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Asthma is the most common chronic condition among children; however, the

underlying molecular mechanism remains unclear. Dysregulated immune

response and different infiltration states of immune cells are critical for

asthma pathogenesis. Here, three childhood asthma gene expression

datasets were used to detect key genes, immune cells, and pathways

involved in childhood asthma. From these datasets, 33 common differentially

expressed genes (DEGs) were identified, which showed enrichment in the T

helper 1 (Th1) and T helper 2 (Th2) cell differentiation pathway and the T helper

17 (Th17) cell differentiation pathway. Using the weighted gene co-expression

network analysis (WGCNA), CD3D and CD3G were identified as key genes

closely correlated with childhood asthma. Upregulation of CD3D and CD3G

was further validated in bronchoalveolar lavage cells from childhood asthmatics

with control individuals by quantitative reverse transcription-polymerase chain

reaction (qRT-PCR). The immune cell infiltration analysis indicated that CD3D

and CD3G were negatively correlated with increased resting mast cells and

eosinophils, and highly correlated with several cell markers of Th1, Th2, and

Th17 cells. In addition, we found that CD3D and CD3G were closely related to

the Th1 and Th2 cell differentiation pathway and the Th17 cell differentiation

pathway. Our results reveal the important roles of two key genes and immune

infiltration in the pathogenesis of childhood asthma. Thus, this study provides a

new perspective for exploring potential molecular targets for childhood asthma

treatment.
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Introduction

Asthma is the most common chronic lung disease in

children, representing substantial morbidity and a high

socioeconomic burden, accounting for 1%–2% of the

healthcare budget in developed countries (Serebrisky and

Wiznia, 2019). One in three children have had at least one

wheezing episode during the first 3 years of life, but only a

minority of these children will continue to experience

persistent wheezing, and ultimately be diagnosed as asthmatics

(Martinez et al., 1995; Kwong and Bacharier, 2019). Currently,

there is no “gold standard” for the diagnosis of asthma in

preschoolers under 6 years of age. Moreover, the intrinsic

molecular mechanisms underlying the occurrence and

progression of childhood asthma remain elusive. Therefore,

exploring the pathogenesis and molecular characteristics of

childhood asthma is critical.

With the development of high-throughput sequencing

technologies, gene expression profiles have been widely used

to investigate the molecular mechanisms of various diseases,

including asthma (Wu et al., 2016; Zhang et al., 2018; Shi et al.,

2020; Dai et al., 2021), with recent studies identifying several hub

genes and related pathways. For example, CD4, RFX, GZMB, and

FGFBP2 are suggested to play key roles in childhood asthma and

could serve as therapeutic targets (Wu et al., 2016; Zhang et al.,

2018). Hypermethylated tumor necrosis factor (TNF) and

human leukocyte antigen (HLA)-DPA1 are also reportedly

correlated with immune response in childhood atopic asthma

(Shi et al., 2020). Interestingly, RNAN6-methyladenosine (m6A)

regulators may play nonnegligible roles in the occurrence of

childhood asthma, and asthma patients can be divided into two

molecular subtypes based on 11 significant m6A regulators (Dai

et al., 2021). Therefore, bioinformatics analysis of gene

expression profiles may contribute to the discovery of novel

biomarkers to improve the diagnosis and treatment of childhood

asthma.

Accumulating evidence suggests that innate immune cells

are essential for the development of various asthma

phenotypes (Lambrecht and Hammad, 2015). T helper 1

(Th1) and T helper 2 (Th2) cell imbalance is vital for the

pathogenesis of allergic asthma (Deckers et al., 2013;

Lambrecht and Hammad, 2015). Airway inflammation is

primarily caused by type 2 immune responses mediated by

Th2-type cytokines and is associated with increased Th2 cells

and eosinophils (Deckers et al., 2013; Lambrecht and

Hammad, 2015). Moreover, mast cells are key mediators of

allergic inflammation in asthma, releasing biologically active

regulators and Th2-type cytokines and promoting the

Th2 environment (Hammad and Lambrecht, 2021). In

contrast, during allergic inflammation, Th1 cells secreting

interferon γ (IFN-γ) can have an inhibitory effect on

Th2 cells (Khan, 2020). On the other hand, non-allergic

asthma is mainly triggered by neutrophil-rich inflammation

driven by T helper 17 (Th17) cells (Lambrecht and Hammad,

2015). Therefore, investigating the landscape of immune cells

in childhood asthma is critical to understand its pathogenesis.

To date, however, bioinformatics analysis on the correlation

between infiltrating immune cells and hub genes in childhood

asthma, which could clarify the pathogenesis of this disease

and identify potential therapeutic targets, is yet to be

conducted.

Herein, we applied the CIBERSORT (Newman et al., 2015)

algorithm and gene expression profile datasets from the Gene

Expression Omnibus (GEO) database to evaluate the landscape

of infiltrating immune cells and screen hub genes in childhood

asthma. The molecular mechanisms underlying the pathogenesis

of childhood asthma were explored via pathway enrichment

analysis and key hub genes closely correlated with childhood

asthma were identified via weighted gene co-expression network

analysis (WGCNA) (Zhang and Horvath, 2005). We further

studied the relationship between key hub genes and

infiltrating immune cells to better understand the potential

mechanism underpinning molecular immunity during the

occurrence of childhood asthma. Finally, the expression levels

of hub genes were validated by quantitative reverse transcription-

polymerase chain reaction (qRT-PCR).

