.65, recall: 0.66, and

F1 score: 0.649).

Decoding disparity magnitude with diverse club members across left hemisphere

We followed a similar approach for LH as for RH and trained our model with Pin and Pout coefficients of all ROIs. The decision tree algorithm

(shown in Figure 7B) could decode the disparity conditionswith precision: 0.875, recall: 0.834 and F1 score: 0.826. Theweight assigned to each

feature by the decision tree algorithm is mentioned in Figure 7A.

Decoding disparity magnitude with rich club members across left hemisphere

The decision tree model was trained with Din and Dout features for all ROIs. As expected, the model performed similarly to the right hemi-

sphere for the rich clubs with precision: 0.45, recall: 0.28, and F1 score: 0.243.

Differences between right and left hemisphere

Wilcoxon signed Rank test revealed that PCavg was significantly different across several brain regions in LH and RH. The boxplot visualization

of each significant finding is shown in Figures S13 to S21 and the corresponding statistical values are mentioned Table 1. There were no other

significant inter-hemispheric differences among the remaining conditions.

DISCUSSION

The main findings of our study indicate that the effective connectivity between brain regions changes with the disparity magnitude

for visually healthy controls. Specifically, our results reveal the presence of distinct rich and diverse clubs that vary across different

disparity magnitudes. Furthermore, our analysis indicates that the MT region serves as the only common rich and diverse region across

all disparity magnitudes and in both hemispheres. We also find that diverse clubs exhibit better performance in decoding disparity

magnitudes, thereby providing further support to the growing evidence that diverse clubs are indeed the integrative core for processing

disparities. Finally, we find that subtle inter-hemispheric differences exist across disparity conditions. Below, we discuss these findings in

more detail.

Figure 4. Significant differences in participation coefficients across right hemisphere

(A) Participation-in coefficient of region V4 is significantly different for the 800 and 480 arc-sec conditions (median: 16.344 &�11.155; p= 0.0211), (B) Participation-

in coefficient of V3A is significantly different for the 800 and 240 arc-sec conditions (median: 11.55 & �10.448; p = 0.0466).
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Distinct rich and diverse clubs exist under different disparity magnitudes

The pairwise comparisons of Din, Dout and Pin, Pout (representing rich and diverse club nature, respectively) in the Quade analysis revealed

significant differences across several ROIs under different disparity magnitudes. Surprisingly, after removing the effects of disparity shape

Figure 6. Decoding disparity magnitudes with diverse club members across right hemisphere

(A) Feature importance as evaluated by the Decision tree model for decoding disparity magnitudes, (B) Diverse club decision tree model for classifying disparity

conditions – 800 arc-sec (class 1), 240 arc-sec (class 2) and 480 arc-sec (class 3) across right hemisphere. The value set at each level of the tree indicates the number

of correctly classified and misclassified disparity conditions.

Figure 5. Significant differences in participation coefficients across left hemisphere

Participation-out coefficient of V1 is significantly different for the 800 and 240 arc-sec condition (median: 17.448 and �18.551; p = 0.017). The black line in the

middle of each box represents the median, and the solid black dot represents the mean.
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(‘k’ or ‘l’) in the Quade analysis, we found significant differences across different disparity magnitudes solely in the PC, while differences

across D were no longer significant. Specifically for RH, participants viewing 800 arc-sec condition exhibited a significantly higher Pin for both

V4 and V3A as compared to 240 arc-sec condition (Figure 4). The fluctuations in PC observed over the range of disparities are expected as the

fMRI response itself does not have a strictly monotonic relationship with disparity magnitude.23–25,53 Backus et al.23 found thatmean response

in early visual areas is a bimodal function of disparity magnitude, where BOLD activity first increases from 30 to 60 arc-sec, then decreases until

225 arc-sec, and finally rises to 900 arc-sec. However, in our study we found that the differences across early visual areas (Pin for V2 and V3) were

rather contributing to the 3D-shape characteristic of the disparity conditions. Further, we argue that the existence of significantly different

diverse and not rich clubs may explain distinct neural mechanisms beyond the interpretation of BOLD activity changes alone.

In the subsequent subsections, we explain the region-wise contributions in decoding disparity magnitudes obtained fromDT analysis. We

focus only on the RH due to its higher DT-classification performance compared to LH.

