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Abstract

Primary metabolism is essential to plants for growth and development, and secondary metabolism helps plants to interact with the

environment. Many plant metabolites are industrially important. These metabolites are produced by plants through complex met-

abolic pathways. Lack of knowledge about these pathways is hindering the successful breeding practices for these metabolites. For a

better knowledge of the metabolism in plants as a whole, evolutionary rate variation of primary and secondary metabolic pathway

genes is aprerequisite. In this study,evolutionary ratevariationofprimaryandsecondarymetabolicpathwaygeneshasbeenanalyzed

in the model plant Arabidopsis thaliana. Primary metabolic pathway genes were found to be more conserved than secondary

metabolic pathway genes. Several factors such as gene structure, expression level, tissue specificity, multifunctionality, and

domain number are the key factors behind this evolutionary rate variation. This study will help to better understand the evolutionary

dynamics of plant metabolism.
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Introduction

Being sessile organisms, plants tolerate constantly changing

environments over their whole lifespan (Milo and Last 2012).

To combat this, plants produce an enormous array of chem-

icals as unique adaptive strategies (Weng and Noel 2012;

Weng 2014). These chemicals are synthesized or decon-

structed by a collection of enzyme-catalyzed chemical reac-

tions called metabolism (Weng and Noel 2012). A set of

enzymes that catalyze sequential reactions in a highly con-

cerned manner form the metabolic pathway (Weng 2014).

Metabolism meets two apparently conflicting requirements:

to maintain the homoeostasis necessary for a living organism

and to respond dynamically to the constantly changing envi-

ronment (Milo and Last 2012). Primary metabolic pathways

required for the survival of plants are conserved in all living

organisms (Mullins et al. 2008; Weng 2014), whereas second-

ary or specialized metabolic pathways have a multitude of

roles in plant interaction with the environment (Zhao et al.

2013; Weng 2014). The majority of plant metabolites is sec-

ondary metabolites and has a direct effect on plant fitness

(Zhao et al. 2013).

There are several differences in primary and secondary

metabolic pathway enzymes. In primary metabolism, the

demand for high metabolic flux forces a major selective pres-

sure on the evolution of its enzymes (Nam et al. 2012). As a

result, these enzymes show low levels of catalytic promiscu-

ity (Bar-Even et al. 2011). On the other hand, for secondary

metabolic pathway enzymes, the selection pressure is to op-

timize the regulation, control, and localization with the fluc-

tuating environmental conditions rather than to increase the

metabolic flux (Bar-Even et al. 2011; Weng and Noel 2012).

Under such circumstances, efficiency and precision are

traded for synthesis of a wider diversity of products to

cope up with the spatially and temporally changing environ-

ments (Weng and Noel 2012). This makes the secondary

metabolic pathway enzymes more promiscuous than pri-

mary metabolic pathway enzymes (Weng and Noel 2012).

Moreover, specialized metabolic enzymes are approximately

30 times less active than primary metabolic enzymes (Bar-

Even et al. 2011). Evolutionary selection pressures as well as

physicochemical constrains affect enzymes (Bar-Even et al.

2011), and functional promiscuity can potentiate adaptive

evolution (DePristo 2007). As chemical diversity shapes bio-

logical diversity, the principles of evolution must be relevant

to chemical diversity (Firn and Jones 2009). Thus, under-

standing the effect of selection on genes involved in
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pathways has received ample attention in the study of mo-

lecular evolution recently (Clotault et al. 2012). According to

Weng (2014), metabolism offers an attractive platform to

investigate evolutionary processes that lead to biological

complexity. At present, the challenge in studying metabolism

is to understand how evolution worked and shaped the char-

acteristics of extant plants (Milo and Last 2012). Additionally,

various plant metabolites are used for the production of

dyes, medicines, flavors, insecticides, and fragrances

(Verpoorte and Memelink 2002) and are thus of industrial,

pharmaceutical, and agricultural interest (Zhao et al. 2013).

Several primary metabolites such as starch, vitamins, and

amino acids are potential candidates for metabolic engineer-

ing (Trethewey 2004). However, there is a scarcity in the

comparative studies of primary and secondary metabolism

(Weng and Noel 2012). Few studies have been conducted on

the evolutionary rate variation of specific metabolic path-

ways in plants (Rausher et al. 2008; Ramsay et al. 2009)

and thus involve a relatively small number of genes. Poor

characterization of plant secondary metabolic pathways is

a major constraint for successful molecular breeding prac-

tices (Verpoorte and Memelink 2002). Elucidation of plant

metabolite biosynthesis will thus provide an expanded

knowledge base and molecular tools for the genetic manip-

ulation of biochemical pathways (Zhao et al. 2013).

It will also be of immense interest to study whether rapid

enzyme evolution in plants is facilitated by other molecular

machineries encoded by the plant genome (Weng 2014).

Different attributes shape the evolutionary dynamics of a

gene (Yang and Gaut 2011). It has been previously reported

that the characteristics of gene such as gene length (Marais

and Duret 2001) and intron number (Larracuente et al.

2008) correlate with both synonymous and nonsynonymous

evolution. Other factors such as GC content, untranslated

region (UTR) length, expression level, tissue specificity, and

multifunctionality also correlate with the evolutionary rate

of genes of A. thaliana (Yang and Gaut 2011). Protein do-

mains are basic evolutionary units (Fong et al. 2007), and

they are likely to have a highly conserved location within

proteins (Pils et al. 2005). Effective number of codons

(ENc) has also been showed to modulate evolutionary

rates in Drosophila (Han et al. 2013). Domains typically

cover a majority of a protein sequence and play a crucial

role in protein evolution (Toll-Riera and Albà 2013).

