
Original Research Article

Medical Decision Making
2022, Vol. 42(2) 241–254
� The Author(s) 2021

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0272989X211032964
journals.sagepub.com/home/mdm

Development and Validation of a Discrete

Event Simulation Model to Evaluate
the Cardiovascular Impact of Population

Policies for Obesity

Arantzazu Arrospide , Oliver Ibarrondo, Iván Castilla,
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Introduction. Our aim was to describe the development and validation of an obesity model representing the cardio-
vascular risks associated with different body mass index (BMI) categories, through simulation, designed to evaluate
the epidemiological and economic impact of population policies for obesity. Methods. A discrete event simulation
model was built in R considering the risk of cardiovascular events (heart failure, stroke, coronary heart disease, and
diabetes) associated with BMI categories in the Spanish population. The main parameters included in the model were
estimated from Spanish hospital discharge records and the Spanish Health Survey and allowed both first-order and
second-order (probabilistic sensitivity analysis) uncertainty to be programmed into the model. The simulation yielded
the incidence and prevalence of cardiovascular events as validation outputs. To illustrate the capacity of the model,
we estimated the reduction in cardiovascular events and cost-utility (incremental cost/incremental quality-adjusted
life-years [QALYs]) of a hypothetical intervention that fully eliminated the cardiovascular risks associated with obe-
sity and overweight. Results. The Validation Status of Health-Economic decision models (AdViSHE) tool was
applied. Internal validation plots showed adequate goodness of fit for the Spanish population. External validation
was achieved by comparing the simulated and real incidence by age group for stroke, acute myocardial infarction,
and heart failure. The intervention reduced the population hazard ratios of stroke, acute myocardial infarction, and
heart failure to 0.81, 0.74, and 0.78, respectively, and added 0.74 QALYs to the whole population. Conclusions. This
obesity simulation model evidenced good properties for estimating the long-term epidemiological and economic
impact of policies to tackle obesity in Spain. The conceptual model could be implemented for other counties using
country-specific input data.
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Obesity has become a worldwide global public health
challenge.1 In Spain, more than 50% of the adult popula-
tion and almost 30% of children and adolescents are
overweight or obese.2,3 In this context, there is an urgent
need for strategies to prevent noncommunicable diseases
by reducing associated risk factors, among them obesity.4

They involve a range of policies, such as health education
and agricultural or food taxes, that have an impact not
only on individuals but also on population health.5

Childhood obesity is a leading preventable cause of death
worldwide, but tackling it has been described as a com-
plex problem because of the difficulties of ascertaining
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which interventions are effective in changing behavior.5,6

Moreover, measuring the preventive effect of behavior
change in childhood poses a challenge, because final out-
comes are reflected in excess cardiovascular risk many
years after an intervention.7

As with other public health interventions, using a
simulation model can facilitate our understanding of the
impact of interventions to tackle obesity by predicting
future events according to the risk associated with differ-
ent body mass index (BMI) categories.8 To date, how-
ever, there are no obesity simulation models adapted to
the epidemiological characteristics of the Spanish popu-
lation capable of representing the cardiovascular risks
associated with different BMI categories in a stratified
way. Such a tool should calculate changes in final events,
namely, stroke, angina and acute myocardial infarction
(AMI), heart failure, and diabetes mellitus (DM), as a
function of the effectiveness of each policy. To be useful
for decision makers, the model would need to demon-
strate accuracy, validity, and transparency.9 Specifically,
the validation process of a public health model entails
evidencing how well the model reproduces the features of
the target population in the base-case scenario (in terms
of epidemiological indicators) and its sensitivity to trans-
late the change associated with the interventions on sur-
rogate outcomes (risks) into final outcomes (events),9,10

while transparency means that other researchers and sta-
keholders can understand the construction of the model
and reproduce it.9

Our objective was to describe the development and
validation process of a flexible obesity model simulating
the current cardiovascular risk scenario in Spain and
capable of measuring the epidemiological impact on

cardiovascular events and cost-utility in Euros per quality-
adjusted life-year (QALY) of a wide variety of interventions.