Common stereo processing until V2

Despite having a significantly higher Pin in region V2 for 480 arc-sec condition compared to both 240 arc-sec conditions, the DT classification

pathway starts with a common region (Figure 6B) V2 for all disparity magnitudes. This may be because early visual areas provide crude yet

important representations of disparity20,54 to the extent that lesions to them can lead to impaired stereoacuity.55–57 Moreover, the shared

utilization of V2 across all disparity magnitudes could also be reasoned with the ‘‘correspondence problem’’ in stereopsis. For the visual

Figure 7. Decoding disparity magnitudes with diverse club members across left hemisphere

(A) Feature importance as evaluated by the Decision tree model for decoding disparity magnitudes, (B) Diverse club decision tree model for classifying disparity

conditions – 800 arc-sec (class 1), 240 arc-sec (class 2) and 480 arc-sec (class 3) across left hemisphere. The value set at each level of the tree indicates the number

of correctly classified and misclassified disparity conditions.

Table 1. Interhemispheric differences in the average participant coefficients

SNo. ROI Signed Rank & Z p value Disparity Magnitude (arc-sec) Median: RH & LH

1 V2 126 & �1.97 0.047 800 0.26 & 0.19

2 PIT 329 & 2.411 0.0159 800 0.25 & 0.19

3 V3A 338 & 2.6 0.0092 800 0.191 & 0.26

4 V3 324 & 2.3 0.021 240 0.39 & 0.188

5 PIT 328 & 2.38 0.0169 240 0.324 & 0.208

6 V3A 379 & 3.49 4.70E-04 240 0.212 & 0.19

7 V3 326 & 2.34 0.019 480 0.36 & 0.19

8 V3A 86 & �2.84 0.0045 480 0.18 & 0.24

9 SPL 55 & �3.513 4.40E-04 480 0.27 & 0.18

Overall dominance of right hemisphere for all identified brain regions except for region V3A is seen across different disparity magnitudes. The differences are

significant at p < 0.05.
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system to match features in the left eye with the corresponding features in the right eye, it must reject a large number of possible local

matches between the images of the two eyes while preserving the correct matches. This entire corresponding feature matching across

eyes takes place in the extrastriate cortex,58 with specialization for relative disparity processing in V2,59 irrespective of the disparitymagnitude.

Role of V3A and PIT in decoding disparity magnitudes

In our experiment, V3A discriminated between 800 (coarse) and 480 arc-sec (mid) disparity magnitudes. There could be three reasons for

this: 1) V3A neurons are highly sensitive18,23,48,60,61 toward discriminating disparity magnitudes in general, 2) V3A specifically aids in encoding

mid-level disparities. However, the range of disparity categorized as coarse, mid or relatively fine is subject to its definition by the experi-

menter. For instance – Chen et al.62 used disparities less than 600 arc-sec in their ‘‘smallest detectable disparity’’ experiment and concluded

the role of V3A in decoding the finer disparity signals. Althoughwe refer to 480 arc-sec as amid-range disparity, our finding is in line with Chen

et al.,62 3) V3A is exclusively a diverse club member during the 480 arc-sec condition defined by a higher PC (>0.292 for 480 arc-sec when

compared with <0.292 for 800 arc-sec) that in turn aided the decoding. Furthermore, PIT effectively distinguishes between 800 (coarse)

and 240 arc-sec (relatively finer) disparity magnitudes (Figure 6B). Notably, as these conditions represent the largest and smallest disparities

in our analysis, PIT neurons likely exhibit sensitivity in discriminating between both ranges. While limited evidence exists in humans,63

non-human primate studies link PIT to fine64,65 and relatively coarse depth discrimination tasks.66

The rich and diverse nature of MT

MT exhibited remarkable overlapping rich and diverse properties across disparity magnitudes and both hemispheres. While MT is known to

have a selective preference for disparity processing,67–70 intriguingly, the decision tree algorithm did not reveal MT as a prominent feature in

decoding disparity magnitudes. This finding could be attributed toMT’s consistent contribution across all disparity magnitudes, encompass-

ing coarse, mid, and relatively finer ranges. Notably, Uka, T., & DeAngelis, G. C71 and Neri, P et al.47 argue MT to be a part of the neural

substrate underlying only coarser disparities. Contrarily, Krug, K., & Parker, A. J72 utilized a wide range of disparities (0–4320 arc-sec) and

summarized that V5/MT neurons are also selective for relative disparity. However, their distinction of fine and coarse disparities is based

on the type of task employed – absolute (coarse) vs. relative (fine) – rather than the magnitude of test disparities itself.

