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Roles of Category, Shape, and Spatial Frequency in Shaping
Animal and Tool Selectivity in the Occipitotemporal Cortex

Chenxi He, Shao-Chin Hung, and “Olivia S. Cheung
Department of Psychology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

Does the nature of representation in the category-selective regions in the occipitotemporal cortex reflect visual or conceptual
properties? Previous research showed that natural variability in visual features across categories, quantified by image gist sta-
tistics, is highly correlated with the different neural responses observed in the occipitotemporal cortex. Using fMRI, we exam-
ined whether category selectivity for animals and tools would remain, when image gist statistics were comparable across
categories. Critically, we investigated how category, shape, and spatial frequency may contribute to the category selectivity in
the animal- and tool-selective regions. Female and male human observers viewed low- or high-passed images of round or
elongated animals and tools that shared comparable gist statistics in the main experiment, and animal and tool images of
naturally varied gist statistics in a separate localizer. Univariate analysis revealed robust category-selective responses for
images with comparable gist statistics across categories. Successful classification for category (animals/tools), shape (round/
elongated), and spatial frequency (low/high) was also observed, with highest classification accuracy for category.
Representational similarity analyses further revealed that the activation patterns in the animal-selective regions were most
correlated with a model that represents only animal information, whereas the activation patterns in the tool-selective regions
were most correlated with a model that represents only tool information, suggesting that these regions selectively represent
information of only animals or tools. Together, in addition to visual features, the distinction between animal and tool repre-
sentations in the occipitotemporal cortex is likely shaped by higher-level conceptual influences such as categorization or inter-
pretation of visual inputs.
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Since different categories often vary systematically in both visual and conceptual features, it remains unclear what kinds of in-
formation determine category-selective responses in the occipitotemporal cortex. To minimize the influences of low- and
mid-level visual features, here we used a diverse image set of animals and tools that shared comparable gist statistics. We
manipulated category (animals/tools), shape (round/elongated), and spatial frequency (low/high), and found that the repre-
sentational content of the animal- and tool-selective regions is primarily determined by their preferred categories only,
regardless of shape or spatial frequency. Our results show that category-selective responses in the occipitotemporal cortex are
influenced by higher-level processing such as categorization or interpretation of visual inputs, and highlight the specificity in
these category-selective regions. j
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and 16 tools were used, each with 16 exemplar images.

(Rice et al., 2014; Watson et al., 2014); and (2) the extent that
these regions represent information content of the preferred cat-
egories only, or multiple categories (Kanwisher, 2010; Haxby et
al., 2001). Here we disentangled the influences of category, shape,
and spatial frequency in shaping the neural representation in the
animal- and tool-selective regions in the occipitotemporal
cortex.

The lateral and medial parts of the occipitotemporal cortex
are selectively activated when viewing images of animals and
tools, respectively. Although several studies suggested that the
differential neural responses may be due to conceptual differen-
ces among categories (Chao et al, 1999; Kriegeskorte et al,
2008), items from different categories often comprise systematic
visual differences. For instance, animals generally have curvy
shapes, while tools tend to be elongated (Almeida et al., 2014;
Chen et al., 2018). Curvilinearity and rectilinearity appear to be
sufficient for distinguishing between images of animals and man-
made objects, even when the images were rendered unrecogniz-
able (Long et al., 2017, 2018; Zachariou et al., 2018). Comparison
of the lateral versus the medial occipitotemporal cortex shows
sensitivity not only to animals versus tools, but also to curvilinear
versus rectilinear shapes (Op de Beeck et al., 2008; Srihasam et
al., 2014), and low spatial frequency (LSF) versus high spatial fre-
quency (HSF; Rajimehr et al., 2011; Mahon et al., 2013; Canario
et al., 2016; but see Berman et al., 2017). Moreover, differences in
image gist statistics across categories can account for category-
selective response patterns in the occipitotemporal cortex (Rice
et al, 2014; Watson et al, 2014; Coggan et al., 2016, 2019).
Therefore, it is often difficult to tease apart the extent that visual
or conceptual features associated with a category contribute to
category-selective responses.

Several recent studies have suggested that the occipitotempo-
ral cortex is sensitive to both visual and category information,
following a posterior-to-anterior axis (Bracci and Op de Beeck,
2016; Kaiser et al., 2016; Proklova et al., 2016). However, the rela-
tive influences of visual and category information on the neural
representations remain unclear, especially within the regions that
are most responsive to a particular category. Specifically, animal-
selective regions may be sensitive to a combination of animal fea-
tures, round shapes, and LSF, whereas tool-selective regions may
be sensitive to tool features, elongated shapes, and HSF.
Alternatively, representations in the category-selective regions
may primarily be driven by only a certain type of visual or
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Round

Sample stimuli in each of the Category (animals vs tools), Shape (round vs elongated), and Spatial Frequency
(low vs high) conditions. The contrast of HSF images here was increased for illustration purpose, whereas the contrast of the
HSF images used in the experiment was decreased to equate visibility between LSF and HSF images. A total of 16 animals
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conceptual information, such as animal
or tool features that are independent of
shapes or spatial frequencies.

We used a diverse image set of animals
and tools that shared comparable gist sta-
tistics across categories to examine the
effects of Category (animals vs tools),
Shape (round vs elongated), and SF (LSF
vs HSF) in the category-selective regions
for animals and tools. We first used uni-
variate analysis to examine the response
magnitudes in these regions among the
categories, shapes, and spatial frequencies.
We then used support vector machine
(SVM) classification to further examine
the degree that category, shape, and spa-
tial frequency information is represented
in the neural response patterns in these
regions. We also used representational
similarity analysis (RSA) to compare the
neural response patterns in these regions to the theoretical mod-
els that represent specialized versus distributed information con-
tent for categories, shapes, and spatial frequencies (i.e., Animal/
Tool/Round/Elongated/LSF/HSF models vs Category/Shape/SF
models).

Elongated

Materials and Methods

Participants

Twenty healthy, right-handed adults (13 female, 7 male), between 19
and 35years of age (mean age, 23.9; SD, 4.2), from the New York
University community took part in the main study. All participants had
normal or corrected-to-normal vision. All participants provided
informed consent and were compensated for their participation.