Methods (Model Development)

A discrete event simulation model11,12 was built to repro-
duce the natural history of individuals according to their
BMI category in the base-case scenario; that is, the model
predicted future cardiovascular events and related deaths
in the Spanish population following the current BMI dis-
tribution. Discrete event simulation is ‘‘a flexible model-
ling method characterized by the ability to represent
complex behavior within, and interactions between indi-
viduals, populations and their environments.’’11 The
model was built using the free software for statistical
analysis R (version 3.6.2, https://www.R-project.org/.).

All authors were independent of the funders; that is,
the funders played no role in the study design or conduct,
or the interpretation of the results.

Conceptual Model

A schematic view of the model is presented in Figure 1.
To start with, each individual, or entity in the model, was
assigned base attributes: birth year, sex, BMI category,
and socioeconomic status. These attributes were later
entered in the mathematical functions used for estimating
the time until events (e.g., the higher the initial BMI, the
sooner a cardiovascular event might occur). Supplemen-
tary Figure SM1 presents an example of an entity with
the assigned times until events. Experts involved in obe-
sity research, clinical endocrinology, or public health
interventions were asked whether the conceptual model
adequately reflected the cardiovascular risks associated
with obesity, and their answers supported the relevance
of the approach applied.

The most commonly used anthropometric index to
make a diagnosis of obesity is the BMI (expressed as
weight in kg/[height in m]2), due to its demonstrated rela-
tionship with body fat content and associated comorbid-
ities.4 Assuming that underweight and normal weight
individuals together constitute the low-cardiovascular-
risk category, just 3 categories of BMI were considered:
non-overweight (BMI \25 kg/m2), overweight (BMI
25–29.9 kg/m2), and obese (BMI �30 kg/m2).4,6 The
model assumes that the current distribution of BMI cate-
gories is a valid estimator of the distribution of long-
term cardiovascular risk (heart failure, diabetes, stroke,
and AMI).1,4,13 The probability of being in each risk
group of the BMI categories, depending on age, sex, and
socioeconomic status, was deduced from the Spanish
National Health Survey carried out in 2011 to 2012 in
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the adult population (�18 y of age),14 and it was consid-
ered unmodifiable during lifetime follow-up.

The excess risk of death for the conditions of over-
weight and obesity was incorporated in 2 ways. On one
hand, mortality was higher because of their higher prob-
ability of the cardiovascular events considered,13,15 and
on the other hand, mortality due to other causes was
adjusted in line with the literature for obese individuals
with a hazard ratio (HR) of 1.18.15

Model Inputs

Among the model inputs, we distinguish between gen-
eric and country-specific parameters as shown in Table
1. In the model, the former translate the effect of BMI
categories to cardiovascular risk, whereas the latter
include population characteristics, BMI distribution,
and baseline cardiovascular risk data as well as quality-
of-life and cost parameters, that is, the data that would
need to be changed to adapt the model for other
countries.

Study population. The Spanish population in 2013 was
represented in the model. The whole population was

introduced at the beginning of the simulation based on
their birth year cohort; the number of individuals alive

in each cohort was estimated by reproducing the initial

size of the cohort (at birth) and applying mortality rates

to the age distribution data for the reference year in the

model (2013 Spanish National Statistics Institute).24 This

approach was adopted to take into account that cardio-

vascular events had occurred in each cohort before the

reference year (2013) by incorporating a warming-up

time. Notably, the more aged the cohort, the more prob-

able it was that the individuals’ history was meaningful,

and in this way, we were able to reproduce their history.

Taking this into account, the cohorts included in the

2013 Spanish population were entered into the model

with their background of cardiovascular events and DM

status because they were assigned events across their

whole life, beginning from birth.
The time horizon estimates for the population model

were made until completion of the lifetime follow-up of
the cohorts included in the 2013 population. Due to com-
putational memory constraints and the time-consuming
nature of these calculations, the model was run in paral-
lel, involving a total of 935,000 entities that represent 2%

Figure 1 Flow diagram of the discrete event simulation model.
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Table 1 Discrete Event Simulation Model Base-Case Input Parameters and Their Sources

Specific Parameters Source

Individual attributes Age SNSI
Sex SNSI
Overall mortality SNSI
Socioeconomic status distribution 2011–2012 SNHS14