Although our experiment is designed to test disparity magnitudes with only relative disparities, our findings emphasize that the dual – rich

and diverse – characteristic ofMT imply its possible contribution to the primitive stereo processing required for all disparitymagnitudes rather

than being exclusively dedicated to coarser or finer disparities.

Diverse clubs than rich clubs are indeed integrative core in stereo processing

We found that diverse clubs outperformed rich clubs in predicting disparity magnitudes. Additionally, significant differences were observed

exclusively across PC for both hemispheres. This provides compelling evidence that PC is a better indicator of the underlying neural mech-

anisms of disparity magnitudes as opposed to D, which merely measures node connections within or between networks. Our findings align

with the recent evidence39 which indicates that diverse clubs exhibit characteristics of an integrative network function to a larger extent

compared to rich clubs. Besides, the rich clubs primarily serve to facilitate the formation of specialized subnetworks.38 While rich and diverse

clubs may play distinct roles in the brain network communication,73 intuitively, this points to a possibility that the rich clubs are more involved

in functional segregation than integration. Considering the global nature of functional integration and its association with diverse clubs, this

may be a plausible basis for their superior performance over rich clubs in decoding disparity magnitudes.

Inter-hemispheric differences across disparity magnitudes

Table 1 highlights the significant inter-hemispheric differences in the average PC across V2, V3, V3A, PIT, and SPL. Conforming to the previous

studies,19,49,74 we found an overall larger involvement of RH in the perception of stereopsis across regions V2, V3, PIT and SPL. This is in line

with our preliminary findings75 with fewer participants (n = 11) where we found that SPL facilitates functional integration for the mid-level

disparity magnitude. Besides, SPL is known to exhibit a right hemispheric bias19,48,76,77 in the disparity processing. Contrary to SPL, the

interpretation of hemispheric dominance in V3A is unclear with previous studies suggesting a bilateral18,23,47,78 and right hemispheric domi-

nance.25 In our study, we found RH dominance during 240 arc-sec and LH dominance during 800 and 480 arc-sec conditions. This leads to the

possible dependence of hemispheric asymmetry of V3A on the magnitude of disparity. Therefore, except for V3A, we suggest an overall

dominance of RH in stereo processing at least for the regions analyzed in our study.

The advantage of a stereoscopic task-based effective connective study over resting-state studies

Overall, our study builds upon previous research highlighting aberrant functional connectivity in the primary79 and higher-order visual

cortex.80 The only study that we can compare our results to is that by Chen et al.30 They used Dynamic Causal Modeling from

resting state fMRI to highlight connectivity abnormalities (V2 to LO) in amblyopic patients. They report abnormal effective connectivity

specifically in V3d, V3A, V3B, and LO regions (they state them as ‘‘important nodes’’ in the network) by comparing the networks for

amblyopic patients and visually healthy controls. Our results are consistent in terms of node-wise importance during stereoscopic depth

perception. However, it is important to note that their findings stem from topological comparison between the two groups in the

absence of a stereoscopic depth perception task. Therefore, their results represent the intrinsic states of amblyopic visual system
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and restricts the extent to which their findings can be meaningfully interpreted. On the other hand, our study is specific and designed

for a deeper understanding of the neural mechanisms under various disparity magnitudes in a controlled stereoscopic depth perception

task. These advantages contribute to a nuanced understanding of neural mechanisms behind stereoscopic depth perception as previ-

ously demonstrated by Liu et al.61 Moreover, the existence of distinct rich and diverse club patterns across different disparity magni-

tudes may explain the physiological basis for the variability in stereoacuities reported in visually healthy individuals.29 Our results pro-

vide complementary functional evidence to the structural evidence demonstrated by Oishi et al.81 Notably, our findings also shed light

on distinct rich and diverse club patterns across disparity magnitudes and may have potential implications for understanding eye

misalignment disorders.