Materials

A total of 512 grayscale images were used in the main study, including
16 animals and 16 tools, with 16 exemplars for each item. An exemplar
of each of the animal and tool stimuli were illustrated in Figure 1. The
complete stimulus set can be found on https://osf.io/62jyh/. Half of the
animal and tool items were of round shape, and the other half were of
elongated shape. We selected these animals and tools primarily to mini-
mize differences in image statistics between the two categories for each
shape, and to maximize the representations for each category. The ani-
mals were from a wide range of subcategories including mammals, birds,
fish, reptiles, and insects. While several elongated tools were typically
associated with specific single-hand manipulations (e.g., comb, screw-
driver), the round tools included a variety of manipulable objects (e.g.,
pencil sharpener, rope), and tools that might require manipulations with
both hands or electric power (e.g., steering wheel, circular saw, propel-
ler). While we attempted to minimize any systematic, nonvisual differen-
ces that might be confounded with the shape manipulation, it was
impossible to entirely rule out this possibility. All images were 5.6° of vis-
ual angle.

All images were spatially filtered with either low- or high-pass filters
(<1.6 or 8-9.6 cycles/° for LSF and HSF conditions) respectively. The
LSF and HSF ranges were selected for comparable visibility between the
stimuli in a behavioral pilot study. The main concern for equating visi-
bility between LSF and HSF was both due to the fact that visibility alone
could modulate the overall responses in the occipitotemporal cortex
(Ludwig et al., 2016) and to the previous findings that HSF images are
often more visible than LSF images (de Gardelle and Kouider, 2010).
Therefore, we attempted to minimize such a potential confound of dif-
ferential visibility between LSF and HSF by adjusting the contrast of the
stimuli for comparable visibility between LSF and HSF images (Cheung
and Bar, 2014). In the pilot study, participants (N=11) viewed contrast-
adjusted LSF and HSF stimuli that were briefly presented (300 ms), and
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Figure 2.
in each category, but no significant differences between animals and tools for each shape.

judged whether the real-world size of the item was larger or smaller than
a typical shoebox. We found comparable performance between the con-
trast-adjusted LSF and HSF images. While there was a speed-accuracy
trade-off between LSF and HSF images [mean response time (RT): LSF,
648.8 = 121.4ms; HSF, 672.7 = 117 ms; F1,10) = 17.6, p=0.002; mean
accuracy: LSF, 0.77 + 0.08; HSF, 0.79 £ 0.08; F(;,10) = 12.3, p=0.006],
the inverse efficiency that integrated accuracy and RT measures showed
no statistical difference in performance for LSF and HSF images (F(; 10 =
04,p=0.53).

More importantly, to quantitatively measure the holistic shape prop-
erties of the images across categories, a gist descriptor was calculated for
each image (Oliva and Torralba, 2001; see also Rice et al, 2014).
Specifically, a series of Gabor filters across eight orientations and four
spatial frequencies was applied to the images. Each of the resulting 32 fil-
tered images was then segmented into a 4 x 4 grid, and the energy was
averaged within each grid to produce final gist statistics containing 512
values. We then calculated the pairwise dissimilarities of the gist statistics
across items within and across shapes or categories, by squared
Euclidean distance (Fig. 2; Oliva and Torralba, 2001; He and Cheung,
2019). As expected, round and elongated shapes showed significant dif-
ferences in gist statistics: the average within-shape dissimilarity was sig-
nificantly lower than the average cross-shape dissimilarity for images
across categories and spatial frequencies (e.g., a squirrel and a turtle in
LSF vs a squirrel and a penguin in LSF; LSF animal: #;5 = —15.2,
p<<0.0001; LSF tool: t;5 = —22.7, p<0.0001; HSF animal: t;;5) =
—11.4, p < 0.0001; HSF tool: #(;;5) = —12.2, p < 0.0001). Critically, how-
ever, the average within-category dissimilarity was comparable to the av-
erage cross-category dissimilarity for images across different shapes and
spatial frequencies (e.g., a squirrel and a turtle in LSF vs a squirrel and a
steering wheel in LSF; LSF round: #(;;5) = —0.7, p =0.47; LSF elongated:
taisy = —1.3, p=0.21; HSF round: t(;;5) = —0.1, p=0.92; HSF elongated;
tais) = —1.4, p=0.16), suggesting no systematic difference in gist statis-
tics between the animal and tool images.

The localizer used full-spectrum, grayscale images of 60 animals and
60 tools with natural shape variations (He et al, 2013; Konkle and
Caramazza, 2013), and the scrambled versions of such images. Each image
was 5° of visual angle. The animals included various mammals, birds, fish,
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Pairwise dissimilarity (squared Euclidean distance) of gist statistics of low and high spatial frequency images showed significant differences between elongated and round shapes

reptiles, and insects. The tools included items used in various environ-
ments such as homes, offices, hospitals, construction sites, and fields.

Experimental design and statistical analysis

Design and procedure of the main fMRI experiment. In the main experi-
ment, half of the 16 animals and 16 tools were randomly allocated into
the LSF or HSF conditions for each participant. Each participant saw a
total of 8 animals and 8 tools (of 16) in the LSF condition (4 round and 4
elongated animals, 4 round and 4 elongated tools), and the rest of the 8
animals and 8 tools in the HSF condition. During each run, there was a
total of 32 mini-blocks. Each block showed eight exemplars of the same
item (e.g., eight different squirrels) for 300 ms each, followed by a fixa-
tion for 615 ms. Participants performed a one-back task to detect imme-
diate image repetition by pressing a response button with their right
index finger. There was a single repetition that appeared randomly in
each mini-block. A long fixation (7.32 s) was presented at the beginning
of each run and after every four mini-blocks. Each mini-block lasted
7.32 s, and each run lasted 5min. There was a total of eight runs. The
experiment was run using Psychtoolbox in MATLAB (Brainard, 1997;
Kleiner et al., 2007). The presentation order of the mini-blocks was
randomized across runs and participants.

The localizer consisted of a single run of intact or scrambled animal
or tool images in different blocks. There was a total of 32 blocks, with
each block showing 10 images of the same category (animals/tools) and
format (intact/phase scrambled) for 300 ms each, followed by a fixation
for 615ms. A 9.15 s fixation interval was presented at the beginning of
each run and after every four blocks. A Latin-square was used to balance
the block orders across participants. Participants performed a one-back
task, where a single repetition appeared randomly in each block. The lo-
calizer lasted 6.25 min.