BMI distribution 2011–2012 SNHS14

Diabetes status Holden et al.16

Survival functions Time to cardiovascular events: SHDRD17

First stroke (Supplementary File)
Recurrent stroke
First angina
AMI after angina
First AMI with no previous angina
First episode of heart failure
Recurrent heart failure

Utilities Mean utility 2011–2012 SNHS14

Disutilities
Diabetes 2011–2012 SNHS14

Stroke
AMI
Heart failure

Health care costs Acute treatment for first stroke SHDRD17

Acute treatment for recurrent stroke SHDRD17

Long-term (annual) treatment stroke Beguiristain et al.18

Acute treatment for AMI SHDRD17

Long-term (annual) treatment for AMI Trujillo et al.19

Acute treatment for HF SHDRD17

Long-term (annual) treatment for HF
Long-term (annual) treatment for diabetes Mata et al.20

Generic Parameters BMI Category Male Female Source

Stroke hazard ratio for BMI categories Non-overweight 0.851 0.875 Lu et al. 201413

Overweight 0.962 0.989
Obese 1.251 1.286

AMI hazard ratio for BMI categories Non-overweight 0.776 0.812 Lu et al. 201413

Overweight 0.978 1.023
Obese 1.311 1.372

Diabetes hazard ratio for BMI categories Non-overweight 0.450 0.503 Gomis et al. 201421

Overweight 0.922 1.031
Obese 1.807 2.023

Heart failure hazard ratio for BMI categories Non-overweight 0.762 0.795 Kenchaiah et al. 200222

Overweight 0.914 0.954
Obese 1.448 1.511

All-cause mortality hazard ratio for BMI categories Non-overweight 1.00 1.00 Flegal et al. 201315

Overweight 0.92 0.92
Obese 1.21 1.13

Stroke hazard ratio for diabetes 1.70 1.67 Boehme et al. 201523

AMI hazard ratio for diabetes 1.92 1.89 Boehme et al. 201523

All-cause mortality hazard ratio for diabetes 1.14 1.16 Barnett et al. 201531

Probability of death due to first stroke 17.4% 17.4% SHDRD17

Probability of death due to first AMI 13.1% 13.1% SHDRD17

Probability of death due to first episode of HF 20.4% 20.4% SHDRD17

AMI, acute myocardial infarction; BMI, body mass index; SHDRD Spanish hospital discharge records database; SNHS: Spanish National

Health Survey; SNSI, Spanish National Statistics Institute.
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of the Spanish population. With the sample size adopted,
the range of the 95% confidence intervals obtained from
including first-order uncertainty (Monte Carlo error)25,26

for life expectancy was less than 0.01 years.

Baseline functions. The main attributes assigned to indi-
viduals were times until events (cardiovascular, DM, and
death), and these were defined from risk functions based
on parametric survival analysis. Incidence data were
obtained from the hospital discharge records in the Span-
ish national health information system.17 The following
International Classification of Diseases, Ninth Revision,
Clinical Modification (ICD-9-CM) codes were used for
estimating incidence rates: ICD-9-CM 428 (heart failure),
ICD-9-CM 430-438 (stroke), ICD-9-CM 410 (AMI), and
ICD-9-CM 413 and 411 (angina). Among all the hospita-
lizations from 2009 to 2013, we differentiated between
first and recurrent cases. Those recorded in 2013 that
were not preceded by any event during the period 2009 to
2013 were defined as ‘‘first cases.’’ Only first cases (42,150
cases of stroke, 30,849 of AMI ,and 27,434 of HF) were
used to calculate age- and sex-specific incidence rates.
For recurrent case analysis, we analyzed the whole period
(2009–2013; 63,172 cases of recurrent stroke, 22,608 of
recurrent AMI, and 146,636 of recurrent HF). Following
the method described by Roman et al., age-specific first
incidence rates were modeled using a continuous hazard
approach to calculate the lifetime density function.27,28