Primary metabolic pathways are well established (Castillo

et al. 2013). Although a significant portion of the plant

genome is involved in specialized metabolic pathways

(Castillo et al. 2013), genomic analysis generally fails

(Bocobza et al. 2012) because the taxonomically narrowly

distributed pathways lack true orthologs (Castillo et al.

2013). Complete genome sequences of the model plant

Arabidopsis thaliana (L.) Heynh. (Arabidopsis Genome

Initiative 2000) have helped to resolve many problems regard-

ing gene regulation and functional compensation (Hanada

et al. 2011). However, lack of studies regarding variation of

evolutionary rate between primary and secondary metabolic

pathway genes was due to the absence of a closely related

genome that allows accurate ortholog identification (Gaut

and Ross-Ibarra 2008). However, the availability of A. lyrata

genome (Hu et al. 2011) made it possible to correctly identify

the orthologs for A. thaliana (Yang and Gaut 2011).

Additionally, these two species have diverged approximately

13 Ma (Beilstein et al. 2010) and have approximately 80%

sequence identity over whole-genome alignments (Hu et al.

2011). Thus, the study of A. thaliana genes with the help of A.

lyrata orthologs will give us an accurate measure of evolution-

ary rate variation in primary and secondary metabolic pathway

genes. Previously, genome-wide patterns of evolutionary rate

variation among A. thaliana nuclear genes and its correlates

have been studied (Yang and Gaut 2011). However, primary

and secondary metabolic pathway genes should show differ-

ence in evolutionary rates as they act under different selective

pressures. Hence, we have analyzed the difference in evolu-

tionary rates and the factors that shape this variation in A.

thaliana. We have addressed three questions. First, what is the

difference in evolutionary rates between primary and second-

ary metabolic pathway genes? Second, what are the corre-

lates of the evolutionary rate? Third, what is the relative

contribution of these correlates in the evolutionary rate varia-

tion? Our study suggests that primary metabolic pathway

genes are more conserved than secondary metabolic pathway

genes of A. thaliana. This variation is mainly governed by gene

structure, expression level, tissue specificity, multifunctionality,

and domain number. The differences in nonsynonymous

substitutions in the two types of pathways are mainly due

to factors related to gene expression, whereas the differences

in synonymous substitutions are mainly due to gene-level

variations. This information is valuable for further biotechno-

logical studies.

Materials and Methods

Data Set Preparation and Evolutionary Rate Estimation

The KEGG Orthology for A. thaliana (ath00001.keg) was

downloaded from KEGG database (Kanehisa and Goto

2000). We have chosen all the nuclear genes of primary

and secondary metabolic pathways of A. thaliana. A list of

all these pathways is given in supplementary material S1,

Supplementary Material online. We have obtained a total

of 2,030 genes for primary metabolism and 482 genes for

secondary metabolism. We extracted the corresponding

Arabidopsis lyrata orthologs (with 1:1 orthology and at

least 80% sequence similarity) of A. thaliana genes from

Ensembl Plants database (Kersey et al. 2014) using Biomart

(Kinsella et al. 2011) as well as obtained their pairwise

nonsynonymous (dN) and synonymous (dS) substitution

rates to compute gene-specific evolutionary rate (dN/dS).
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These dN and dS values have been calculated using codeml

from the PAML package (Yang 1997). Protein coding se-

quences of these genes were also acquired from Ensembl

database. For genes with more than one isoform, the longest

isoform was considered. The final data set comprised 2,030

primary metabolic and 273 secondary metabolic genes with

available evolutionary rate for further analysis (supplemen-

tary material S2, Supplementary Material online).

Determination of Potential Factors of Evolutionary Rates

Several factors such as gene structure, GC content, expression

profile, multifunctionality, and protein domain organization

have been analyzed to determine their potential to modulate

the evolutionary rate. These are studied as follows.

Gene Structure and GC Content

Gene, UTR, and coding DNA sequences (CDS) have been

downloaded from Ensembl Plants database. A CDS that did

not begin with an ATG start codon or did not end with the

stop codon (TAG/TAA/TGA) or did not occur in multiples of

three nucleotides has been discarded. We have calculated

gene length, 50- and 30-UTR length, intron number, and aver-

age intron length as well as GC content of genes, 50- and

30-UTRs. GC3 has been calculated from CDS of the genes

using CodonW (http://codonw.sourceforge.net/, last accessed

June 15, 2015). To measure the state of codon usage bias of

the genes, we have measured ENc (Wright 1990) using

CodonW. Pfam (Finn et al. 2014) domain annotations were

obtained from Ensembl Biomart against the longest peptide

and number of domains per gene was counted.

Gene Expression Level and Pattern

The expression data were obtained from using

Genevestigator (Hruz et al. 2008). Various microarray ex-

pression data of the A. thaliana (ATH1:22 k array) were ob-

tained from Genevestigator plant biology version (https://

www.genevestigator.com/gv/plant.jsp). The expression

level of a gene was estimated by the average value of all

the samples. The tissue specificity index t was measured

following Yanai et al. (2005) as follows:

t ¼

Xn

j
¼ 1 1�

logSði; jÞ

logSði;maxÞ

� �

n� 1

where n is the number of tissues and conditions, and S(i,

max) is the highest expression of gene i across the n tissues.