Imaging parameters. The functional and anatomic MRI data were
acquired on a Siemens Prisma 3T scanner equipped with a 64-channel
head coil at the Center for Brain Imaging, New York University. The ac-
quisition parameters of the echoplanar imaging T2*-weighted images
were as follows: repetition time, 915 ms; echo time, 37 ms; flip angle, 52°
field of view (FoV), 208 mm (with FoV phase of 100%). Using the
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Center for Magnetic Resonance Research multiband sequence (Auerbach et
al,, 2013; Xu et al., 2013) with full-brain coverage and an acceleration factor
of 8, each volume contained 72 slices, with 2 mm thickness and no gap.
The image acquisition was tilted 30° clockwise from the anterior com-
misure-posterior comissure plane (Deichmann et al., 2003). An ante-
rior to posterior phase encoding direction was used. Spin echo field
maps and single-band reference image for each functional run were
also collected before each functional run. Anatomical T1-weighted and
T2-weighted 3D images were also collected. Each of the volumes con-
tained 208 slices with 0.8 x 0.8 x 0.8 mm resolution, a matrix size of
320 x 320 (93.8%), and FoV of 256 mm.

Imaging data preprocessing and analysis. Preprocessing of the imag-
ing data followed the minimal preprocessing pipelines of the Human
Connectome Project (Glasser et al., 2013). The pipelines included re-
moval of spatial artifacts and distortions in anatomic and functional
images, segmentation, precise within-subject registration between func-
tional and anatomic images, cross-subject registration to the standard
MNI volume space, and motion correction. Statistical Parametric
Mapping (SPM12; http://www.filion.uclac.uk/spm) was then used for
subsequent analyses. General linear model was used to estimate the
blood oxygenation level-dependent (BOLD) response in the functional
data, with each condition as the regressor of interest (32 in the main
experiment and 4 in the localizer) and the 12 head movement parame-
ters as the regressors of no interest. Spatial smoothing with a 4 mm
FWHM Gaussian kernel was applied for univariate, but not for multivar-
iate, analyses. For univariate analysis in the main experiment, the neural
responses were averaged across the four items within each condition
(e.g., LSF round animals). For data visualization, BrainNet Viewer (Xia
etal., 2013) was used.

Definitions of regions of interest

The main focus of the analyses was in the category-selective regions of
interest (ROIs). Using the localizer data, animal- and tool-selective ROIs
were defined in each individual in the occipitotemporal cortex. Figure 3
illustrates the four animal-selective and two tool-selective ROIs of a rep-
resentative participant. With the contrast of intact animals versus tools,
animal-selective ROIs in bilateral lateral occipital complex (LOC) and
bilateral lateral fusiform gyrus (FG), and tool-selective ROIs in the left
medial FG and left posterior middle temporal gyrus (pMTG) were
defined. All ROIs were defined with a threshold at p=0.01 (uncor-
rected). If no clusters were found at this threshold, the threshold was
lowered to p<0.05 (uncorrected). For each ROI, the more lenient
threshold was used for four or fewer participants. After locating the
voxel with the peak activation in each ROI, a 10 mm radius sphere was
drawn around the peak voxel. To ensure selectivity, only up to 75 voxels
that showed the most significant effects with at least the threshold of
P <0.05 (uncorrected) were selected within each sphere. If <30 voxels
reached the selection criterion of p < 0.05 (uncorrected), the data of the
participant were excluded from the analyses of the particular ROI The
ROIs were successfully defined in a majority of participants (15-19 of
20). For the ROIs, the average number of selected voxels was 68 (left
LOC: mean=71 voxels, SD =9.4; right LOC: mean=70 voxels, SD =
11.6; left lateral FG: mean=66 voxels, SD=13.7; right lateral FG:
mean = 73 voxels, SD =9.2; left medial FG: mean =57 voxels, SD =17.5;
left pMTG: mean = 73 voxels, SD =6).

Univariate and multivoxel pattern analyses

Univariate analyses were conducted on the data within the ROIs.
Random-effects whole-brain analyses were also performed to acquire
group statistical maps for the main effects of Category, Shape, and
Spatial Frequency, respectively.

Multivariate pattern analysis (MVPA) was performed in the ROIs in
the following two ways: classification analysis with SVM using LibSVM
software (Chang and Lin, 2011); and RSA with a toolbox by Nili et al.
(2014).

For the classification analysis, a leave-one-out cross-validation proce-
dure was used to decode neural response patterns among category (ani-
mals vs tools), shape (round vs elongated), and spatial frequency (low vs
high) within each participant. One-sample t tests were then conducted
on the mean accuracy across participants at the group level, against the
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Figure 3.  Category-selective ROIs of a representative participant. The ROIs were defined
within each participant using an independent localizer in which animals and tools with
varied shapes were shown to participants. Animal-selective ROIs included left and right
LOC, and left and right lateral FG; tool-selective ROIs included left medial FG, and left
pMTG. L, left hemisphere; R, right hemisphere.

50% chance level. The pairwise comparisons of classification accuracy
among the three factors were also conducted.

For RSA, t-maps of activations calculated for each item compared
with the fixation baseline were used to form a 32 x 32 neural representa-
tional dissimilarity matrix (RDM) for each participant in each ROI, with
the dissimilarity computed by 1 minus Pearson’s r for each pairwise
comparison across items. These RDMs were then compared with a total
of nine models: Category, Animal, Tool, Shape, Round, Elongated, SF,
LSF, and HSF, as illustrated in Figure 4. For the Category model, the dis-
similarity was low among items of the same categories (e.g., within ani-
mals or within tools) but high for items of different categories (e.g.,
animals vs tools). For the Animal (or Tool) models, the dissimilarity was
low only among items in that category, but the dissimilarity was high for
items among the other category, or for items between the categories. The
other six models (Shape, Round, Elongated, SF, LSF, and HSF) were con-
structed in a similar manner.

Within each ROI, the RDM of each participant was compared with
each hypothetical model using Spearman’s correlation with the RSA
toolbox (Nili et al., 2014). The noise ceiling was also estimated for each
ROI to assess the quality of the data (Nili et al., 2014). A one-sided
Wilcoxon signed-rank test was then used to test the significance of each
model at the group level by comparing the correlation values against 0
across participants. To compare the correlation results between different
models, two-sided Wilcoxon signed-rank tests were used.