Limitations of the study

There are some limitations to our present study. The NNL goggles are limited in terms of their resolution and FOV.82 This may have nega-

tively impacted the participants’ performance during the 120 arc-sec disparity condition. Therefore, using some of the latest fMRI-compat-

ible binocular devices with improved display capabilities83 to investigate smaller disparities would be helpful. We also used anaglyph-

based stereoscopic stimuli in our investigations. While this was by design so that we could validate the stimulus against the clinically

used TNO depth test, future studies could make use of natural and ecologically valid 3D stimuli to confirm whether our findings extend

to them.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to andwill be fulfilled by the lead contact, Rijul Saurabh Soans (rijul.soans@

berkeley.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Raw data has been deposited at Open Science Framework and is publicly available as of the date of publication. DOIs are listed in the

key resources table.

� All original code has been deposited at Open Science Framework and is publicly available as of the date of publication. DOIs are listed

in the key resources table.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Participants

Thirty-five visually healthy controls (34 males; mean age: 26.8 G 3.44; Indians) with BCVA of 6/9 (0.67 or %0.17 logMAR) or better in both

eyes participated in the Functional Magnetic Resonance Imaging (fMRI) based static-depth experiment. The data from 6 participants were

discarded due to excessive head movement and/or inability to follow instructions during the experiment. Thus, all analyses were based

on the data of remaining 29 participants (mean age: 26.34 G 3.47). All participants were chosen with normal stereoacuity (60 arc-sec)

measured with the TNO stereo test. The detailed demographic details of the participants finally included in the study are available in

Table S3. All participants were required to answer a post-experiment questionnaire (supplementary material Appendix: 1) designed to

understand qualitative aspects of their performance during the experiment. Participants were well informed of all experiments performed

in this study andgavewritten consent prior to their participation. Participant recruitment and conduct of experiments were approvedby ethics

committee of All India Institute of Medical Sciences, New Delhi, India (IEC-511/17.06.22). This study was in accordance with the tenets of the

Declaration of Helsinki.

METHOD DETAILS

MRI acquisition

Functional MRI data were acquired using a 3.0 T GE Scanner (Discovery MR 750w) equipped with a 32-channel phased-array head coil. The

scanning parameters were as follows: TR = 2000ms, TE = 29ms, 176 slices, voxel resolution = 3mm3 3mm3 3.5mm, slice thickness = 3mm,

Spacing: 0.5, FOV = 192 mm 3 192 mm, flip angle = 65�, 610 volumes. The duration of the BOLD scan was 20 min. Subsequently, a

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Raw fMRI data This paper; Open Science Framework OSF: https://doi.org/10.17605/OSF.IO/RSPV6

Code for Decoding analyses

using Decision Tree

This paper; Open Science Framework OSF: https://doi.org/10.17605/OSF.IO/RSPV6

Software and algorithms

MATLAB R2020b Mathworks, Natick, MA https://www.mathworks.com/

Psychtoolbox-3 Psychtoolbox Article: https://doi.org/10.1163/

156856897X00357

fMRIPrep-21.0.1 NiPreps Community https://fmriprep.org/en/stable/

AFNI National Institute of Mental Health https://afni.nimh.nih.gov/

BCT Brain Connectivity Toolbox https://sites.google.com/site/bctnet/

Python Python Software Foundation https://www.python.org/
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T1-weighted anatomical image (TR = 15 ms, TE = 6.68 ms, voxel resolution = 0.5 mm3 0.5 mm3 1 mm, FOV = 1763 176 mm, Flip angle =

10�) was acquired for 5 min. Foam pads were used to reduce scanning noise and minimize head motion.

Stimuli and procedure

We adapted the stimuli from our previously clinically validated stimuli44 to align with the display specifications in the fMRI setting. The

experiment consisted of a random dot stereogram (RDS) stimulus which was designed using Psychtoolbox v.3.0.17 and MATLAB R2020b.