The index t ranges from 0 to 1, with a higher value signify-

ing higher specificity. The index t has been used because of

its advantage over using expression breadth as reported pre-

viously (Liao and Zhang 2006). We have also collected Plant

Ontology (PO) (Avraham et al. 2008) data for each gene to

better understand the expression of a particular gene in

different plant structures and developmental stages. The

PO data have been obtained from Ensembl Plants (http://

plants.ensembl.org/index.html).

Function

According to Gene Ontology (GO) Slim annotations that clas-

sify proteins to obtain a high-level view of functions

(Prachumwat and Li 2006), the multifunctionality of a gene

has been assessed by counting the number of biological pro-

cesses in which a gene takes part. The GO slim accessions

were obtained from Ensembl Biomart (Kinsella et al. 2011).

Statistical Analyses

Statistical analyses were performed using SPSS v.13. Mann–

Whitney U test (Mann and Whitney 1947) was used to com-

pare the average values of different variables between two

classes of genes as the values were not normally distributed in

our data set. For correlation analysis, we performed the

Spearman’s rank correlation coefficient r (Spearman 1904),

where the significant correlations were denoted by P< 0.05.

For relative contribution analysis of each factor to evolutionary

rate, a principal component analysis (PCA) was performed.

Results and Discussion

The Variation of Evolutionary Rates between Primary and
Secondary Metabolic Pathway Genes

This study clearly showed that primary metabolic pathway

genes are more conserved than secondary metabolic pathway

genes in A. thaliana. dN, dS, and dN/dS were calculated for

1,035 primary and 241 secondary metabolic pathway

genes. Frequency distributions of these three parameters are

shown in figure 1. The average values of dN, dS, and dN/dS

were significantly (Mann–Whitney U test, P< 0.01 in all cases)

different in primary and secondary metabolic pathway genes

(table 1). The frequency distribution of dN, dS, and dN/dS was

also different in two types of pathways (fig. 1). Highest fre-

quency (around 37%) of genes in primary metabolic pathways

showed a dN value of approximately 0.01, whereas the high-

est frequency (around 31%) of genes in secondary metabolic

pathways showed a dN value of approximately 0.02.

Considering dS values, around 10% of primary metabolic

pathway genes showed a dS value of approximately 0.14,

whereas around 12% of secondary metabolic pathway

genes showed a dS value of approximately 0.14. Highest fre-

quency (around 5.5%) of genes in primary metabolic path-

ways showed a dN/dS value of approximately 0.08, whereas a

highest frequency (around 7.46%) of genes in secondary met-

abolic pathways showed a dN/dS value of approximately 0.13.

The synonymous (dN) and nonsynonymous (dS) substitution

rates were 1.3 and 1.06 times greater in secondary metabolic

pathway genes, respectively. We also found that no gene in

our data set showed dN/dS value >1, which indicate that, on

average, genes involved in primary and secondary metabolic
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pathways in A. thaliana are not under positive selection. In

general, genes under positive selection are rare in A. thaliana

genome (Yang and Gaut 2011). It is also noteworthy that dN

and dS values were highly positively correlated (Spearman’s

rank correlation r= 0.246�10�6). It suggests the effect of

common evolutionary mechanisms on both synonymous and

nonsynonymous sites of which at least one is shared mutation

rates (Yang and Gaut 2011). The positive correlation of syn-

onymous and nonsynonymous substitutions has also been

found in Drosophila (Comeron and Kreitman 1998), indicating

that synonymous substitutions are not independent of selec-

tive constraints acting on the amino acid level (Dunn et al.

2001).

The higher rate of evolution confers an advantage to genes

involved in secondary metabolism. As the enzymes of second-

ary metabolism exhibit high plasticity (Khersonsky et al. 2006),

a few mutations can increase the promiscuous activity. It has

been shown that 104- to 106-fold improvement in enzyme

plasticity has been achieved in response to a single mutation

(Khersonsky et al. 2006), and this functional promiscuity may

potentiate adaptive evolution (DePristo 2007). As primary

metabolic pathway enzymes are directly involved in the core

functioning of a plant, they show vanishingly low levels of

promiscuity (Weng and Noel 2012). This explains that higher

evolutionary rate of the genes involved in secondary metabo-

lism gives the plant a selective advantage in the ever changing

environment, whereas conserved nature of primary metabolic

pathway genes assures the integrity of the core functioning.

This finding also has implications in biotechnology, especially

protein engineering. Enzyme-catalyzed industrial processes

are increasing in various fields ranging from food processing

to produce small molecule pharmaceuticals (Gustafsson et al.

2012). Our results suggest that, in case of secondary meta-

bolic pathway genes of A. thaliana, protein engineering can

result in the formation of new and novel metabolites that may

be advantageous for the plant (as they accumulate more
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FIG. 1.—Distribution of dN, dS, and dN/dS in primary (upper panel) and secondary (lower panel) metabolic pathway genes in A. thaliana.

Table 1

Evolutionary Rates for Primary and Secondary Metabolic Pathway

Genes (P Values Were Obtained by Mann–Whitney U Test)

Primary Secondary P value

dN

Mean (SD) 0.02 (0.016) 0.026 (0.016) 1.73�10�10

CV 0.789 0.629

Range 0.0008–0.135 0.002–0.111

dS

Mean (SD) 0.147 (0.044) 0.157 (0.043) 2.5� 10�4

CV 0.305 0.276

Range 0.031–0.371 0.072–0.399

dN/dS

Mean (SD) 0.142 (0.103) 0.170 (0.102) 1.19� 10�6

CV 0.725 0.599

Range 0.003–0.855 0.018–0.791
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synonymous and nonsynonymous substitutions as well as

more promiscuous than primary metabolic pathway genes).