Specifically, we applied regression analysis for survival
function parameter estimation in 2 different ways. For
the time to first event, the R2 was used to select the type
of parametric survival distribution with the best fit to
reproduce population incidence rates (Supplementary
File, Tables SM1A and SM1B).27,28 In the case of recur-
rent events, the Akaike information criterion (AIC) was
used for this purpose, as individual data including cen-
sored cases were considered (Supplementary File, Tables
SM2A, SM2B, and SM2C).29 The type of parametric dis-
tribution used for each event and their parameters are
listed in the Supplementary Material Tables SM1–SM2.
As no Spanish age- or sex-specific incidence rates of new
cases of diabetes were available, for this condition, the
survival function was based on UK data.16

Effect of BMI category on cardiovascular risks. Assum-
ing the proportional hazard approach, the probability of
a cardiovascular event for an individual was based on the
absolute risk according to age and sex, adjusted for the
HR, incorporating the excess risk associated with DM
and BMI category. Since individual features determined
event risks, the assignment of attributes followed a

specific sequence. First, individuals were assigned an age
and sex according to the Spanish population characteris-
tics in 2013, followed by a socioeconomic status, taking
into account the correlation between these variables.14

Based on the Spanish Health Survey, we estimated the
probability of being in each BMI category depending on
sex, age, and socioeconomic status using multinomial
regression analysis as described by Arrospide et al.30 DM
status and onset age were assigned following an empirical
distribution, which also incorporated an HR for diabetes
by sex and BMI (Table 1).16,21 Second, the time until
stroke, angina, and AMI established the day of occurrence
of these events (Supplementary File). As we classified indi-
viduals by sex, diabetes status, and BMI category, the cor-
responding HRs for stroke, HF, angina, and AMI were
also incorporated before assigning these times.13,15,25,26

AMI was preceded by angina in some cases.17 Time until
heart failure was assumed not to be influenced by DM
(Supplementary File).17,22

All studies used presented the risks using nonover-
weight as the reference category. To avoid overestimat-
ing population risks, we recalculated each risk consistent
with the prevalence of each group to produce weighted
risks that summed to 1 across the whole population. This
takes into account that, in our model, the general popu-
lation was taken as the reference (HR = 1), meaning
that the values were less than 1 for nonoverweight indi-
viduals and more than 1 for overweight and obese indi-
viduals. All-cause mortality for DM was also adjusted.31

Deaths after the first and recurrent events were obtained
from the same Spanish hospital discharge record data-
base.17 Table 1 lists the obesity-related excess cardiovas-
cular risks and the sources of these data.

Utilities. Utilities were estimated with data from the
2011 to 2012 Spanish National Health Survey.14,30 In this
survey, the health-related quality of life of the Spanish
population was measured by using the EQ-5D-5L.32 EQ-
5D-5L health states were converted into a single index
value. For estimating mean utilities for each category, we
divided the process into 2 steps: first, a logistic regression
to estimate the percentage (p) of the utilities that were
equal to 1 and, second, a generalized linear model to esti-
mate the mean value of w = 1 2 u for u \ 1. In this
way, a 2-step regression model was applied to assign utili-
ties to individuals, based on their sex, age, socioeconomic
status, and obesity status (BMI .30 kg/m2).30 Specifi-
cally, utility was assigned to each individual, according
to his or her sex (male or female), age (5 groups: 30–50,
50–60, 60–70, 70–80, and .80 y), BMI category, and
socioeconomic status (low, medium, or high). The effects
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of having diabetes, stroke, AMI, and/or heart failure
were modeled as disutilities.30 The model applied a 3%
discount rate for QALYs.

Costs. The model adopted the perspective of the Spanish
Health System. Data from the hospital discharge records
in the Spanish national health information system17 were
used to obtain hospital health care costs (Table 1). The
following costs were then included in the model: costs for
acute treatment for a first stroke, acute treatment for
recurrent stroke, long-term annual treatment for stroke,
acute treatment for a first episode of heart failure, acute
treatment for recurrent heart failure, long-term annual
treatment for stroke,18 long-term annual treatment for
AMI,19 and long-term annual treatment for diabetes.20

The model also applied a discount rate of 3% for costs.