Whole-brain searchlight analysis using RSA was also performed to
evaluate the correlations between the neural response patterns and the
nine models, with a 6-mm-radius sphere generated for each voxel within
the whole brain.

Follow-up study

We also conducted a follow-up study that was similar to the current
study. Using a rapid event-related design, the follow-up study replicated
the main findings of the current study. Another group of 20 healthy,
right-handed undergraduate students at New York University Abu
Dhabi provided informed consent and completed six runs of the main
experiment and two localizer runs. Instead of a one-back task, here par-
ticipants performed a size judgment task (whether the real-world size of
an item was larger or smaller than a typical shoebox) on each image.

In the main experiment, each run consisted of 128 stimulus trials
each lasting 1830ms (300ms image presentation + 1530 ms blank
screen) and 84 jitter trials each lasting 915 ms (fixation). Four trials were
included for each of the 32 conditions (2 SFs x 2 shapes x 2 categories x
4 items), with different exemplars shown in each run. Each exemplar
image was shown twice in the experiment. Each run of the localizer con-
sisted of 120 stimulus trials (300 ms image presentation + 1530 ms blank
screen) and 80 jitter trials (915 ms), with 60 animals and 60 tools shown
in either LSF or HSF. Each item was presented once in each run.

The functional and anatomic MRI data were acquired on a Siemens
Prisma 3 T scanner equipped with a 64-channel head coil at New York
University Abu Dhabi. All other aspects of the materials, design,
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The nine hypothetical dissimilarity matrices (models) for items across the Category, Shape, and Spatial Frequency conditions. For each participant, a total of four items was ran-

domly selected from a pool of 16 animals or 16 tools for each of the eight conditions in the experiment.

Table 1. Behavioral results (mean accuracy and reaction time) of the main
experiment

Mean accuracy Mean response time (ms)

found IS 0.95(0.02) 533 (57)

riml HSE 0.95 (0.03) 550 (55)
fongued SF 095002 525 (41)

HSE - 0.94 (0.02) 562 (47)

IS 0.95 (0.03) 522 (55)

ol Round HSE 095 (0.02) 548 (41)
fonged 09500 532 (47)

HSE 0.94 (0.02) 564 (38)

The SDs are in the parenthesis.

scanning parameters, and data preprocessing and analysis were identical
to the original study.

Results

Behavioral results

Performance in the one-back task was very high (Table 1).
Although the visibility of the LSF and HSF images were compa-
rable in the pilot study, a 2 x 2 x 2 ANOVA conducted on accu-
racy and RTs in the one-back task in the scanner revealed a
significant effect of Spatial Frequency (accuracy: F(y 19y = 4.52,
p=0.047; RT: F419) = 25.26, p=0.0001), with better and faster
performance for LSF than HSF images. There was also a

significant interaction between Spatial Frequency and Shape in
both accuracy (F119) = 5.71, p=0.028) and RT (F(y ;) = 8.05,
p=0.01), with a larger effect of Spatial Frequency for elongated
than round shapes. There were no other significant effects or
interactions (p values > 0.14).

Univariate results

ROI analysis

To examine whether category selectivity is observed for images
with comparable gist statistics across categories, and whether the
category-selective regions also respond differentially for different
shapes and spatial frequencies, a 2 x 2 x 2 ANOVA with the
within-subjects factors Category (animals vs tools), Shape (round
vs elongated), and SF (LSF vs HSF) was conducted on the ampli-
tude of neural responses in each ROI. The results of all six ROIs
are illustrated in Figure 5.

Robust category selectivity remained in all animal- and tool-
selective ROIs. In all four animal-selective ROIs, animals evoked
significantly stronger activations compared with tools (left lateral
FG: F,15 = 63.1, p<0.0001; right lateral FG: F(; ;7 = 66.3,
p<0.0001; left LOC: Fpy,17) = 123.9, p<0.0001; right LOC:
Fa17y = 70.1, p<0.0001). The interaction between SF and
Category was also significant (left lateral FG: F(;5 = 6.6,
p=0.022; right lateral FG: F(1 17 = 6.6, p=0.02; left LOC: F(; ;7) =
7.9, p=0.012; right LOC: F(1,17) = 5.0, p = 0.039), with larger cate-
gory differences for HSF than LSF images. In the right LOC, the
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Error bars indicate 95% confidence intervals of the three-way interaction.
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“Figure 6.  Whole-brain univariate results of the contrasts between animals and tools, between round and elongated shapes, and between low and high spatial frequencies in the main
experiment (g << 0.05, FDR corrected for each contrast; warm colors: animals, round, LSF; cool colors: tools, elongated, HSF). L, left hemisphere; R, right hemisphere.

mean response to HSF was significantly higher than that for LSF
(F1,17) = 38.3, p < 0.0001). No other main effects or interactions
were significant (all p values > 0.07).

In the two tool-selective ROIs, the activations were signifi-
cantly stronger for tools than animals (left medial FG: F; 14) =
84.8, p<0.0001; left pMTG: F(y 15 = 453, p < 0.0001). The
effect of Shape was also significant, with stronger activations
for round than elongated shapes in the left medial FG
(F1,14y = 5.7, p=0.032), and stronger activations for elongated
than round shapes in the left pMTG (F(1,15) = 5.4, p = 0.032).
In the left pMTG, the effect of Spatial Frequency was also
significant, with stronger activations for HSF than for LSF
(F1,18) = 24.1, p=0.0001). No other significant results were
found (all p values > 0.09).

Whole-brain analysis

Random-effects group analyses in the whole brain (Fig. 6,
Table 2) showed that Category, Shape, and SF largely activated
separate brain regions (g <0.05, FDR corrected for each con-
trast). Critically, the results confirmed the category-selective
results in the ROI analysis, revealing stronger activations for ani-
mals than tools in bilateral LOC and lateral FG, and stronger

activations for tools than animals in bilateral medial FG and the
left pMTG. Additionally, animals also elicited stronger activa-
tions than tools in bilateral supramarginal gyrus, bilateral pre-
central, right middle frontal gyrus, right inferior parietal lobule,
right amygdala, and bilateral precuneus. Stronger responses for
tools than animals were found in the left middle occipital gyrus
and left insula. Note that stronger responses for tools than ani-
mals were also observed in the bilateral superior parietal lobe
(peak coordinates: left, —20, —62, 42; right, 26, —66, 42) and left
inferior parietal lobe (peak coordinates: —46, —26, 46) at rela-
tively lenient thresholds (p=0.01 or p=0.05 uncorrected,
respectively).