The stereoscopic stimuli differed from our previous DST design in two aspects: (i) The RDS square contained a hidden 3D shape (‘k’ or

‘l’ of disparities 120, 240, 480 & 800 arc-secs) where the ‘k’ shape appeared during 800 and 240 arc-sec conditions and ‘l’ appeared during

480 and 120 arc-sec conditions and, (ii) the size of dots and RDS square were appropriately scaled to fit in the Nordic Neuro Lab (NNL;

NordicNeurolab, Bergen, Norway) Visual System goggles (Resolution: 800 3 600, Refresh rate: 85 Hz, FOV: 28.6� horizontal x 20.3� vertical)
used inside theMRI scanner. Red and blue anaglyph filters were superimposed over the left and right eye lenses, respectively. The luminance

of the dots as seen through the red lens was 4.6 and 4.3 cd/m2 as seen through the blue lens. The stimuli were presented in a blocked-design

including 3D-shape (‘k’ or ‘l’), 2D scrambled-noise (SN) (RDS square without hidden 3D shape) and fixation (+) blocks. Each block was

repeated five times except the fixation block, which repeated after every 2 experimental (3D-shape and 2D SN) blocks. Each block lasted

20 s with a total experiment duration of 20 min (excluding 5 min of T1-structural scan). Participants had to indicate the shape hidden in

the RDS square with a button press (Lumina 3G controller) inside the scanner (left for ‘k’ and right for ‘l’). Each participant was subjected

to a 1-h task-training sessionwithNNLgoggles prior to the start of the actual experiment. This was done to improve the perceptual learning of

stereopsis84 and keep a fair comparison among the participants.

QUANTIFICATION AND STATISTICAL ANALYSIS

fMRI data analysis

Functional MRI data were minimally preprocessed using fMRIPrep-21.0.185 based on Nipype 1.5.12786 and the structural T1 data were pre-

processed using FreeSurfer (version: 6.0.0).87 The Analysis of Functional Neuroimages (AFNI) programs 3dmerge (with full width half

maximum of 4 mm), 3dcalc and 3ddtrend were used to spatially smooth, scale and detrend fMRI data, respectively. Next, 3dDeconvolve

was used to perform first-level general linear model analysis to extract voxel-wise response amplitude for 3D disparity conditions, 2D SN

and fixation blocks. To control the false positive rate (FPR), AFNI program 3dttest++ was used with the Clustsim option for randomization

and permutation simulations to produce cluster-level threshold values. Clusters were defined as groups of voxels above the uncorrected sig-

nificance threshold whose faces or edges touched as the default setting of AFNI. This revealed theminimum size of a voxel cluster needed for

a corrected p of 0.001. Subsequently, conjunction analysis88 was performed to obtain the significant activation clusters across all disparity

magnitudes. A region of interest (ROI) of size 5 mmwas created at the peak of activation cluster using AFNI programs 3dUndump and 3dfrac-

tionize across each hemisphere. The ROIs were defined based on the Glasser HCP 2016 surface-based parcellation atlas.89 Further, the time

series extracted from each ROI was used in the network construction (described in the next section).

Network construction with Granger Causality

The network features can generally be extracted at different topological scales viz. whole brain, across a set of related brain regions, or within

a specific ROI.90 Here, we find out the causal interactions across the set of regions that were activated during our stereoscopic depth percep-

tion task. For this, we extracted the times from each ROI and applied Granger Causality (GC) for each disparity condition. The GC was em-

ployed usingmultivariate auto-regressivemodeling (MAR)91 and the lag selection was based on Akaike Information Criteria (AIC). The subject

motion parameters were considered as confounders in the model. Consequently, the MAR modeling resulted in disparity specific weighted

path matrices wherein all connections were statistically significant at p < 0.05. The code (1dGC.R) used to construct these weighted path

matrices is publicly available in the AFNI package.

Definition of rich and diverse clubs

The weighted path matrices were randomized with positively and negatively signed connections while preserving the positively and

negatively signed in-degree (Din) and out-degree (Dout) distributions.
92 We computed node-wise Din, Dout participation-in (Pin) and participa-

tion-out (Pout) coefficients to observe inter-regional differences across disparity magnitudes using the Brain Connectivity Toolbox (BCT)93

wherein, in-and out refer to the incoming and outgoing connections, respectively. To remove any potential effects of 3D-shape (‘k’ or

‘l’), we performed covariate adjustment by regressing out the shape prior to defining rich and diverse club members across disparity con-

ditions. For this, we ranked all node-wise metrics (Din, Dout, Pin and Pout) and the covariate variable (shape) using tied ranks. Subsequently, we

ran a linear regression of the ranks of node-wise metrics on the rank of shape. This process yielded raw residuals for all node-wise metrics.