Material and methods

Bioinformatics analysis workflow for
detecting hub genes

The bioinformatics workflows for detecting hub genes

from multiple datasets are depicted in Supplementary

Figure S1. We first obtained three mRNA expression profile

datasets of childhood asthma from the GEO database. Gene

expression data matrices were then subjected to analysis after

data preprocessing and normalization. We next identified

differentially expressed genes (DEGs) in each dataset, then

obtained common DEGs (co-DEGs) to all three datasets. The

molecular mechanisms of childhood asthma pathogenesis

were explored via pathway enrichment analysis and Gene

Set Enrichment Analysis (GSEA). Protein-protein

interaction (PPI) network analysis of co-DEGs was

performed to screen hub genes. Subsequently, key hub

genes closely correlated with childhood asthma were

obtained by intersecting the hub genes with the childhood

asthma-related module identified by WGCNA. We also used

CIBERSORT to compare infiltration abundance of 22 immune

cells in childhood asthmatics with healthy individuals and

studied the relationship between infiltrating immune cells and

key hub genes. GSEA was performed based on the expression

level of key hub genes to explore their potential function in

childhood asthma. Finally, qRT-PCR was carried out to

validate hub gene expression levels.
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Gene expression datasets of childhood
asthma and data preprocessing

The expression profiles of childhood asthmatics were

obtained from the GEO database (https://www.ncbi.nlm.nih.

gov/geo/). The eligibility criteria for dataset selection included:

1) minimum of 10 subjects, containing both childhood

asthmatics and healthy controls and 2) nasal epithelial cells

collected by brushing used for microarray analysis. Three

datasets (GSE65204, GSE19187, and GSE152004) that met

the criteria were included in this study. The data were

derived from the GPL14550 (Agilent-028004 SurePrint

G3 Human GE 8x60K Microarray), GPL6244 (Affymetrix

Human Gene 1.0 ST Array), and GPL11154 [Illumina

HiSeq 2000 (Homo sapiens)] platforms. The

GSE152004 dataset contains 441 asthmatic children and

254 healthy individuals, the GSE65204 dataset contains

36 asthmatic children and 33 healthy individuals, and the

GSE19187 dataset contains 13 asthmatic children and

11 healthy individuals. For microarray data, probes were

transformed into homologous gene symbols according to

the platform’s annotation information. Probe sets without a

corresponding official symbol were removed. If more than one

probe corresponded to one gene, the maximum expression

value was considered as the gene expression level.

For GSE19187, gene expression data were acquired by

reading raw CEL files using the “oligo” (Carvalho and

Irizarry, 2010) R package (v1.50.0) with background

correction and robust multi-array average (RMA)

normalization, after which batch effects were removed

using the “sva” (Leek et al., 2012) package (v3.34.0). For

GSE65204, microarray raw data were normalized using

the “limma” (Ritchie et al., 2015) package (v3.42.2),

following background correction using the “normexp”

method and quantile normalization and

log2 transformation. A boxplot was generated to visualize

the effect of processing raw data using the “ggplot2”

(Ginestet, 2011) package (v3.3.4). For the RNA-seq

GSE152004 dataset, the raw count matrix of each sample

was acquired directly from the dataset.

Identification and analysis of differentially
expressed genes

Differential analysis was performed for the GSE65204 and

GSE19187 datasets using the “limma” package and for the

GSE152004 dataset using the “DESeq2” (Anders and Huber,

2010) package (v1.26.0). Genes with |fold-change| ≥ 1.2 and

raw p ≤ 0.05 were considered DEGs. The fold-change, gene

expression, and DEG significance results were visualized with

volcano maps using the volcano plotting tool (http://soft.

sangerbox.com/). To identify co-DEGs among the three

datasets, the “UpSetR” (Global Initiative for Asthma, 2021)

R package (v1.4.0) was used to draw an UpSet diagram, and the

co-DEGs were retained for further analysis. TBtools (Chen

et al., 2020) was used to draw expression heatmaps of the co-

DEGs in different series.

Functional annotation and pathway
enrichment analysis

To identify the biological functions of the co-DEGs, the

“clusterProfiler” (Yu et al., 2012) R package (v3.14.3) was

employed for Gene Ontology (GO) (The Gene Ontology

Consortium, 2017) annotation and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa et al., 2008)

analysis. GO terms and KEGG pathways with p < 0.05 were

considered significantly enriched. The “clusterProfiler”

package was also used for GSEA based on gene expression

profiles. According to the median expression of crucial genes

(CD3D, CD3G), all samples were divided into high- and low-

expression groups. KEGG pathway enrichment analysis was

carried out using GSEA to investigate the differences in

pathways between high-expression and low-expression

groups. The cut-off criteria were set to | normalized

enrichment score (NES) | > 1 and p < 0.05.