Indeed, several carotenoid biosynthetic enzymes such as

synthases, desaturases, cyclases, and oxygenases have been

altered for both substrate specificity and reaction selectivity by

single amino acid substitutions to produce a plethora of novel

carotenoids (Umeno et al. 2005; Tracewell and Arnold 2009).

On the other hand, altering the highly conserved primary met-

abolic pathway genes can disrupt the normal functioning of

the enzyme. Chen et al. (2010) showed that in a a-amylase

(an enzyme from primary metabolic pathway) from Bacillus

sp. strain TS-23, a mutation of Asp-234 and Asp-236 of con-

served sequence region V (CSR-V) resulted in 33% and 86%

reduction in specific activity (Chen et al. 2010). However, in

another a-amylase from Anoxybacillus species, replacement

of Ala-161 of CSR-V with an aspartic acid increased the spe-

cific activity (Ranjani et al. 2014). Thus, it is advisable that

creating any mutation in primary metabolic genes should be

performed with great care to retain the functionality of the

protein.

Effect of Different Factors on the Evolutionary Rate
Variation among the Primary and Secondary Metabolic
Pathway Genes in A. thaliana

One of the most important objectives of molecular evolution

studies is to understand the factors that influence genetic var-

iation in the genome (Clotault et al. 2012). Effect of mutation

and selection has different effect on synonymous and nonsyn-

onymous substitutions (Yang and Nielsen 1998). Although the

occurrence of a synonymous mutation is assumed to have no

effect on the fitness of the individual (Zhou et al. 2012), se-

lection on synonymous sites has been shown to be associated

with mRNA secondary structure and stability (Duan et al.

2003; Chamary and Hurst 2005; Stoletzki 2008; Gu et al.

2010) as well as protein expression (Zhou et al. 2010).

Moreover, several gene properties can affect the mutation

rate or the local selection environment, both of which encom-

pass protein evolutionary rates (Chang and Liao 2013). If the

influence on protein evolutionary rates was at the selection

level, its correlation to dN and dN/dS should not differ consid-

erably (Chang and Liao 2013). Considering all the above fac-

tors, we have measured the effect of several factors on dN, dS,

and dN/dS. Many factors such as gene length (Stoletzki and

Eyre-Walker 2007), gene compactness (Liao et al. 2006;

Chang and Liao 2013), GC content (Ratnakumar et al.

2010), codon usage bias (Sharp and Li 1987; Urrutia and

Hurst 2001; Yang and Gaut 2011), expression level (Pál

et al. 2001; Subramanian and Kumar 2004; Rocha 2006),

and tissue specificity (Larracuente et al. 2008; Slotte et al.

2011) have been shown to influence evolutionary rate.

However, the relative importance of determinants for protein

evolutionary rates varies widely among various taxa. For

example, in yeasts, predominant factor determining the rate

of protein evolution was found to be mRNA abundance

(Drummond et al. 2006), whereas in mammals, gene com-

pactness was found to have a stronger influence on protein

evolutionary rates compared with the abundance of mRNA

(Liao et al. 2006, 2010). Besides, coding sequence length

showed the strongest positive correlation with protein evolu-

tionary rates in flagellated algae (Chang and Liao 2013). We

have thus focused on various parameters that could have

affected the evolutionary rate variation in genes of primary

and secondary metabolic pathways in A. thaliana.

Effect of Gene Length and Gene Compactness

Gene length has been previously shown to have a negative

correlation with evolutionary rate in A. thaliana (Yang and

Gaut 2011). In this study, the average length of genes in

the primary metabolic pathways (2,762.75 bp, N = 1,035) is

significantly (Mann–Whitney U test, P = 3.1�10�4) higher

than secondary metabolic pathway genes (2,439.63 bp,

N = 241). We have found a significant negative correlation

between gene length and dN, dS, and dN/dS (table 2).

Previously, Slotte et al. (2011) reported no correlation be-

tween dN/dS and gene length when analyzing all genes in

the A. thaliana genome. However, Yang and Gaut (2011)

reported a strong negative correlation between gene length

and dN, dS, and dN/dS. We have also studied the effect of

different attributes of gene compactness, such as UTR

length, intron length, and intron number on the evolutionary

rate of primary and secondary metabolic pathway genes.

Average length of 50-UTR in the primary metabolic pathways

(128.60 bp, N = 1,035) is significantly (Mann–Whitney U test,

P = 8.9�10�8) higher than secondary metabolic pathway

genes (96.49 bp, N = 241). Average length of 30-UTR in the

primary metabolic pathways (231.06 bp, N = 1,035) is signifi-

cantly (Mann–Whitney U test, P = 7.5�10�6) higher than

secondary metabolic pathway genes (192.87 bp, N = 241).

Both 50- and 30-UTR lengths were found to be negatively sig-

nificantly correlated with dN, dS, and dN/dS (Spearman’s rank

correlation, P<0.001) (table 2). This is in accordance with the

results obtained for all genes in A. thaliana (Yang and Gaut

2011). Our results showed that UTR length plays a significant

role in the evolutionary rate variation in A. thaliana.