Although the effects of Shape and Spatial Frequency appeared
less robust in the category-selective ROIs compared with that of
Category, the whole-brain analysis revealed the effects of Shape
and Spatial Frequency predominantly in the occipital region
among others. Because we chose the stimuli primarily based on
matching image statistics, one potential concern is that manipu-
lations such as shape might lead to nonvisual differences between
image sets that were correlated with visual shapes (e.g., action
properties associated with round vs elongated tools). However,
given that the neural differences due to shape arose mainly in the
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Table 2. Results of random-effects group-level univariate analyses in the
whole brain for the main effects of Category, Shape, and Spatial Frequency
(N=20, g < 0.05, FDR corrected)

MNI coordinates Number of voxels

Animals > tools X y z
Left LOC —52 —78 6 547
Right LOC 52 —70 4 695
Left lateral FG —38 —40 -22 119
Right lateral FG v} —42 -22 324
Left supramarginal gyrus —58 —40 28 217
Right supramarginal gyrus 54 -30 34 1983
Left precentral —36 —4 54 318
Right precentral 26 —4 60 460
Right middle frontal gyrus 56 8 44 61
Right inferior parietal lobule 34 —48 52 250
Right amygdala 20 -2 —16 18
Precuneus 6 —60 64 827
Tools > animals
Left medial FG —28 —58 -12 609
Right medial FG 26 —58 -12 569
Left pMTG —52 —58 -8 25
Left middle occipital gyrus —26 —84 10 115
Left insula —34 —4 14 21
Round > elongated
Left inferior occipital gyrus -20 —92 -12 580
Right inferior occipital gyrus 24 —90 -8 293
Elongated > round
Right middle temporal gyrus 50 —64 2 20
Left postcentral gyrus —50 —-28 40 20
LSF > HSF
Left anterior temporal lobe —62 —6 —14 30
Right anterior temporal lobe 54 0 —24 41
Right inferior orbitofrontal 50 32 —10 74
Bilateral medial frontal gyrus -2 50 10 438
Left lingual gyrus —12 —72 2 85
Right lingual gyrus 6 —60 0 4
Bilateral precuneus —-10 —72 24 1427
Left posterior cingulate —6 —50 36 198
Right posterior cingulate 6 —52 26 84
Left inferior parietal lobule —40 —70 46 247
Right inferior parietal lobule 50 —64 46 3
Left superior frontal gyrus —24 48 30 59
Right superior frontal gyrus 14 54 38 70
HSF > LSF
Left occipital lobe -30 —88 -2 3063
Right occipital lobe 26 —9%4 -8 3205
Left superior occipital lobe —26 —70 30 61
Right superior parietal lobe 30 —70 60 900
Left precentral gyrus —48 2 34 59
Left inferior parietal lobe -38 —44 46 247

occipital cortex, this provides some evidence that our manipula-
tion of shape was primarily tapping into visual information.
Specifically, stronger activations for round than for elongated
shapes were observed in bilateral occipital cortex and stronger
activations for elongated than for round shapes were observed in
small clusters in right middle temporal gyrus and left postcentral
gyrus. Moreover, stronger activations for LSF than HSF images
were observed primarily in bilateral medial frontal gyrus, bilat-
eral precuneus, bilateral posterior cingulate gyrus, and bilateral
inferior parietal lobule, whereas stronger activations for HSF
than for LSF images were observed primarily in large portions of
bilateral occipital lobe extending into inferior temporal cortex,
right superior parietal lobe, and left precentral gyrus.

Heetal. o Category Selectivity in Occipitotemporal Cortex

Multivariate pattern analysis

Classification performance for Category, Shape, and Spatial
Frequency in the ROIs

We performed classification-based MVPA using SVM to further
explore potential differences for Category, Shape, and Spatial
Frequency in the ROIs, and confirmed that the effect of Category
was the most robust among the three factors. The classification
performance in the ROIs is illustrated in Figure 7. One-sample ¢
tests conducted on the mean accuracy across participants com-
pared with the 50% chance level revealed above-chance classifi-
cation performance between categories (animals vs tools), shapes
(round vs elongated), and spatial frequencies (LSF vs HSF) in all
ROIs (g values < 0.05, FDR corrected in each ROI).

Moreover, one-way ANOVAs with the factor Condition
(Category vs Shape vs Spatial Frequency) conducted on the clas-
sification accuracy revealed significant differences in all ROIs
(left LOC: Fpya4) = 28.8, p < 0.0001; right LOC: Fiy54 = 18.1,
P <<0.0001; left lateral FG: F,30) = 31.1, p < 0.0001; right lateral
FG: Fosu = 49.0, p<0.0001; left medial FG: Fppo5 = 4.5,
p=0.02; left pMTG: Fp36 = 9.1, p=0.0006). Subsequent pair-
wise comparisons revealed significantly higher accuracy for clas-
sifying category information, compared with shape and spatial
frequency information in all animal-selective ROIs and in the
tool-selective pMTG (g values < 0.05, FDR corrected). In the
tool-selective left medial FG, the classification accuracy for
Category was only numerically higher than that for Spatial
Frequency (p=0.47). In contrast, there was no statistical differ-
ence in classification performance between Shape and Spatial
Frequency in any ROIs (g values > 0.1).

Representational similarity between neural response patterns
and theoretical models in the ROIs

As distinguishable neural response patterns were observed in the
category-selective ROIs for animal and tool images that shared
comparable gist statistics, we further asked how information
about the categories is represented in these ROIs. Specifically, do
animal-selective regions contain information of both animals
and tools, or only of animals? We examined the nature of repre-
sentation in the category-selective ROIs by computing the corre-
lations between the neural response patterns (Fig. 8) and the
theoretical models (Fig. 4).

In all four animal-selective ROIs, the Animal model, which
shows low dissimilarity among animals and high dissimilarity
among tools and across animals and tools, was most correlated
with the neural response patterns (Fig. 9; r values = 0.30-0.42, p
values < 0.0001). In contrast, the neural response patterns in the
two tool-selective ROIs were strongly correlated with the Tool
model, which shows low dissimilarity among tools and high
dissimilarity among animals and across animals and tools (r val-
ues = 0.17-0.21, p values < 0.0027). The Category model, which
shows low dissimilarity among items within categories and
high dissimilarity among items across categories, was also signifi-
cantly correlated with the neural patterns in all six ROIs
(g values < 0.05, FDR corrected). On the other hand, the correla-
tions among the neural response patterns and other models were
less consistent across the ROIs with the same statistical threshold
(g <0.05, FDR corrected; Fig. 9).