Hub gene selection and related functional
analysis

The Search Tool for the Retrieval of Interacting Genes

(Szklarczyk et al., 2019) (STRING, v11.5) database was used

to construct a PPI network for the co-DEGs, with edge

confidence >0.15 set as the filtering criterion. After hiding the

disconnected nodes, the PPI network was visualized using

Cytoscape (v3.8.2) (Shannon et al., 2003). The Cytoscape

cytoHubba plug-in was employed to screen hub genes using

the maximal clique centrality (MCC) algorithm (Chin et al.,

2014). GeneMANIA (http://genemania.org/search/) was used to

identify a gene-gene interaction network for hub genes to

evaluate their functions.

Discovery of key hub genes associated
with childhood asthma by WGCNA

WGCNA (Zhang and Horvath, 2005) is an algorithm for

constructing co-expressed gene modules with high biological

significance and exploring the relationship between co-

expression network modularity and diseases. We used

WGCNA to obtain childhood asthma-associated modules

for the three datasets. For each dataset, the top 20%–30% of

genes with the greatest differential expression (less than 5,000)
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were selected to construct co-expression networks. The

“WGCNA” (Langfelder and Horvath, 2008) package (v1.70-

3) in R was utilized to build these co-expression networks.

First, we chose an appropriate soft threshold power according

to standard scale-free networks, with adjacencies between all

genes calculated by the power function. The adjacency

matrices were transformed into topological overlap matrices

(TOM) to evaluate network connectivity. In the detection of

gene modules, average linkage hierarchical clustering was

applied to build a clustering dendrogram, and the minimal

gene module size was 30. After gene module detection, similar

modules were merged with a threshold of 0.25. To identify

childhood asthma-related modules, the grouping information

of the samples was imported into the network and its

correlation with modules was investigated via WGCNA

module-trait relationship analysis. The childhood asthma-

related module was defined as the module showing the

highest correlation coefficient with childhood asthma. After

identifying the childhood asthma-related module, we

calculated the gene significance (GS) and module

membership (MM) of each gene in the module. The

module eigengene was the most important component of

the module’s gene expression matrix. GS was defined as the

correlation between the gene and clinical information of

interest. MM represents the association of gene expression

profile with the module eigengene of a given module.

Genes that appeared in both the childhood asthma-related

module and PPI hub gene network were selected as key hub

genes.

Evaluation of immune cell infiltration

CIBERSORT (Newman et al., 2015) is a deconvolution

algorithm containing gene expression reference values from a

signature matrix of 547 genes in 22 types of immune cells. To

evaluate the proportion and estimate the scores of 22 immune

cell types in child asthmatics and healthy controls, we

uploaded the gene expression matrix data to the

CIBERSORT website, and the algorithm was run using the

LM22 signature. The “vioplot” (Hu, 2020) R package (v0.3.7)

was applied to compare the levels of the 22 immune cell types

between the two groups.

Analysis of correlations between key hub
genes, immune cells, and immune cell-
related pathways

We performed Pearson correlation analysis of key hub genes,

immune cells, and immune cell-related pathways to investigate

the potential immunomodulatory mechanism underlying the

development of childhood asthma using the “ggstatsplot”

(Patil, 2021) R package (v0.8.0) and correlation heatmap

online tool (https://www.omicstudio.cn/tool/59).

Patient Recruitment

This study was approved by the Ethics Committee of the

Children’s Hospital of Chongqing Medical University, and

written informed consent was obtained from the legal

guardians of the study participants before enrollment.

Childhood asthma was diagnosed by physicians according to

the guidelines of the Global Initiative for Asthma (GINA) (Global

Initiative for Asthma, 2021) based on typical symptoms. We

collected bronchoalveolar lavage (BAL) cells from 17 individuals,

including eigtht patients with childhood asthma and nine

children with foreign bodies. Children with asthma underwent

bronchoscopy and BAL fluid (BALF) collection within 1 week of

admission. Children with foreign bodies, who were otherwise

healthy and had no history of allergy, persistent wheezing, or

asthma, were treated immediately to remove the foreign body via

bronchoscopy, with BALF specimens collected during re-

examination. BAL was carried out using standard procedures,

according to the guidelines (Experts Group of Pediatric

Respiratory Endoscopy and Pediatric Section of Chinese

Medical Doctor Association Pediatric Respiratory Endoscopy

Commitee, 2018) described earlier. BALF was gently aspirated

and centrifuged at 2,500 rpm for 5 min at 4°C after collection.

BAL cells were collected in phosphate-buffered saline (PBS) and

stored at −80°C. Details on subject characteristics are included in

Supplementary Table S1.

qRT-PCR for hub genes

Total RNA was extracted from human BAL cells using

TRIzol reagent (Invitrogen, United States), and purified using

a Micro Total RNA Extraction Kit (Tianmo Biotech, China).

Total RNA quality was assessed using a NanoDrop 2000, and

cDNA was synthesized using a PrimeScript RT Kit (TaKaRa,

Japan) according to the manufacturer’s instructions. Reactions

were carried out in a total volume of 10 μl, including 5 μl of TB

Green®Premix Ex Taq™II (TaKaRa, Japan), 0.2 μl of each

specific primer, 2.6 μl of dd H2O, and 2 μl of cDNA. Through

the 2-ΔΔCt method, the relative expressions of target genes were

calculated. GAPDH was used as internal reference. Specific

primers for each gene and cycling conditions are provided in

Supplementary Table S2.