Average intron length was not found to be significantly

different in these two types of pathways (Mann–Whitney

U test, P>0.05). However, intron number was found to be

significantly different between the two types of pathways

(6.17, N = 976 and 4.30, N = 222, respectively, for primary

and secondary metabolic pathways, Mann–Whitney U test,

P = 1.86�10�6). Intron number was significantly correlated

with dN and dS, but not with dN/dS (table 2). Thus, it was found

that primary metabolic pathway genes were longer and less

compact than secondary metabolic pathway genes, and these

features are responsible for their evolutionary rate heteroge-

neity in A. thaliana. Earlier reports showed that shorter and

Evolutionary Rate Heterogeneity GBE
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intron-poor genes have either more variable (Jeffares et al.

2008; Lawniczak et al. 2008) or stronger (Castillo-Davis

et al. 2002; Chiaromonte et al. 2003; Ren et al. 2006) expres-

sion levels. Regulatory responses can be delayed by introns

and are selected against genes whose transcripts require

rapid adjustment for survival of environmental challenges

(Jeffares et al. 2008). Indeed, secondary metabolic genes

that are generally expressed in response of environmental

challenges are shorter as determined in our study. It is note-

worthy that correlation of intron number was higher with dS

than dN. To better understand this variation, we have divided

the data set into three groups: Intronless genes, genes with

upto ten introns, and genes with more than ten introns. We

have found no significant difference in dS between intronless

genes of primary and secondary metabolic pathway genes

(fig. 2). This was also found in genes with more than ten

introns. However, dN was found to be significantly different

in all three groups. However, when intron number increases to

more than 10, the rate of synonymous substitutions became

similar. This later observation is unclear at the moment.

However, one reason behind this may be the very small

number of secondary metabolic genes with more than ten

introns (only 26), which probably gave a biased result here.

However, in each group, nonsynonymous substitutions were

significantly higher in primary than secondary metabolic

genes. All these results show that introns significantly accu-

mulate more synonymous substitutions in primary than sec-

ondary metabolic genes. Primary metabolic pathway genes

contain significantly higher domain number (1.53 per gene,

N = 1,034; Mann–Whitney U test, P =�5.51� 10�12) than

secondary metabolic pathway genes (1.26, N = 240). We

have also analyzed the proportion of single, double, and

multidomain proteins in the two types of pathways. In total,

62.41% and 75.98% of all proteins were single domain pro-

teins in primary and secondary metabolic pathways, respec-

tively, and they are significantly different (Z score =�5.62,

P<0.01). However, primary metabolic pathways significantly

contain more number of double and multidomain proteins

(fig. 3). There is a strong negative correlation between

domain number per gene and evolutionary rates (table 2).

Domain number was found to show higher correlation coef-

ficient with dN than dS.

Effect of GC Content Variation

GC content of the genes in the two types of pathways was

not significantly different (Mann–Whitney U test, P = 0.675).

However, GC content of UTRs was significantly different.

Average GC content of 50-UTR in the primary metabolic path-

ways (34.27%, N = 1,035) is significantly (Mann–Whitney U

test, P = 9.3�10�9) higher than that in the secondary meta-

bolic pathway genes (31.00%, N = 241). Average GC content

of 30-UTR in the primary metabolic pathways (29.58 bp,

N = 1,035) is significantly (Mann–Whitney U test,

P = 8.8�10�7) higher than secondary metabolic pathway

genes (27.42 bp, N = 241). Both 50- and 30-UTR GC contents

were significantly negatively correlated with dN, dS, and dN/dS

(Spearman’s rank correlation, P< 0.001) (table 2). Notably,

we have also found that UTR GC content is significantly pos-

itively correlated with UTR length (Spearman’s r50-UTR length vs.

Table 2

Spearman’s Rank Correlations of Evolutionary Rates with Potentially Contributing Factors

Variables Spearman’s o (P value)

dN dS dN/dS

Gene structure and compactness

Gene length �0.170 (1.0� 10�6)*** �0.199 (1.0� 10�6)*** �0.96 (9.9� 10�4)***

Intron number �0.08 (4.3� 10�3)** �0.248 (1.0� 10�6)*** 0.011 (NS)

50-UTR length �0.277 (1.0� 10�6)*** �0.176 (1.0� 10�6)*** �0.214 (1.0� 10�6)***

30-UTR length �0.326 (1.0� 10�6)*** �0.158 (1.0� 10�6)*** �0.277 (1.0� 10�6)***

GC content

50-UTR �0.170 (1.0� 10�6)*** �0.167 (1.0� 10�6)*** �0.103 (4.1� 10�4)***

30-UTR �0.204 (1.0� 10�6)*** �0.145 (1.0� 10�6)*** �0.151 (1.0� 10�6)***

GC3 �0.092 (1.6�10�3)** 0.05 (NS) �0.111 (1.4� 10�4)***

Domain number �0.1 (6.1� 10�4)*** �0.073 (1.2� 10�2)* �0. 073 (1.2� 10�2)*

Expression

Expression level �0.461 (1.0� 10�6)*** �0.151 (1.0� 10�6)*** �0.405 (1.0� 10�6)***

Tissue specificity 0.241 (1.0� 10�6)*** 0.198 (1.0� 10�6)*** 0.170 (1.0� 10�6)***

ENc 0.151 (1.0� 10�6)*** �0.031 (NS) 0.168 (1.0� 10�6)***

PO �0.392 (1.0� 10�6)*** �0.163 (1.0� 10�6)*** �0.338 (1.0� 10�6)***

Multifunctionality

GO slim �0.359 (1.0� 10�6)*** �0.142 (1.09� 10�6)*** �0.308 (1.0� 10�6)***

NOTE.—NS, not significant. * P<0.05, ** P <0.01, *** P < 0.001.
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GC content = 0.371, P = 1.0� 10�6 and Spearman’s r30-UTR length

vs. GC content = 0.608, P = 1.0� 10�6). It is known that UTR re-

gions are crucial for posttranscriptional regulation of gene ex-

pression (Mignone et al. 2002). In human, it was found that

genes located in large GC-rich regions of a chromosome

(heavy isochores) have shorter UTRs than genes located in

GC-poor isochores (Mignone et al. 2002). Moreover, in verte-

brates, it has been proposed that most housekeeping genes

should be located in GC-rich isochores, whereas tissue-specific

genes should be located in GC-poor isochores (Bernardi

2000). However, secondary metabolic pathway genes are

more tissue specific and have shorter UTRs than primary

metabolic pathway genes, as found in this study, which

contradicts the situation in humans and vertebrates.