We found that the Animal and Tool models were most robust
in their respective selective ROIs. The correlations of the Animal
model and the neural response patterns in the animal-selective
ROIs approached or reached the corresponding lower bound of
noise ceilings, and were significantly higher than all other models
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ROIs and in the tool-selective pMTG (g << 0.05, FDR corrected in each ROI).

(q values < 0.05, FDR corrected for all comparisons in all ROIs
except for the Animal model vs Category model in left LOC:
p=0.03, uncorrected). The Tool model significantly outper-
formed several models in both tool-selective ROIs (q values
< 0.05, FDR corrected), although it was only numerically more
correlated with the neural response patterns compared with the
HSF and Elongated models in left pMTG, and compared with
the Category, HSF, SF, Round and Animal models in the left
medial FG. Nonetheless, in the follow-up event-related study (Fig.
10), significant correlations between the Tool model and the neural
response patterns in both tool-selective ROIs were also observed (r
values > 0.2, p values < 0.0001), while the significant correlations
between the Animal model and the neural response patterns were
also found in all four animal-selective ROIs. Critically, the cor-
relations of the Animal model or the Tool model with the neu-
ral response patterns were significantly higher than the
correlations for all other models, including the Category model,
and the neural response patterns in their respective ROIs (g val-
ues < 0.05, FDR corrected).

Whole-brain searchlight analysis using RSA

The whole-brain searchlight analysis was performed (Fig. 11,
Table 3) to examine whether the animal- and tool-selective
responses may be limited to clusters around the regions with
peak selectivity in the occipitotemporal cortex, or also more gen-
erally in other regions. With a threshold of FDR-corrected
q < 0.05 performed with the Animal and Tool models separately,
we again found that animal information was represented within
bilateral LOC, bilateral lateral FG, and additionally in the right
precentral region, while tool information was again represented
in bilateral medial FG, left pMTG, and additionally left inferior
parietal lobule and left superior parietal lobule. Interestingly, the
Category model was found to be significant in bilateral occipito-
temporal cortex, which showed larger clusters than the occipito-
temporal clusters found for the Animal or Tool models, and also
in right inferior and middle frontal gyrus, right precuneus,

Tool-selective ROIs

Left medial fusiform gyrus (FG)

Left posterior middle temporal gyrus (pMTG)

Averaged classification accuracy between Category (animals vs tools), Shape (round vs elongated), and Spatial Frequency
(low vs high) in animal-selective and tool-selective ROIs. Error bars indicate SEM. Asterisks show significantly higher dlassification ac-
curacy than the 50% chance level (g << 0.05, FDR corrected in each ROI). The black lines indicate significant pairwise comparisons
among conditions, with higher classification accuracy for Category compared with Shape or Spatial Frequency in all animal-selective
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bilateral inferior parietal lobule,
right precentral, right supramargi-
N=15 nal gyrus, and right angular gyrus.
Additional analyses performed
. to examine the representations of
« shape and spatial frequency infor-
mation revealed that such informa-
tion was represented in regions
more posterior than the category-
selective ROIs. The Shape model
was significantly correlated with
clusters in bilateral occipital cortex,
precuneus, left postcentral gyrus
and right superior parietal lobule.
The Round shape model showed
correlations with clusters in bilat-
eral occipital lobe, while no signifi-
cant clusters were found to be
significantly correlated with the
Elongated shape model. The Spatial
Frequency model was correlated
with clusters in bilateral occipital
lobe extending into the medial part
of inferior temporal cortex, and
right inferior and superior parietal
lobule. The correlation with the LSF
model did not reveal any cluster
surviving FDR correction, while representation of HSF informa-
tion was found in extensive brain regions spanning occipital-
temporal-parietal-frontal lobes, as well as bilateral rectus, left
middle frontal gyrus, right caudate, right thalamus and bilateral
paracentral lobule. Such extensive responses for HSF informa-
tion was unexpected—one possible explanation is that the
extensive significant correlations with the HSF model might be
related to the slightly worse behavioral performance for HSF
than LSF images in the one-back task. Although this result
might raise potential concerns on the comparability of the
conditions, it is important to note that the behavioral perform-
ance was very high for both HSF and LSF images in the one-
back task, and this result of the HSF model was not found in
the follow-up study, where no behavioral difference between
LSF and HSF images in the size judgment task was observed.
Instead, the HSF model was only found to be correlated with
clusters in bilateral occipital cortex (Fig. 12). More impor-
tantly, these results could not account for the main findings of
the animal- and tool-selective effects, or the general trend of
posterior-to-anterior progression of shape and spatial fre-
quency information to category information in the occipito-
temporal cortex.

SF  Shape Category

N=19

SF  Shape Category

Additional comparison of univariate and classification results in
the ROIs between the original study and the follow-up study
Apart from the RSA results of the follow-up study, the findings
for univariate and SVM analyses were also generally consistent
between the original study and the follow-up study, particularly
in terms of the effects of Category. Briefly, the SVM classification
analysis showed highly comparable results between the two stud-
ies. For the univariate analysis, when comparing across the two
studies with four-way ANOVAs with the factors Experiment
(original vs follow-up), Category (animals vs tools), Shape
(round vs elongated), and SF (LSF vs HSF), the overall responses
and the category effects were stronger for the follow-up study in
several ROIs, with significant main effects of Experiment in ani-
mal-selective bilateral FG, and tool-selective left medial FG (F
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Correlations of the averaged neural representational dissimilarity matrices with the hypothetical dissimilarity matrices in the animal-selective and tool-selective ROIs in the main

experiment. Asterisks indicate significant correlations (g << 0.05, FDR corrected); error bars indicate SEM. The gray bars represent the noise ceilings.