Model Uncertainty

Three types of uncertainty (first order, second order, and
heterogeneity) were distinguished in the simulation model
design.25 To incorporate stochastic (first-order) uncer-
tainty (random variability in outcomes between identical
individuals), the functions used to assign attributes and
times until events to individuals included a random para-
meter. In this way, different ages of occurrence of events
were assigned to individuals even if they had the same
sex, age, and BMI category. In addition, to vary the
regression coefficients in each simulation for the prob-
abilistic sensitivity analysis (PSA), to represent parameter
(second-order) uncertainty, the model was run using Cho-
lesky decomposition of the variance-covariance matrix
formed from the estimated coefficients (Supplementary
File, Tables SM1 and SM2).25,33 Third, the statistical
analysis phase also allowed heterogeneity analysis. As
Briggs et al.25 point out ‘‘its relevance lies in the identifica-
tion of subgroups for whom separate cost-effectiveness
analyses should be undertaken.’’ In our case, alternative
decisions for obesity interventions could be made regard-
ing the service provision to people living in deprived areas
or with a low socioeconomic status.30,34

Model Computation

The PSA was carried out in 2 steps. After the application
of parallel processing, each simulation took 1.5 hours.
First, using 10 personal computers (Intel i5-85000T 2.11
GHz CPU, 8 GB RAM), we achieved the 1000 simula-
tions running the script for 7 d to store the 1000 outputs.
Second, the events and time until the event occurrence
calculated by the model were used to estimate, on one
hand, the population incidence and prevalence of

cardiovascular events and, on the other, the QALYs and
costs for each individual. We considered the costs of
both events themselves and follow-up from events to
death. The disutility caused by each event was consid-
ered in ascending order. That is, each individual was
assigned the greatest event disutility between periods.
Furthermore, we analyzed the PSA results statistically
using R to obtain means and confidence intervals for
outcomes comparing the two scenarios. On one hand,
the model calculated the incidence and prevalence of car-
diovascular events to assess the epidemiological impact
of the policy for obesity and, on the other, costs and
QALYs to assess its economic impact. The second step
took 48 h.

Model Results

The following outputs were obtained from the model
simulation: incidence and prevalence of heart failure,
stroke, angina, AMI, and DM; life expectancy; and dis-
counted health care costs, QALYs, and incremental cost-
utility ratio. Given the large data set, we present only a
selection of the most interesting results herein and pro-
vide the complete results in the Supplementary Material
separated by type (validation and evaluation).

Model Validation

The Assessment of the Validation Status of Health-
Economic decision models (AdViSHE) tool developed
by Vemer et al.35 was applied in the validation process.
This tool covers 4 main areas: the conceptual model, the
input data, the computerized model or internal valida-
tion, and external validation.

Model Application

The model was built to carry out cost-consequence anal-
ysis measuring the epidemiological impact and a full eco-
nomic evaluation.10,36 To illustrate this, we applied the
model to assess a hypothetical intervention that com-
pletely eliminated obesity and overweight. To measure the
impact of the policy, the model was run in the base-case
scenario,36 and a new scenario including a cloned popula-
tion (i.e., one with the same distribution of sex, birth year,
and socioeconomic status) but characterized by a 100% of
nonoverweight entities (i.e., no members of the population
being overweight or obese). Finally, outcomes for the 2
scenarios (base case and policy) were compared to calcu-
late, first, the benefits in terms of morbidity and mortality
and, second, the cost-utility ratios (Euro/QALY).
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Validation Results

Validation of the Conceptual Model

Our conceptual model followed the same approach as
that adopted by Barton et al.37 We included exactly the
same cardiovascular events; in addition, however, recur-
rent events and event-specific mortality were taken into
account in our model. The main difference was the use of
BMI categories for risk stratification, rather than blood
pressure and total cholesterol levels.37 Recently pub-
lished models have also included other obesity-related
events, such as cancers or cirrhosis38; however, at this
stage of our research, we decided to focus on cardiovas-
cular consequences.