Average GC3 content of primary metabolic pathway genes

(0.412, N = 1,024) was significantly lower (Mann–Whitney

U test, P = 3�10�3) than secondary metabolic pathway

genes (0.423, N = 237). GC3 was significantly negatively

correlated with dN and dN/dS but not dS (table 2). It has

been shown that recombination is a driving force for the

increase in GC3 in many organisms (Tatarinova et al. 2010;

Elhaik and Tatarinova 2012, p. 3). Although self-pollination in

Arabidopsis keeps its recombination rates low, which ulti-

mately results in reduced GC3 content, evolutionary pressure

would selectively keep high recombination rates for some

genes (Elhaik and Tatarinova 2012). After GC3 richness

evolves in those genes under selective pressure, its additional

transcriptional advantage is achieved (Elhaik and Tatarinova
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2012). Moreover, Straussman et al. (2009) described a corre-

lation between methylation and GC3. GC3-rich genes provide

more targets for de novo methylation that can serve as an

additional mechanism of transcriptional regulation that ulti-

mately increases adaptability to a species under external stres-

ses (Elhaik and Tatarinova 2012). The higher GC3 content of

secondary metabolic genes in our study supports this view. As

these genes provide a selective advantage to the plant under

changing environmental conditions, the GC3 content became

higher than primary metabolic pathway genes.

Effect of Gene Expression

Average expression level of primary metabolic pathway genes

(9,025.77, N = 1,004) was approximately 2.03 fold of second-

ary metabolic pathway genes (4,430.29, N = 235) and the

difference was significant (Mann–Whitney U test,

P = 1.79�10�7). The tissue specificity (t= 0.287, N = 235) of

secondary metabolic pathway genes was significantly (Mann–

Whitney U test, P = 1.17�10�12) higher than primary meta-

bolic pathway genes (t= 0.236, N = 1,008). Both expression

level and tissue specificity were significantly correlated with

dN, dS, and dN/dS (table 2). ENc of primary metabolic pathway

genes (53.18, N = 1,024) was also significantly lower (Mann–

Whitney U test, P = 2.97� 10�7) than secondary metabolic

pathway genes (54.47, N = 237), indicating that primary met-

abolic pathway genes show more codon biasness than sec-

ondary metabolic pathway genes. We have also studied the

relationship of expression level and tissue specificity with GC3

and ENc. Both GC3 and ENc showed a significant correlation

with expression level (Spearman’s rexpression level vs.

ENc =�0.184, P = 1.0� 10�6; Spearman’s rexpression level vs.

GC3 = 0.138, P = 3.3�10�6). GC3 and ENc were significantly

correlated with tissue specificity (Spearman’s rt vs.

ENc =�0.121, P = 4.6�10�5; Spearman’s rt vs. GC3 = 0.105,

P = 3.81�10�4). ENc was significantly positively correlated

with dN and dN/dS but not dS (table 2). There is a strong

positive correlation between GC3 and ENc (Spearman’s rENc

vs. GC3 = 0.322, P = 1.0�10�6). It was reported that mRNA

secondary-structure stability is correlated with both GC con-

tent and codon usage (Gu et al. 2010). Moreover, the

common causes of heterologous gene expression are mainly

associated with the disparities in codon bias, mRNA secondary

structure and stability, gene product toxicity, and product sol-

ubility (Makrides 1996; Gustafsson et al. 2004). Hence, it is

clear from this study that expressing secondary metabolic

genes in another host such as bacteria or simple eukaryotes

is easier than primary metabolic pathway genes. For heterol-

ogous expression of the latter, additional methods such as

codon optimization (Angov 2011) or codon harmonization

(Angov et al. 2008) may be required. For a better knowledge

about the expression of genes with respect to different struc-

tures and developmental stages of the plant, we have also

studied the PO terms (Avraham et al. 2008). The PO database

uses 71 plant structure development stages and 326 plant

anatomical entities to describe Arabidopsis gene expression

patterns (Cooper et al. 2013). We have counted the number

of PO terms per gene and correlated that with evolutionary

rate. Primary metabolic pathway genes are involved in signif-

icantly more PO terms (28.25 per gene, N = 1,035; Mann–

Whitney U test, P = 7.44�10�12) than secondary metabolic

pathway genes (22.48 per gene, N = 241). There is a strong

negative correlation between PO terms per gene and evolu-

tionary rates (table 2).