Statistical analysis

All statistical analyses were conducted using R software

(v3.6.1; https://www.r-project.org/). The proportions of innate
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immune cells between different groups were compared using

the Wilcoxon’s test. Pearson correlation analysis was

performed to reveal the relationship between key hub

genes, immune cells, and immune cell-related pathways.

Differences in mRNA expression between controls and

childhood asthma patients were analyzed using the

Wilcoxon’s test. Here, p < 0.05 was considered statistically

significant.

Results

Identification and analysis of DEGs
between healthy individuals and
childhood asthma patients

After preprocessing, the overall expression patterns across

samples were consistent in each dataset, as shown in

FIGURE 1
Gene expression and enrichment analysis showing significant functions related to co-DEGs. (A) Volcano plots of DEGs between healthy
controls and childhood asthma patients. (B) UpSet diagram showing 33 overlapping DEGs in three datasets. (C) Heatmap of co-DEGs derived from
integrated analysis. Each circle represents one dataset, and each sector represents one gene; gradual color change from blue to red represents
changing upregulation process. (D)GO term enrichment analysis of co-DEGs. (E) KEGG pathway enrichment analysis of co-DEGs (by p-value).
(F) Circos plot displaying significantly enriched GO and KEGG terms for co-DEGs. Inner ring is a bar plot, where bar height indicates number of co-
DEGs enriched in specific terms. Outer ring displays bar plots of significance of term (color indicates corresponding p-value) and number of co-DEGs
enriched. Purple bar graph presents number of co-DEGs enriched in each term, brown gradient color bar shows total number of co-DEGs enriched
and different colors represent different p-values. Co-DEGs, common differentially expressed genes; GO, gene ontology; KEGG, kyoto encyclopedia
of genes and genomes.
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Supplementary Figure S2. We identified 2,751

(1,712 upregulated, 1,039 downregulated) DEGs in the

GSE152004 series, 600 (367 upregulated,

233 downregulated) DEGs in the GSE65204 series, and

1,927 (1,180 upregulated, 747 downregulated) DEGs in the

GSE19187 series, as illustrated in the volcano plots in

Figure 1A. As shown in the UpSet diagram, 33 genes

overlapped in the three datasets (Figure 1B). Based on

FIGURE 2
Hub gene identification and functional annotation. (A) PPI network of co-DEGs; nodes in red denote 10 hub genes identified by “cytoHubba.”
Colors of connections represent different interaction types. (B) Network of 10 hub genes identified by “cytoHubba.” Pink to red color scale denotes
p-values calculated by MCC method. (C) Gene-gene interaction network for hub genes was analyzed using GeneMANIA database, with 20 most
frequently changed neighboring genes shown. Each node represents a gene; line color represents possible functions of respective gene. (D)GO
functional annotation analysis of 10 hub genes. (E) KEGG pathway enrichment analysis of 10 hub genes. (F) Circos plot displaying significantly
enriched GO and KEGG terms for hub genes. Inner ring is a bar plot, where bar height indicates number of hub genes enriched in specific terms.
Outer ring displays bar plots of significance of term (color indicates corresponding p-value) and number of hub genes enriched. Purple bar graph
presents number of hub genes enriched in each term, brown gradient color bar shows total number of hub genes enriched, and different colors
represent different p-values. PPI, protein-protein interaction; co-DEGs, common differentially expressed genes; GO, gene ontology; KEGG, kyoto
encyclopedia of genes and genomes.
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integration analysis, the 33 co-DEGs were visualized using a

heatmap (Figure 1C). Detailed information on the above

datasets is shown in Supplementary Table S3.

Exploring promising pathways involved in
childhood asthma pathogenesis

To explore potential pathways associated with childhood

asthma, GO and KEGG pathway enrichment analyses of co-

DEGs were performed. Results showed that these genes were

functionally associated with several immune-related biological

processes, e.g., T cell differentiation and T cell receptor complex

(Figures 1D,F). Pathway enrichment analysis indicated that the

co-DEGs were involved in several signaling pathways such as

Th1 and Th2 cell differentiation and Th17 cell differentiation

(Figures 1E,F). Furthermore, the GSEA results also showed

significant enrichment of the Th1 and Th2 cell differentiation,

and Th17 cell differentiation signaling pathways in childhood

asthma (Supplementary Figure S3).

Hub gene selection and biological
function analysis

In order to identify the potential key genes related to

childhood asthma, all 33 co-DEGs were uploaded to the

STRING database for further analysis. After hiding the

disconnected nodes, the Cytoscape software was adopted to

visualize the network. As shown in the PPI network of co-

DEGs (Figure 2A), 31 nodes and 118 edges were obtained and

10 hub genes identified, i.e., CD3D, RGS1, CIITA, CYBB, HLA-

DQA1, CD69, CD3G, HLA-DMB, GBP5, and GBP4 (Figure 2B).

The GeneMANIA database was used to construct a regulatory

network of the 10 hub genes and functionally similar genes.

Results showed that the hub nodes, representing hub genes, were

surrounded by 20 nodes, representing genes significantly

correlated with hub genes (Figure 2C). GO analysis of the

10 hub genes is shown in Figures 2D,F. KEGG pathway

analysis indicated that the hub genes were involved in

Th1 and Th2 cell differentiation and Th17 cell differentiation

pathways (Figures 2E,F).