values > 9.5, p values <0.005) or significant interactions of
Experiment and Category in animal-selective right LOC, and
both tool-selective ROIs (F values > 4.6, p values < 0.05). The
interaction between Experiment and SF was significant in the
animal-selective ROIs (F values > 4.37, p values < 0.04; except
for left fusiform gyrus, F(; 31) = 3.67, p=0.065), revealing a trend
of higher amplitude for HSF than LSF stimuli in the original
study, but the opposite trend in the follow-up study. There was
also an interaction between Experiment and Shape in animal-
selective right LOC (F(;34) = 3.65, p=0.023), with stronger

responses for elongated than for round items in the follow-up
study (p=0.0002) but not in the original study (p=0.43). Last,
the interaction of Experiment, Shape, and Category in three ani-
mal-selective ROIs (bilateral lateral FG and right LOC: F
values >4.13, p values <0.05) revealed comparable category
effects for round and elongated items in the original study (p
values > 0.22) whereas category effects appeared to be stronger
for elongated than for round items in the follow-up study (p
values < 0.01; except for right lateral FG: p=0.058). Note that
none of the differences in the univariate results between the
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Figure 11.  Whole-brain searchlight results for significant correlations between neural pattern responses and the Animal, Tool, Category, Round, Elongated, Shape, LSF, HSF, and SF models,
respectively, in the main experiment (g << 0.05, FDR corrected within each model). Critically, the significant clusters for the Animal and Tool models were found within the clusters for the
Category model. L, left hemisphere; R, right hemisphere.
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Table 3. Whole-brain searchlight results for the Animal, Tool, Category, LSF,
HSF, SF, Round, Elongated, and Shape models (N =20, ¢ < 0.05, FDR corrected
within each model)

MNI coordinates Number of voxels

Animal model X y z
Left lateral occipital complex -5 -7 4 328
Right lateral occipital complex 54 —70 2 1590
Left lateral fusiform gyrus —38 —40 -2 36
Right lateral fusiform gyrus 5 —26 -22 22
Right precentral 38 0 40 37
Tool model
Left medial FG —-26 —58 —14 314
Right medial FG 28 =5 —10 80
Left pMTG -5 58 —6 101
Left inferior parietal lobule —58 =30 44 32
Left superior parietal lobule —-26 —62 42 25
Category model
Left occipitotemporal cortex —-38 —58 —10 6014
Right occipitotemporal cortex 42 —64 —10 5145
Right inferior frontal gyrus 50 34 12 22
Right middle frontal gyrus 44 18 26 37
Right precuneus 28 =52 52 35
Right supramarginal gyrus 58 —22 32 33
Right angular gyrus 30 —58 48 39
Right precentral 38 -2 54 33
Left inferior parietal lobule —40 36 46 34
Right inferior parietal lobule 38 —38 48 101
LSF model
None
HSF model
Occipital-temporal-parietal-frontal cortex 36 —80 14 86467
Bilateral rectus 6 20 24 55
Left middle frontal gyrus -32 60 —10 62
Right caudate 14 =2 16 264
Right thalamus 6 —20 8 184
Bilateral paracentral lobule -2 38 76 66
SF model
Left occipital lobe —-34 -9 10 3291
Right occipital lobe 9 —78 10 3305
Right inferior parietal lobule 40 —40 46 89
Right superior parietal lobule 30 —54 54 94
Round model
Left occipital lobe -20 —9% 8 2195
Right occipital lobe 24 —88 -8 216
Elongated model
None
Shape model
Bilateral occipital lobe 28 —90 —8 8016
Left postcentral —56 —30 54 21
Precuneus 0 —74 52 67
Right superior parietal lobule 24 —58 54 50

original study and the follow-up study affect our main conclu-
sions, including the consistent category-selective effects, as
revealed in the univariate analyses, the generally stronger effects
of category than shape or SF, as revealed in the SVM analyses,
and the specific representation of category information in the re-
spective ROIs, as revealed in the RSA.

Discussion

To examine the nature of category selectivity for animals and
tools, we manipulated category, shape, and spatial frequency,
and used images of animals and tools with comparable gist

Heetal. o Category Selectivity in Occipitotemporal Cortex

statistics across the categories. We found that the category effects
in the animal- and tool-selective ROIs were independent of low-
and mid-level visual features such as gist statistics, shapes, spatial
frequencies that often covary with animals or tools, and that the
representational content in the category-selective ROIs reflect in-
formation about the preferred category only, whereas the larger
regions surrounding the ROIs showed sensitivity to both the pre-
ferred and nonpreferred categories.

Distinguishing influences of category, shape, and spatial
frequency

While gist statistics predict category-selective responses in the
occipitotemporal cortex (Rice et al., 2014; Watson et al., 2014;
Coggan et al., 2016, 2019), our univariate and multivariate analy-
sis results show that minimizing differences in gist statistics that
covary with category membership do not eliminate category-
selective effects. Specifically, in the ROIs that were defined sepa-
rately using images of animals and tools with naturally varied
gist statistics, univariate analyses conducted in the ROIs revealed
stronger activations for animals than tools in the animal-selective
bilateral LOC and lateral fusiform gyri, and stronger activations
for tools than animals in the tool-selective left pMTG and medial
fusiform gyrus for images of animals and tools with comparable
gist statistics. Whole-brain univariate analysis also revealed sig-
nificant magnitude differences between animals and tools in lat-
eral occipital complex and fusiform gyrus but not in the early
visual cortex, further suggesting that the category effects
observed here were not due to low- or mid-level visual differen-
ces between the categories. In contrast, univariate analyses
revealed significant differences between round and elongated
shapes, and between LSF and HSF in early visual cortex.

While the univariate effects for Shape and Spatial Frequency
were not as reliable and consistent as the category effects in the
ROIs, classification analyses (SVM) revealed that the neural
response patterns were distinguishable not only between catego-
ries, but also between shapes and between SFs in most ROIs.
These results are consistent with previous findings that both vis-
ual and category differences contribute to the neural responses in
the occipitotemporal cortex (shape: Op de Beeck et al., 2008; spa-
tial frequency: Vaziri-Pashkam et al., 2019; category: Haxby et
al,, 2001; Cox and Savoy, 2003; Pietrini et al., 2004; Kriegeskorte
et al., 2008), and that the contributions of visual and category in-
formation may be independent (Bracci and Op de Beeck, 2016;
Proklova et al., 2016). Extending from these findings, the current
study directly compared the relative contributions of these fac-
tors to the representations in the animal- and tool-selective
ROIs. The consistently higher classification accuracy for
Category compared with Shape and Spatial Frequency in all
ROIs suggests that the representations in these ROIs primarily
reflect category information.