Multifunctionality

Primary metabolic pathway genes were found to be signifi-

cantly more multifunctional (12.95 per gene, N = 1,035;

Mann–Whitney U test, P = 1.72�10�12) than secondary met-

abolic pathway genes (10.91 per gene, N = 241) (fig. 4). There

is a strong negative correlation between GO slim terms per

gene and evolutionary rates (table 2). It shows that primary

metabolic genes are evolutionarily more conserved due to
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their higher multifunctionality. It was also found that highest

number (12.86%) of genes of the secondary metabolic path-

ways take part in eight biological processes whereas 9.56%

genes of the primary metabolic pathways take part in 14

biological processes. Multifunctionality, that is, involvement

of a protein in several processes has been shown by several

enzymes such as hexokinase, triose-phosphate isomerase,

enolase, etc. and the presence of multifunctional proteins in-

creases the metabolic efficiency of a cell (Schwab 2003). This

study shows that primary metabolic pathway genes are more

multifunctional than genes involved in secondary metabolism.

Hence, metabolic efficiency is primarily maintained by genes

involved in primary metabolism. In yeast, it has been found

that multifunctional proteins evolve at a slower rate (Salath�e et

al. 2006). It was also revealed in this study that multifunction-

ality has greater effect on dN than dS. However, our analysis

shows that the magnitude of the effect of multifunctionality

on dN, dS, and dN/dS of metabolic pathways is higher than its

effect on whole genome of A. thaliana as studied by Yang and

Gaut (2011). This shows that multifunctionality has greater

effect on metabolic genes than other proteins of the genome.

It is also notable that both expression level and tissue

specificity are significantly correlated with multifunctionality

(Spearman’s rexpression level vs. multifunctionality = 0.547,

P = 1.0� 10�6; Spearman’s rtissue specificity vs. multi-

functionality =�0.308, P = 1.0�10�6). In PCA, the first principal

component includes expression parameters and multifunc-

tionality. This contradicts with the result of Salath�e et al.

(2006) who have not found any significant correlation of mul-

tifunctionality with expression level. However, the reason

behind the higher expression and lower tissue specificity of

multifunctional genes of metabolic pathways is not clear yet.

One possible explanation is that secondary metabolic pathway

genes evolve in response to specific environmental factors and

thus less multifunctional and more tissue specific. On the

other hand, genes involved in primary metabolism are more

multifunctional as this enhances metabolic efficiency. They are

also ubiquitously expressed in the plant body at a higher level

to successfully maintain the core functioning of the plant

body. Number of domains per gene was significantly higher

in genes involved in primary metabolic pathway genes than

secondary metabolic pathway genes. It was also found that

domain number is negatively correlated with evolutionary

rate. The reason behind this correlation was not clear. Then,

we correlated domain number with other parameters to in-

vestigate whether it is correlated with other factors. Domain

number was significantly correlated with multifunctionality

(Spearman’s rdomain numbers multifunctionality = 0.153,

P = 1.0� 10�6) as well as gene length (Spearman’s rdomain

numbers gene length = 0.358, P = 1.0�10�6), intron length

(Spearman’s rdomain numbers intron length = 0.188,

P = 1.0� 10�6), and GC3 (Spearman’s rdomain numbers

GC3 =�0.123, P = 7.0�10�5). In PCA, domain number

along with gene length, intron number, and GC3 was

included in principal component 2. Thus, it seems that

domain number is more of a function of gene character

rather than multifunctionality.

Relative Involvement of the Factors in Shaping
Evolutionary Rate Variation among Primary and
Secondary Metabolic Pathway Genes

To elucidate the covariance structure of different factors,

we have performed PCA. Results of PCA analysis are given

in table 3. Components with values more than 0.5 have been

retained. It has been observed that the first two principal com-

ponents have explained 43.312% of the total variance. The

major contributors of the first component were PO, 30-UTR

GC content, 50-UTR GC content, expression level, tissue spe-

cificity, 30-UTR length, and multifunctionality (table 3). The

major contributors of the second principal component were

gene length, intron number, GC3, and domain number. It is

noteworthy that the first component showed higher correla-

tion coefficient with dN than dS and the second component

showed the reverse. The contributors of the first coefficient

mainly comprised factors related to gene expression and the

second coefficient mainly comprised gene-level factors.

Hence, it is apparent that the difference in nonsynonymous

substitutions in the two types of pathways is mainly due to

factors related to gene expression, whereas the difference in

Table 3

PCA on dN, dS, and dN/dS and Major Contributors of the Principal

Components

Principal

Component 1

Principal

Component 2

Percent of the total variance 26.164 17.148

Correlation coefficient

(Spearman’s r) with

dN

�0.439

(P = 1.0� 10�6)

�0.013

(P = 6.8� 10�1)

Correlation coefficient

(Spearman’s r) with

dS

�0.207

(P = 1.0� 10�6)

�0.158

(P = 1.0� 10�6)

Correlation coefficient

(Spearman’s r) with

dN/dS

�0.361

(P = 1.0� 10�6)

�0.044

(P = 1.5� 10�1)