Notably, some of the hub genes including HLA-DQA1,

CIITA, CD69, and CYBB, have previously been reported to be

involved in asthma (Movahedi et al., 2008; Lasky-Su et al., 2012;

Ökrös et al., 2012; Bae et al., 2013; Kwon et al., 2021). For

example, highly polymorphic HLA class II genes, such as HLA-

DQA1 and HLA-DRB1, are implicated in childhood asthma

susceptibility and serum immunoglobulin E (IgE) production

(Movahedi et al., 2008; Lasky-Su et al., 2012). Moreover, single

nucleotide polymorphisms (SNPs) in class II major

histocompatibility complex transactivator (CIITA) gene are

associated with the development of nasal polyps in asthma

patients (Bae et al., 2013). Kwon et al. (2021) reported that

oleoylethanolamide increases CD69 expression in purified

eosinophils from asthmatic patients, thus implying a role in

the pathogenesis of asthma by inducing eosinophilic

inflammation.

We also discovered several novel hub mRNAs involved in

childhood asthma. RGS1, a regulator of the G-protein

signaling (RGS) protein family, activates GTPase by

attenuating the signaling activity of G-proteins (Xie et al.,

2016). HLA-DMB belongs to the major histocompatibility

complex class II and participates in the adaptive immune

response and T cell receptor signaling pathway (Xu et al.,

2020). Furthermore, guanylate-binding proteins (GBPs),

including GBP4 and GBP5, play critical roles in cell-

autonomous immunity against a diverse range of viral,

bacterial, and parasitic pathogens (Tretina et al., 2019;

Kutsch and Coers, 2020). To date, no studies have reported

on the relationship between CD3D, CD3G, RGS1, HLA-DMB,

GBP4, GBP5, and asthma. Thus, the identified mRNAs

warrant further investigation and validation as they may

help elucidate novel mechanisms related to childhood asthma.

Discovery of key hub genes associated
with childhood asthma by WGCNA

To identify childhood asthma-related modules, we

performed WGCNA to identify groups of co-expressed genes

for each dataset. Genes with similar expression patterns were

assigned to co-expression modules, with each module depicted

with a different color. The remainder of the genes that not

belonging to any module were grouped into the grey module.

Based on the WGCNA framework, seven, nine, and five gene

modules were identified in GSE152004, GSE65204, and

GSE19187, repectively (Supplementary Figures S4–S6). The

lists of genes in each WGCNA module for each dataset are

shown in Supplementary Table S4. Then, a heat map wasmapped

about module-trait relationships according to the Spearman

correlation coefficient to evaluate the association between each

module and the disease. For GSE152004 (Figure 3A), four

modules (purple, grey, brown, and darkgrey) were

significantly positively correlated with childhood asthma, with

the purple and grey modules showing the highest positive

correlation with the occurrence of childhood asthma. For

GSE65204 (Figure 3C), two modules (purple and brown) were

significantly correlated positively with childhood asthma, with

the purple module exhibiting the highest positive correlation

with the occurrence of childhood asthma. For GSE19187

(Figure 3E), four modules (purple, grey, pink, and blue) were

significantly positively correlated with childhood asthma, with

the purple and grey modules displaying the highest positive

correlation with the occurrence of childhood asthma.

Furthermore, the scatterplot of GS (y-axis) vs. MM (x-axis)
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(Figures 3B,D,F) showed that MM had a highly significant

correlation with GS in the purple module, which implies that

the genes in the purple co-expression module are highly

correlated with childhood asthma. Therefore, purple and grey

modules were selected as childhood asthma-related modules.

There were no overlap of grey module genes in all three datasets,

FIGURE 3
Identification of key hub genes associatedwith childhood asthma throughweighted gene co-expression network analysis. (A,C,E) Left heatmap
represents eigengene adjacency heatmap of correlation between module genes and childhood asthma. Each color represents one co-expression
module. Each row corresponds to amodule eigengene, and column to childhood asthma. Each cell contains corresponding correlation and p-value.
Purple module was most positively correlated with childhood asthma. CD3D and CD3G in purple module showed high correlation with
occurrence of childhood asthma. (B,D,F) Right graph represents scatterplots of module eigengenes related to childhood asthma in purple co-
expression module. Genes in purple co-expression module were highly correlated with childhood asthma.
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FIGURE 4
Immune cell infiltration analysis of the three datasets. (A)GSE152004, (B)GSE65204, and (C)GSE19187 datasets showed differences in immune
cell infiltration between CA patients and HCs. CA, childhood asthma; HC, healthy control.
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FIGURE 5
Correlation between immune cells and key hub genes. Scatter diagrams from correlation analysis in (A) GSE152004, (B) GSE65204, and (C)
GSE19187 datasets. X-axis represents genes, y-axis represents immune cell content, as defined by CIBERSORT algorithm. (D) Associations between
key hub genes and cell markers of CD4+ T cell subsets based on CellMarker database in GSE152004, GSE65204, and GSE19187 datasets. Horizontal
axis represents cell markers of immune cells, vertical axis represents key hub genes. Different colors represent correlation coefficients (red
represents positive correlation, blue represents negative correlation). *p < 0.05, **p < 0.01, asterisk represents degree of importance.
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and 20 genes overlapped in the purple modules across the three

datasets (Supplementary Figure S7). Interestingly, by intersecting

these 20 overlapped genes with all hub genes, CD3D and CD3G

were selected as key hub genes highly correlated with childhood

asthma (Supplementary Figure S7B; Figures 3A,C,E).