Input Data Validation

The same experts as those consulted concerning the con-
ceptual model were asked about the appropriateness of
the input data. Notably, most of the parameters used for
the model were estimated using data from the Spanish
Health Survey database or the hospital discharge records
in the Spanish national health information system. In
addition, as regression models were used for parameter
estimation, this allowed correlated parameter uncertainty
to be easily included in the model using Cholesky decom-
position.33,39 Other model inputs obtained from the liter-
ature, such as relative risk values, were also considered
acceptable by the experts consulted.

Validation of the Computerized Model
(Internal Validation)

The computer model in R was built from several submo-
dels. Each submodel was reviewed by at least 2 different
researchers in our research group before continuing with
the next step. In each submodel, the trajectory of various
individuals through the model was evaluated; that is, we
recorded all the attributes assigned to specific individuals
and checked whether the path followed by them was
logical. We did not conduct specific testing for extreme
input values; however, in the stochastic version of the
model, no errors were reported with the parameters tak-
ing values across all their corresponding range and the
model calculating final outcomes. In Supplementary
Table SM3, we compare the life expectancy of the Span-
ish population according to the Spanish National Statis-
tics Institute and the mean survival time with confidence
intervals of the simulated population. Supplementary
Figure SM2 shows the comparison of the actual Spanish
population in 2013 by birth-year distribution and the
simulated population in 2013 resulting from the

simulated birth cohorts and their corresponding overall
and event-specific mortality rates. As we introduced indi-
viduals of all cohorts at birth and assigned them a risk of
death, the good fit shown in Supplementary Figure SM2
demonstrates that mortality is well reproduced by the
model. The simulation phase recorded all events that
occur to the simulated individual from birth to death in
a specific database, and hence, the final model outcomes
were obtained from statistical analysis of the data in this
database.

Operational Validation (External Validation)

The experts consulted were mainly interested in the inci-
dence, prevalence of events, and mortality rates. Further,
following the literature, our model considered hospitali-
zation and long-term treatment costs as well as QALYs
for the cost-effectiveness analysis.10,36,37 Although we did
not use extreme input data values in the simulation to
check the model results, the use of second-order uncer-
tainty allowed parameters taking values across the entire
range of the assigned distribution.

We implemented a calibration process that consisted
of repeatedly checking the goodness of fit of the simu-
lated outcomes and reprograming the mathematical
functions when the differences were significant, to repro-
duce the Spanish general population incidence rates for
each event. The calibration process was performed using
a 10-simulation model. Survival matched general popula-
tion life expectancy calculated by the Spanish Statistics
Institute using life tables. The excess risk associated with
each BMI category in the simulated total population is
shown in Supplementary Table SM4. Moreover, simu-
lated outcomes for the age distribution of first events
were compared with real data in 2013. Figure 2 compares
the current and simulated number of first events for
stroke, AMI, and, finally, heart failure. The external vali-
dation of recurrent events was achieved by calculating
the rates of successive events. For stroke, the simulated
rates, 25.3% for males and 27.1% for females, lie in the
range reported by Hankey,40 namely, 25% to 30%. In
the case of AMI, the simulated rates were 18.9% for
males and 19.3% for females, somewhat lower than the
23% obtained by Löwel et al.41 for the period 2000 to
2002. We also validated the incidence of DM by compar-
ing the simulated outcomes with rates from Holden
et al.16 (Supplementary Figure SM3).

Note that we have used 2 terms (calibration and exter-
nal validation) for the same process of comparing simu-
lated incident cases (HF, DM, stroke, and MI) with
observed ones. The calibration was carried out only to
select the most appropriate distribution for the survival
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functions and adjust the corresponding parameters using
10 simulations. Having finished this calibration process,
the final model run for 1000 simulations, the comparison
of these results with observed rates was considered
‘‘external validation.’’ It is true that if the computing had
taken less time, the 2 processes would have been the
same. We distinguish between them as we wanted to
highlight the importance of obtaining the confidence
intervals of the simulated values in the comparison with
the observed data (external validation).