We used RSA to further reveal that the representational con-
tent in the ROIs was primarily driven by the preferred category
of the ROIs. Specifically, the neural response patterns were corre-
lated among different animals in the animal-selective ROIs and
the neural response patterns were correlated among different
tools in the tool-selective ROIs, whereas different items from the
nonpreferred category were not correlated with each other.
Moreover, the correlations of the neural response patterns were
consistently higher for the Animal model in the animal-selective
ROIs and for the Tool model in the tool-selective ROIs in most
cases, compared with the Category model. Furthermore, the per-
formance of the Animal and Tool models either reached or
approached the noise ceiling in the animal- and tool-selective
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Whole brain searchlight results for significant correlations between neural pattern responses and the Animal, Tool, Category, Round, Elongated, Shape, LSF, HSF, and SF models,

respectively, in the follow-up study (g << 0.05, FDR corrected within each model). L, left hemisphere; R, right hemisphere.

ROIs, respectively. Together, these results suggest that the cate-
gory-selective ROIs primarily reflect information of the preferred
category only, and not necessarily both preferred and nonpre-
ferred categories, nor visual features.

Specialized versus distributed category representations

It is important to emphasize that the category effects in all the
ROIs across the univariate, SVM, and RSA analyses were
observed and replicated in both experiments. While previous
findings suggest that LOC is sensitive to shapes and fusiform
gyrus is sensitive to both shapes and semantic information
(Grill-Spector et al., 2001; Simons et al., 2003; Grill-Spector and
Malach, 2004), here we found similar representations in both
bilateral LOC and lateral fusiform, with the Animal model signif-
icantly outperformed all other shape or spatial frequency models
in animal-selective ROIs. These results are consistent with previ-
ous findings on the large-scale organization in the occipitotem-
poral cortex with regard to animacy for LOC and lateral fusiform
(Konkle and Caramazza, 2013), and suggest that while influences
of visual information are represented in much of the occipito-
temporal cortex (Bracci et al., 2019), the representational content
within these ROIs is primarily based on animal information.
Similarly, while the tool-selective left medial fusiform and left
pMTG also showed significant effects between round versus
elongated shapes and between LSF and HSF, consistent with pre-
vious findings (Mahon et al., 2013; Fabbri et al., 2016; Chen et
al., 2018), our findings revealed that the most predominant

representations in the tool-selective ROIs appear to be tool
information.

While the notion of specialized representations for a preferred
category (Kanwisher, 2010) is supported by the current results in
the animal- and tool-selective ROIs, the RSA whole-brain search-
light analysis revealed significant correlations of the Category
model with the neural response patterns in substantial areas in
the occipitotemporal cortex, including and surrounding the cate-
gory-selective ROIs (see also Clarke and Tyler, 2014). Since the
Category model assumes that both animal and tool information
is represented, these results appear to be consistent with the view
of distributed representations for the categories in bilateral occi-
pitotemporal cortex (Haxby et al., 2001). Future studies may fur-
ther examine the functional organization of the focal category-
selective areas being part of a larger cortical region with distrib-
uted category representations in the occipitotemporal cortex,
and how the category-selective regions and the larger surround-
ing regions may interact to represent information about various
categories.

Role of higher-level processes in category selectivity

Since category representations in the animal- and tool-selective
regions do not necessarily depend on low- and mid-level visual
features including spatial frequencies, shapes, and gist statistics,
what aspects of the preferred categories are represented in these
ROIs? It is possible that higher-level cognitive processes, such as
interpretation or categorization of the visual inputs modulate
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neural activations in the occipitotemporal cortex. For instance,
the fusiform “face” area is activated when the nonface images are
misperceived or interpreted as faces (Cox et al., 2004; Op de
Beeck et al., 2006; Summerfield et al., 2006; see also Bentin et al.,
2002; Hadjikhan et al., 2009). While observers readily associate
animate versus inanimate attributes to novel objects based on sa-
lient visual features commonly found in either animate or inani-
mate categories (e.g., symmetry, color, texture; Cheung and
Gauthier, 2014), the interpretation of an identical set of stimuli
as either animate or inanimate entities via context or short-term
learning leads to selective activations in lateral versus medial fusi-
form regions (Martin and Weisberg, 2003; Martin, 2007;
Weisberg et al., 2007; Wheatley et al., 2007; see also James and
Gauthier, 2003, 2004). Extending these findings, our results sug-
gest that interpretations or categorization of visual inputs do not
necessarily depend on low- or mid-level visual features.

Successful categorization of a visual input as an animate or in-
animate entity may instead require knowledge about diagnostic
features or feature combinations that are common to a particular
category (e.g., ensemble of a head, a body, and four limbs for ani-
mals; Delorme et al., 2010). Indeed, the animal- and tool-selec-
tive ROIs appear to support categorical knowledge and not the
relationship among the individual items. Specifically, the cate-
gory-selective responses observed here were unlikely to be spe-
cific a limited set of visual features of particular items or
exemplars, as a diverse image set of items and exemplars was
used (Fig. 1; He and Cheung, 2019). Moreover, a follow-up anal-
ysis showed that the semantic associations among individual
items calculated based on Latent Semantic Analysis (Landauer et
al., 1998) yielded significantly lower correlations with the neural
activations patterns than the Animal or Tool models in all the
animal- and tool-selective ROIs, respectively (q values < 0.05,
FDR corrected; p < 0.05 uncorrected in left medial fusiform).
While a lateral-to-medial continuum in neural responses in the
ventral pathway has been reported for animacy (Connolly et al.,
2012; Sha et al., 2015), our RSA results showed high correlations
in the neural response patterns among different animals or dif-
ferent tools within the ROIs. Together, these results suggest that
categorical knowledge may be critical in shaping the selectivity.
Future research may further elucidate the representational differ-
ences for categories versus individual members within the cate-
gories along the posterior-to-anterior axis along the ventral
pathway (Clarke and Tyler, 2014).

Conclusion

In sum, this study provides a new insight that the robust category
selectivity in the occipitotemporal cortex does not solely depend
on low-level or mid-level visual features that covary with the cat-
egories. Instead, the neural representations in the category-selec-
tive ROIs are likely based specifically on the general knowledge
about a wide range of members of the preferred categories. We
suggest that the category-selective regions may play a critical role
in transforming visual inputs into conceptual knowledge.
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