Further, to explore the potential function of key hub genes in

childhood asthma, we used GSEA to analyze enriched KEGG

pathways in the samples with high CD3D or CD3G expression in

the different datasets. Gene sets associated with the Th1 and

Th2 cell differentiation and the Th17 cell differentiation signaling

pathways were highly upregulated in the groups with high CD3D

and CD3G expression (Supplementary Figure S8). These results

indicate that aberrantly expressed CD3D and CD3G were closely

related to Th1, Th2, and Th17 cell differentiation signals in

childhood asthma.

Analyses of immune cell infiltration and
correlation between key hub genes and
innate immune cells

To determine which cell types may be involved in the

pathogenesis of childhood asthma, we used the CIBERSORT

to generate immune cell enrichment scores. The percentages of

the 22 immune cell types in the three datasets are shown in

Figures 4A–C. Compared with the healthy controls, childhood

asthmatics in all datasets showed a higher fraction of resting mast

cells and eosinophils. In the GSE152004 dataset, resting natural

killer (NK) cells and M2 macrophages showed less infiltration in

the childhood asthmatics compared with the healthy control

group. In the GSE19187 dataset, memory B cells showed

decreased infiltration in childhood asthmatics. In the

GSE65204 dataset, activated NK cells and monocytes showed

higher infiltration, while CD8 T cells showed lower infiltration in

the asthmatic children.

Resting mast cells and eosinophils were common

infiltrating immune cells across the three datasets. To

evaluate the associations between CD3D and CD3G and

immune cell infiltration, we used Pearson correlation

analysis to determine the correlations between key hub

gene expression and innate immune cell fractions. As

CIBERSORT cannot be used to identify subsets of CD4+

T cells (e.g., changes in proportions of T-helper cells), we

calculated Pearson correlations between key hub genes and

canonical cell markers of Th1, Th2, and Th17 cells,

respectively, based on the CellMarker database (http://bio-

bigdata.hrbmu.edu.cn/CellMarker/). Results showed that

CD3D and CD3G were negatively correlated with resting

mast cells and eosinophils (Figures 5A–C). Interestingly, we

found that most markers of the Th1 cell, including IFNG,

CXCR3, STAT1, STAT4, and TBX21, were positively

correlated with CD3D and CD3G. Moreover, CCR6 and

IL26 (corresponding to Th17 cell) and IL13 (corresponding

to Th2 cell) were found to be positively and inversely

associated with CD3D and CD3G, respectively (Figure 5D).

Involvement of CD3D and CD3G in
Th1 and Th2 cell differentiation and
Th17 cell differentiation signaling
pathways

The results of our pathway enrichment analysis (Figures

1E,F; Supplementary Figure S3) suggested the potential

importance of Th cell differentiation pathways in childhood

asthma. More importantly, GSEA (Supplementary Figure S8)

and correlation analysis (Figure 5D) between key hub genes and

typical markers of Th cell subsets revealed potential associations

of key hub genes with Th1, Th2 and Th17 cells. Therefore, we

further investigated the correlation of key hub genes with genes

in the Th1 and Th2 cell differentiation, and the Th17 cell

differentiation signaling pathways (obtained from the KEGG

database (https://www.kegg.jp/kegg/)). Genes and pathways

significantly related to CD3D and CD3G are shown in

Supplementary Figures S9, S10. Overall, we observed that both

CD3D and CD3G were highly associated with genes in the T cell

receptor and cell adhesion molecule signaling pathways and may

be partially associated with the JAK-STAT, Notch, and TGF-β
signaling pathways. These results suggested that CD3D and

CD3G might be functionally important for regulation of Th1,

Th2, and Th17 cell differentiation in childhood asthma.

Validation of hub gene expression

To verify the accuracy of the transcriptomic data, the 10 hub

genes (i.e., CD3D, CD3G, RGS1, CIITA, CYBB, HLA-DQA1,

CD69, HLA-DMB, GBP5, and GBP4) were validated by qRT-

PCR in nine control individuals and eight childhood asthma

patients (Figure 6). Results showed that the mRNA levels of

CD3D, CD3G, HLA-DMB, CD69, RGS1, and CIITA were

significantly upregulated in childhood asthma patients

compared with the control individuals.

Discussion

In the current study, we identified 33 co-DEGs between

childhood asthmatics and healthy controls based on

bioinformatics analyses of gene expression profiles obtained

from the GSE152004, GSE65204, and GSE19187 datasets.

Furthermore, through pathway enrichment analyses, we found

that Th1 and Th2 cell differentiation pathway and the Th17 cell

differentiation pathway may be involved in the pathogenesis of

childhood asthma. We also identified 10 hub genes via

construction of a PPI network. Moreover, using WGCNA,
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CD3D, and CD3G were identified as key hub genes closely

correlated with childhood asthma. According to immune

infiltration analysis, resting mast cells and eosinophils were

negatively correlated with CD3D and CD3G. Interestingly,

CD3D and CD3G were significantly correlated with several

marker molecules for Th1, Th2, and Th17 cells. We also

found that CD3D and CD3G were highly associated with the

Th1 and Th2 cell differentiation pathway and the Th17 cell

differentiation pathway. Finally, qRT-PCR revealed that the

relative transcription levels of the hub genes showed the same

expression trends as found in bioinformatics analysis.