Other Validation Techniques

Other validation techniques such as, for example, double
programming9 have not been used, but the model was
built using a free software environment for statistical

computing (R); therefore, it will be possible to share the
model code with researchers interested in collaboration
projects. Further, in the model-building process, we fol-
lowed the guidelines described by Eddy et al.9 in the
report of the ISPOR-SMDM Modeling Good Research
Practices Task Force, with some elements from the spe-
cific review for population model validation of Kopec
et al.8

Evaluation Results

Epidemiological Impact

The comparison of stroke, AMI, heart failure, and DM
incidence by age group in both scenarios is shown in Fig-
ure 3A (number of events), Figure 3B (rates), and Sup-
plementary Figure SM4 (DM). The risk differences

Figure 2 (A) External validation of the number of first events in 2013 in males by age group. (B) External validation of the
number of first stroke events in 2013 in females by age group.

248 Medical Decision Making 42(2)



Figure 3 (A) Comparison of number of events and incidence by age group in the base-case scenario and in the no-obesity or
overweight scenario in males. Scenario 1: base-case scenario; scenario 2: no obesity or overweight scenario. (B) Comparison of
the incidence rates with confidence intervals by age group in the base-case scenario and the no-obesity or overweight scenario in
females. Scenario 1: base-case scenario; scenario 2: no obesity or overweight scenario.
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between the 2 scenarios (base case and no obesity or
overweight) for first events for stroke, DM, AMI, and
heart failure are shown in Table 2.

Cost-Utility Analysis

The cost-utility analysis with mean and confidence inter-
vals for discounted and undiscounted costs and QALYs for
each individual in each scenario are listed in Supplementary
Tables SM5, SM6, and SM7. The cost-effectiveness plane is
shown in Figure 4.

Discussion

This study demonstrates, in a structured way, the robust-
ness and validity of our model reproducing the level of
cardiovascular risk in the Spanish population by BMI,
this being considered the main driver, but also taking
into account sex, age, and socioeconomic status.
Although development and validation were carried out
for the Spanish population, the model could be used for
other populations by entering country-specific input
data.

Figure 4. Cost-effectiveness plane for a hypothetical intervention that eliminates obesity and overweight. QALYs, quality-
adjusted life-years.

Table 2 Change of Risk of First Event for Stroke, Myocardial Infarction, Diabetes Mellitus, and Heart Failure from Baseline
Scenario (1) to No-Obesity or Overweight Scenario (2)

Reference Scenario (1) Sex Scenario Cox Hazard Ratio

Stroke Male Scenario (2) 0.78
Female Scenario (2) 0.82

Myocardial infarction Male Scenario (2) 0.64
Female Scenario (2) 0.69

Diabetes mellitus Male Scenario (2) 0.47
Female Scenario (2) 0.54

Heart Failure Male Scenario (2) 0.75
Female Scenario (2) 0.76
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We focused on cardiovascular risk and DM because
they are the main drivers of the life expectancy gap
between overweight or obese and nonoverweight people.
The disaggregation of cardiovascular risk by socioeco-
nomic status and sex, as well as age, was a key element
of our analysis, given the considerable inequalities by sex
and socioeconomic status in the prevalence of obe-
sity.34,42 In this way, we have been able to take into
account the impact of interventions on a specific sub-
group as a function of risk, as has been shown in the case
of imposing taxes on sugary drinks.34 So far, we have
assumed that other risk factors such as blood pressure or
cholesterol levels were not modified, and hence, they
were not included in the predictive functions for cardio-
vascular events. Further, although some models have
included other events associated with obesity, such as
osteoarthritis, cancers (kidney, endometrial, breast, and
colorectal) and dementia,43–46 we decided not to include
them, as their impact on mortality has a smaller effect
size. On the other hand, the disutility associated with
osteoarthritis and other diseases reducing health-related
quality of life was indirectly included in the model
through the utility values from the Spanish Health Sur-
vey by BMI category.

The conceptual model used in this study relies on the
idea that the health of elderly individuals depends on
exposure to various determinants at younger ages, that
is, the life course approach to chronic disease epidemiol-
ogy.47 The so-called life course approach refers to the
analysis of long-term effects of physical and social expo-
sure during pregnancy, childhood, and adulthood on
chronic disease risk.47–49 Applying it to obesity means
that individuals with higher BMI are characterized by an
excess risk of certain events, such as stroke or coronary
heart disease, over the course of their life. In theory, obe-
sity exposure could be calculated as the area under the
lifetime BMI curve, in other words, weighting the time
that each individual is in each BMI category; however,
implementing this in a mathematical function is not cur-
rently feasible at an individual level because of the lack
of data. In our model, the mathematical functions
obtained from incidence data incorporated the whole-life
exposure to obesity of individuals distributed by BMI
category. This approach assumed that stroke and coron-
ary heart disease incidence in 2013 resulted from the
exposure of the 2013 Spanish population to obesity and
various other determinants during people’s lifetime.