Next, we computed the average degree and participation coefficients from these raw residuals. After that, we defined the brain regions

with high (median-value over 80th percentile and above) average degree (Davg, wherein average is over in-and-out connections) as the rich

clubmembers across each disparity condition. This follows the notion that nodes with higher degrees are inclined to connect with each other

intensely.38 Subsequently, the brain regions with the high (median-value over 80th percentile and above) average participation coefficient

(PCavg, wherein average is over in-and-out connections) were defined as diverse club members. We opted for a threshold cutoff of the

80th percentile as this is where the normalized club coefficient begins to rise, indicating increased clubness.39 Further, we defined a region
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as an overlapping region if it was present in both rich and diverse categories and was considered to have the highest importance across all

regions because of its higher D and PC.73 We took the same ROIs across each hemisphere in the GC analysis for a matched comparison.

Thereafter, we performed the Quade test (at p < 0.05) by treating 3D shape as a covariate to highlight significant global and local features

of these rich and diverse regions across each hemisphere.We also carried post hocmultiple comparisons Tukey Kramer test to determine the

group specific differences. Furthermore, we examined the comparisons across disparity conditions without considering 3D-shape as a covar-

iate. This approach allowed us to examine only disparity specific differences by regressing out potential shape differences. This test was used

as an alternative to its parametric equivalent – one-way analysis of covariance (ANCOVA).

Decoding disparity magnitudes

The previous analysis yielded rich anddiverse clubmembers across different disparitymagnitudes. Next, in order to examine the ability of rich

and diverse clubs in decoding different disparity magnitudes, we trained a decision tree (DT) model94 based on the 3 disparity conditions (800

arc-sec, 240 arc-sec and 480 arc-sec). However, the rich or diverse nature of a region depends on the magnitude of disparity and therefore a

regionmay not always be considered under the rich or diverse categories.While previous studies95,96 have generically described participation

coefficient as a metric for the diverse nature of a node, we utilized the Pin and Pout coefficients of all ROIs for the decoding analysis with

diverse clubs. Similarly, we use Din and Dout for the decoding analysis with rich clubs. Furthermore, DT models are white-box models known

for their easy interpretability and their ability to provide feature importance scores. The input features were organized into a matrix with di-

mensions [D, M], wherein: D represented the product of the number of participants and the number of disparity conditions (D = 87), M

represented the total number of features (M = 18), comprising both Pin and Pout coefficients of all ROIs. The output was a categorical variable

of size [D,1]. These input features were then partitioned into training and test sets using stratified k-fold (k = 5) cross validation approach

wherein the training dataset contained 70 samples in each fold. We also optimized the hyperparameters (impurity criterion, maximum depth

of tree,minimum samples in the split and the type of splitter) using a 5-fold grid search cross-validation.We performed this analysis for RH and

LH separately to elucidate the interhemispheric differences in decoding disparity magnitude.

ll
OPEN ACCESS

iScience 27, 109831, June 21, 2024 15

iScience
Article


	ISCI109831_proof_v27i6.pdf
	Distinct rich and diverse clubs regulate coarse and fine binocular disparity processing: Evidence from stereoscopic task-ba ...
	Introduction
	Results
	Group-level fMRI activations across different disparity magnitudes
	Rich and diverse clubs across the right hemisphere
	Rich and diverse clubs across the left hemisphere
	Decoding disparity magnitude with diverse club members across right hemisphere
	Decoding disparity magnitude with rich club members across right hemisphere
	Decoding disparity magnitude with diverse club members across left hemisphere
	Decoding disparity magnitude with rich club members across left hemisphere
	Differences between right and left hemisphere

	Discussion
	Distinct rich and diverse clubs exist under different disparity magnitudes
	Common stereo processing until V2
	Role of V3A and PIT in decoding disparity magnitudes
	The rich and diverse nature of MT
	Diverse clubs than rich clubs are indeed integrative core in stereo processing
	Inter-hemispheric differences across disparity magnitudes
	The advantage of a stereoscopic task-based effective connective study over resting-state studies
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant details
	Participants

	Method details
	MRI acquisition
	Stimuli and procedure

	Quantification and statistical analysis
	fMRI data analysis
	Network construction with Granger Causality
	Definition of rich and diverse clubs
	Decoding disparity magnitudes