Based on the PPI network, we identified the top 10 hub genes

and performed qRT-PCR to detect their relative expression

levels. Results showed that the mRNA expression levels of

CD3D, CD3G, HLA-DMB, CD69, RGS1, and CIITA were

significantly upregulated in childhood asthma patients

compared with healthy controls, consistent with

bioinformatics analysis. Although CYBB, HLA-DQA1, GBP4,

and GBP5 showed no significant differences between childhood

asthma patients and healthy controls, higher average relative

mRNA levels were observed for all four genes (Figure 6). We

speculate that the non-significance could be attributed to the

limited sample size.

Based on and pathway enrichment analysis as well as GSEA

(Figures 1E,F; Supplementary Figure S3), Th1 and

Th2 differentiation and Th17 differentiation pathways were

involved in the pathogenesis of childhood asthma. We also

found that CD3D and CD3G were significantly related to

several Th1, Th2, and Th17 cell markers (Figure 5D).

Interestingly, both CD3D and CD3G showed high correlations

with Th1 and Th2 cell differentiation and Th17 cell

differentiation pathways (Supplementary Figures S9, S10).

CD3D and CD3G together form the T cell receptor-CD3

complex (Smith-Garvin et al., 2009). All of the CD3 subunits

carry the immunoreceptor tyrosine-based activation motif

(ITAM) in the intracytoplasmic region (Smith-Garvin et al.,

2009). Upon ligand binding to T cell receptor (TCR), ITAMs

get phosphorylated by Src family Protein Tyrosine Kinase (PTK),

which initiates downstream events in TCR-mediated signaling

(Smith-Garvin et al., 2009; Bhattacharyya and Feng, 2020). The

TCR signaling is critical for Th cell differentiation

(Bhattacharyya and Feng, 2020). In response to stimulation

with different model antigens, augmented TCR signaling

promotes differentiation of naive CD4+ T cells into different

Th cell subsets (Zhu, 2018; Bhattacharyya and Feng, 2020).

Recently, Garcillán et al. (2021) reported that both CD3D and

CD3G are required for surface TCR expression in mature human

T cells and knockdown of CD3D or CD3G decreases TCR

expression. Thus, together with our results, we speculate that

CD3D and CD3G may be functionally important for

differentiation regulation of Th cell subsets in the process of

childhood asthma. However, the specific roles of aberrantly

expressed CD3D and CD3G in the Th cell differentiation

remain to be elucidated.

This is the first study to utilize the CIBERSORT algorithm to

assess the infiltration of the 22 immune cell types in childhood

asthma. The presence or accumulation of mast cells in certain

compartments of the lung is regarded as a pathological feature of

allergic asthma (Méndez-Enríquez and Hallgren, 2019). In

response to activation by IgE and specific antigens via the

high-affinity IgE receptor (FcεRI), activated mast cells can

produce diverse mediators that can promote allergic

inflammation during the acute phase of allergic reaction

(Méndez-Enríquez and Hallgren, 2019). However, our analysis

indicated an obvious increase in resting mast cells in childhood

asthma. Moreover, the fraction of activated mast cells was low in

FIGURE 6
qRT-PCR validation of CD3D, CD3G, HLA-DMB, CD69, RGS1, CIITA, CYBB, HLA-DQA1, GBP4, and GBP5 expression in bronchoalveolar lavage
(BAL) cells from controls and childhood asthma patients. *p < 0.05, **p < 0.01, ***p < 0.001. qRT-PCR, quantitative reverse transcription-polymerase
chain reaction.
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all datasets, except GSE65204. Previous research has shown that

patients with severe asthma have a higher proportion of tryptase and

chymotrypsin-positive mast cells compared with patients with mild

asthma (Balzar et al., 2011). In addition, mast cells are more

frequently found in bronchial biopsies from symptomatic

asthmatic children than in those with few symptoms (Lezmi

et al., 2016). Notably, we observed that asthmatics in the

GSE19187 dataset had a higher forced expiratory volume in one

second (FEV1)/forced vital capacity (FVC) ratio than those in the

GSE65204 dataset (83.4 ± 8.0 vs. 72.6 ± 10.1). These findings may be

explained by the differences in disease phases (acute or chronic

phase) and severity (severe or mild) among the different pediatric

cohorts. However, we could not draw further conclusions due to the

lack of individual patient data, and thus studies on the infiltration of

different types of mast cells in childhood asthmatics are warranted.

Eosinophils are associated with the pathogenesis of asthma, and

their accumulation in the lungs is often regarded as a defining

feature of allergic asthma (Deckers et al., 2013). Activated

eosinophils may exert biological effects through a myriad of

factors, including Th2-type cytokines (e.g., IL-4, IL-5, and IL-13),

proinflammatory cytokines (e.g., IL-1b, IL-6, and IL-8), and

chemokines, which contribute to airway hyper-responsiveness

and goblet cell metaplasia (Hammad and Lambrecht, 2021).

Likewise, our results showed a higher percentage of eosinophils

in childhood asthmatics relative to healthy controls in all datasets.