Major contributors

PO 0.740

30-UTR GC content 0.754

50-UTR GC content 0.689

30-UTR length 0.586

GO slim 0.581

Tissue specificity �0.660

Expression level 0.533

Gene length 0.869

Intron number 0.857

GC3 �0.616

Domain number 0.567
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synonymous substitutions is due to gene-level variations such

as length, intron number, and domain number. However, the

inclusion of GC3 content in the second component seems to

be strange as GC3 has effect on the regulation of gene expres-

sion by methylation as discussed earlier. We have performed

Spearman correlation of GC3 with gene length, intron

number, and domain number. Indeed, GC3 content is

significantly negatively correlated with intron number

(Spearman’s r=�0.499, P = 1.0� 10�6), gene length

(Spearman’s r=�0.326, P = 1.0�10�6), and domain

number (Spearman’s r=�0.122, P = 7.1�10�5). Moreover,

it has been found in corn that genes with high GC3 tend to be

mono-exonic (Alexandrov et al. 2009). We have also found a

similar trend in both primary and secondary metabolic path-

way genes in A. thaliana (fig. 5). Thus, it is clear that intron

number is highly correlated with GC3 content. Probably, the

correlation is due to the accumulation of more synonymous

mutations in intronic regions, which also explains the signifi-

cant negative correlation with gene length. As genes of the

primary metabolic pathways are longer than secondary met-

abolic pathway genes and their coding sequence length is not

significantly different, it is, thus, evident that the increased

gene length in primary metabolic genes is mainly contributed

by introns, and thus gene length shows a significant negative

correlation with GC3. However, the correlation between GC3

and domain number is not very clear. The dN/dS ratio showed

higher correlation coefficient with component 1 than compo-

nent 2. Thus, it is clear that the evolutionary rate difference

between primary and secondary metabolic pathway genes is

chiefly due to the factors related to expression than gene-level

predictors in A. thaliana.

Conclusion

This study showed that primary metabolic pathway genes are

evolutionary more conserved than secondary metabolic path-

way genes in A. thaliana. The effect of different gene level

expression level and protein level factors showed that gene

length, gene compactness, expression level, tissue specificity,

multifunctionality, and domain number are the major contrib-

utors for the evolutionary rate difference of these primary and

secondary metabolic pathway genes. To the best of our

knowledge, this is the first extensive comparison of primary

and secondary metabolic pathway genes from an evolutionary

perspective. Improving the agronomic quality of a crop by

altering its metabolic signature by targeted breeding can be

an important tool for a breeder. The knowledge gathered

from this study can play a pivotal role for this kind of breeding

practices. As secondary metabolic pathway genes are less con-

served, their intra- or interspecific variation should be greater,

and this variation can be a starting point for transgenic ma-

nipulation or targeted breeding. Moreover, as these genes

tend to accumulate more substitutions, protein engineering

by site-directed mutagenesis can lead to the formation of a

plethora of new economically important metabolites. On the

other hand, when targeting a primary metabolic gene,

emphasis should not be to alter its coding sequence as this

can disrupt the function of these highly conserved genes that

will ultimately affect the plant phenotype. Rather, for im-

proved production of primary metabolites, factors that

affect gene expression such as UTRs or other regulatory ele-

ments may be altered. Alternately, for successful heterologous

expression, codon optimization or codon harmonization may

be beneficial. Our study, thus, provides valuable information

on the evolutionary aspects of primary and secondary

metabolism in A. thaliana which, along with further labora-

tory-based experimental studies, can be helpful for metabolic

engineering and production of improved plant varieties in the

near future.

Supplementary Material

Supplementary materials S1 and S2 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjournals.
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Toll-Riera M, Albà MM. 2013. Emergence of novel domains in proteins.

BMC Evol Biol. 13:47.

Tracewell CA, Arnold FH. 2009. Directed enzyme evolution: climbing fit-

ness peaks one amino acid at a time. Curr Opin Chem Biol. 13:3–9.

Trethewey RN. 2004. Metabolite profiling as an aid to metabolic engineer-

ing in plants. Curr Opin Plant Biol. 7:196–201.

Umeno D, Tobias AV, Arnold FH. 2005. Diversifying carotenoid biosyn-

thetic pathways by directed evolution. Microbiol Mol Biol Rev. 69:

51–78.

Urrutia AO, Hurst LD. 2001. Codon usage bias covaries with expression

breadth and the rate of synonymous evolution in humans, but this is

not evidence for selection. Genetics 159:1191–1199.

Verpoorte R, Memelink J. 2002. Engineering secondary metabolite pro-

duction in plants. Curr Opin Biotechnol. 13:181–187.

Weng J-K. 2014. The evolutionary paths towards complexity: a metabolic

perspective. New Phytol. 201:1141–1149.

Weng J-K, Noel JP. 2012. The remarkable pliability and promiscuity of

specialized metabolism. Cold Spring Harb Symp Quant Biol. 77:

309–320.

Wright F. 1990. The “effective number of codons” used in a gene. Gene

87:23–29.

Yanai I, et al. 2005. Genome-wide midrange transcription profiles reveal

expression level relationships in human tissue specification.

Bioinformatics 21:650–659.

Yang L, Gaut BS. 2011. Factors that contribute to variation in evolutionary

rate among Arabidopsis genes. Mol Biol Evol. 28:2359–2369.

Yang Z. 1997. PAML: a program package for phylogenetic analysis by

maximum likelihood. Comput Appl Biosci. 13:555–556.

Yang Z, Nielsen R. 1998. Synonymous and nonsynonymous rate variation

in nuclear genes of mammals. J Mol Evol. 46:409–418.

Zhao N, Wang G, Norris A, Chen X, Chen F. 2013. Studying plant sec-

ondary metabolism in the age of genomics. Crit Rev Plant Sci. 32:

369–382.

Zhou T, et al. 2012. Non-silent story on synonymous sites in voltage-gated

ion channel genes. PLoS One 7(10):e48541.

Zhou T, Gu W, Wilke CO. 2010. Detecting positive and purifying selection

at synonymous sites in yeast and worm. Mol Biol Evol. 27:1912–1922.

Associate editor: Maria Costantini

Mukherjee et al. GBE

28 Genome Biol. Evol. 8(1):17–28. doi:10.1093/gbe/evv217 Advance Access publication November 10, 2015