Once the base-case scenario had been validated by
comparison with the real incidence, the only change
incorporated into the no-obesity or overweight scenario
was the distribution of BMI, which propagated a differ-
ent exposure to obesity within the population model.

That is, in this study, we have not measured the impact
of different policies on the prevalence of obesity; rather,
the model translates the change in the distribution of
BMI of the population achieved by an intervention into
a reduction in cardiovascular risk. In this way, the eva-
luation of a policy, or policies, is achieved by comparing
results by exposure to the lifetime risk factors. The preva-
lence of obesity is likely to increase in the future, owing
to past trends, yet that of hypertension has remained rel-
atively stable since approximately 2000.48,49 As achieving
an accurate prediction for these trends in the future is
not feasible, we can evaluate the impact on the results
considering different scenarios characterized by fixed lev-
els of risk factors. In other words, the situation in 2013
reproduces the base-case scenario that is compared with
a scenario in which obesity prevalence could be lower or
higher. By taking into account individual risk, the model
translates the associated changes in risk factors (BMI)
into population rates. It also provides an estimate of the
overall burden of obesity as a challenge to health service
budgets and public health.

This discrete event simulation model was developed
following a framework distinguishing between first and
second order in the analysis of uncertainty in the model-
ing.25 Specifically, a random parameter was included in
all the functions to reflect first-order uncertainty. None-
theless, dealing with stochastic uncertainty is challenging
because of the high computational effort required to run
multicohort models.50 Second-order uncertainty was
achieved through PSA for all parameters estimated from
individual-level databases, which included the probabil-
ity of being in each socioeconomic status or BMI
category, survival function parameters, and utility val-
ues.24,51 PSA poses a great challenge for public health
models given its computational requirements, and alter-
natives to avoid it have been proposed to achieve
second-order uncertainty.50 Although the long computa-
tion time was a challenge to overcome, the 2-phase
approach allowed us to successfully process the PSA and
obtain the results. Moreover, the use of a free tool (R
software) and standard personal computers to program
both phases of the PSA implementation make the pro-
cess readily reproducible.

We recognize that this model has certain limitations.
First, the calibration process was run in a 10-simulation
model to reduce the computation time.35,50 Second, we
did not take into account either the level of risk accord-
ing to BMI trajectories as described by Ward et al.52 or
some of the features required to reproduce individual
risks such as cholesterol level or blood pressure. None-
theless, the conceptual model included all the key ele-
ments necessary to estimate the cardiovascular events of
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BMI subgroups within the Spanish population. This
level of detail seems sufficient to evaluate public health
policies, although not necessarily individual interven-
tions. Third, the computation approach to achieve the
PSA required a long run time. Fourth, we applied a sim-
ple model when estimating the disutilities associated with
several comorbidities of individuals without taking into
account that the relationship between the conditions
could be additive or multiplicative.

Public health models are designed from the outset to
assess different policies tackling a health population prob-
lem of interest. This multipurpose aim was achieved in
our work in that the model is able to estimate the impact
of any intervention modifying obesity distribution in the
population. As an example, we considered a hypothetical
policy that would achieve a huge effect. Although it is not
realistic to believe that such a disruptive intervention for
obesity that modifies the BMI distribution dramatically is
going to become available, it serves to illustrate the capac-
ity of the model to measure the impact on cardiovascular
events at the population level of 2 scenarios and monitor
the sensitivity of the model to changes.

Conclusion

This obesity simulation model evidenced good properties
to adequately estimate the long-term epidemiological
and economic impact of policies implemented to tackle
obesity in the Spanish population. Nonetheless, the con-
ceptual model could be implemented for other countries
using country-specific input data.
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