We observed that the proportions of several immune cells, including

resting NK cells, M2 macrophages, memory B cells, activated NK

cells, monocytes, and CD8 T cells, displayed differences between the

asthmatic children and normal controls. However, the infiltration of

these immune cells was inconsistent across the different datasets.We

also noticed that there were minor differences in composition of the

immune cell subsets between the various datasets. For example, the

dominant T cell populations were CD4+ T cells in GSE152004 and

GSE65204, while the major population of T cells were CD8+ T cells

in GSE19187. There are several potential explanations for these

inconsistencies. First, the heterogeneity in methodology, population,

and underlying disease states between patient cohorts might have

contributed to the observed discrepancies. Second, inferring the cell

composition with bulk transcriptomic data may not be precise

enough compared to single-cell RNA sequencing (scRNA-seq).

Future studies, especially scRNA-seq studies focusing on

childhood asthma patients, are necessary for more precise

exploration of the cellular heterogeneity within a complex

childhood asthmatic airway microenvironment.

There are limitations to our study that highlight the need for

further work to optimize. First, the transcriptomic data require

further validation at both the protein and functional level. Second,

while preliminary analyses revealed potential correlations between

two key hub genes (CD3D and CD3G) and childhood asthma,

further in-depth study is required, and the corresponding results

need to be verified by further biological experiments. Moreover, the

exact mechanism of how aberrantly expressed CD3D and CD3G

regulate Th1, Th2, and Th17 cell differentiation needs to be further

investigated. Third, there were unavoidable limitations regarding

CIBERSORT, such as its inability to analyze the proportion of

certain cell subpopulations, e.g., CD4+ T cell subsets. To overcome

this limitation, we calculated the correlations between key hub genes

and cellmarkers of Th1, Th2, andTh17 cells, respectively.Moreover,

CIBERSORT tends to under- or over-estimate some cell types

despite a considerably lower estimation bias than other methods

(Zeng et al., 2021). Finally, the raw data lacked corresponding

clinical information, which may reveal new research perspectives

when combined with our results.

Conclusion

In the present study, we compared differences in biological

functions in childhood asthmatics and normal healthy controls

and identified 10 hub genes. Of note, CD3D and CD3G were

highly correlated with cell markers of Th1, Th2, and Th17 cells.

Moreover, we also found that CD3D and CD3Gmight be involved in

differentiation regulation of Th cell subsets in the process of childhood

asthma. Based on qRT-PCR validation, CD3D, CD3G, HLA-DMB,

CD69, RGS1, and CIITA were shown to be upregulated in childhood

asthma patients. In addition, we found increased infiltration of resting

mast cells and eosinophils in asthmatic children. Thus, these results

might provide potential therapeutic targets for childhood asthma

patients. Studies with larger sample sizes and further mechanistic

analyses are needed to confirm our findings.
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Glossary

BAL bronchoalveolar lavage

BALF bronchoalveolar lavage fluid

CCR6 C-C motif chemokine receptor 6

CD3D CD3 delta subunit of T cell receptor complex

CD3G CD3 gamma subunit of T cell receptor complex

CD4 CD4 molecule

CD69 CD69 molecule

CIITA class II major histocompatibility complex transactivator

CXCR3 C-X-C motif chemokine receptor 3

CYBB cytochrome b-245 beta chain

co-DEGs common DEGs

DEGs differentially expressed genes

FcεRI high-affinity IgE receptor

FEV1 forced expiratory volume in one second

FGFBP2 fibroblast growth factor binding protein 2

FVC forced vital capacity

GBP4 guanylate binding protein 4

GBP5 guanylate binding protein 5

GBPs guanylate-binding proteins

GEO gene expression omnibus

GINA global initiative for asthma

GO gene ontology

GSEA gene set enrichment analysis

GS gene significance

GZMB granzyme B

HLA human leukocyte antigen

HLA-DMB major histocompatibility complex, class II, DM beta

HLA-DQA1 major histocompatibility complex, class II, DQ

alpha 1

HLA-DRB1 major histocompatibility complex, class II, DR

beta 1

IgE immunoglobulin E

IFNG interferon gamma

IFN-γ interferon γ
IL interleukin

ITAM immunoreceptor tyrosine-based activation motif

KEGG kyoto encyclopedia of genes and genomes

m6A RNA N6-methyladenosine

MCC maximal clique centrality

MM module membership

NES normalized enrichment score

NK natural killer

Th1 T helper 1

Th2 T helper 2

Th17 T helper 17

TNF tumor necrosis factor

TOM topological overlap matrices

PBS phosphate-buffered saline

PPI protein-protein interaction

qRT-PCR quantitative reverse transcription-polymerase chain

reaction

RFX regulatory factor X1

RGS regulator of the G-protein signaling

RGS1 regulator of the G-protein signaling 1

RMA robust multi-array average

RTK protein Tyrosine Kinase

scRNA-seq single-cell RNA sequencing

SNPs single nucleotide polymorphisms

STAT1 signal transducer and activator of transcription 1

STAT4 signal transducer and activator of transcription 4

STRING search tool for the retrieval of interacting genes

TBX21 T-box transcription factor 21

TCR T cell receptor

WGCNA weighted gene co-expression network analysis
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