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The hormone gibberellin (GA) controls plant growth and regulates growth responses to
environmental stress. In monocotyledonous leaves, GA controls growth by regulating
division–zone size. We used a systems approach to investigate the establishment of the
GA distribution in the maize leaf growth zone to understand how drought and cold
alter leaf growth. By developing and parameterizing a multiscale computational model
that includes cell movement, growth-induced dilution, and metabolic activities, we
revealed that the GA distribution is predominantly determined by variations in GA
metabolism. Considering wild-type and UBI::GA20-OX-1 leaves, the model predicted
the peak in GA concentration, which has been shown to determine division–zone size.
Drought and cold modified enzyme transcript levels, although the model revealed that
this did not explain the observed GA distributions. Instead, the model predicted that
GA distributions are also mediated by posttranscriptional modifications increasing the
activity of GA 20-oxidase in drought and of GA 2-oxidase in cold, which we confirmed
by enzyme activity measurements. This work provides a mechanistic understanding of
the role of GA metabolism in plant growth regulation.
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The hormone gibberellin (GA) controls plant growth and plays a key role in growth
responses to environmental conditions (1, 2). This growth regulation is thought to be
underpinned by the GA distribution; however, how the GA distribution is regulated is
largely unknown. In roots and monocotyledonous leaves, the sizes of the division zone
(DZ) and elongation zone (EZ) are key parameters that determine overall organ growth
rates (3–6). The boundaries of these growth zones are dynamically controlled by hor-
mone distributions (7), which depend on hormone metabolism, transport between
cells, and dilution (due to cell growth). In Arabidopsis roots, for example, the DZ size
has been shown to be regulated by GA synthesis (8–10), GA signaling (11), auxin
transport (12, 13), and cross talk between auxin and cytokinin (14–16).
Maize leaves provide an alternative organ for studying growth regulation, with the major

advantage that they enable the direct measurement of spatial distributions of hormone and
transcript levels and enzyme activities along the growth zone (9, 17). In maize leaves, bio-
active gibberellins, GA1 and GA4, show a distinct maximum within the DZ (9, 17). Kine-
matic and hormone analysis of wild-type leaves, dwarf3 leaves (defective in GA synthesis),
and UBI::GA20-OX-1 leaves (overexpressing a key GA 20-oxidase (GA20ox) biosynthesis
enzyme) has demonstrated that the GA1 distribution determines the length of the DZ (9)
(similar to its function in the Arabidopsis root [8], although sensor observations suggest GA
distribution differs [18]). Thus, the expression of GA metabolic enzymes plays a key role
in creating GA1 distribution and controlling DZ size (9). These GA metabolic enzymes
also mediate growth responses to cold (19, 20), salt (21), nutrients (10, 22), light (23), and
water (24) and cross talk between the growth-regulatory hormone pathways (25, 26), mak-
ing them a key component of environmental growth responses.
Although metabolite and transcript measurements along the growth zone provide

insights into how hormone levels are related to local cell division and expansion, they
essentially produce static measurements, making it hard to infer the underlying
dynamic processes. Understanding how molecular and cellular processes interact to
establish, maintain, and adjust the hormone distributions that control organ growth
can be challenging, and theoretical models have proven invaluable in providing a mech-
anistic understanding (13, 14, 16, 27–29). Considering the GA dynamics within the
Arabidopsis root, previous modeling demonstrated that cell elongation causes significant
dilution in the EZ (28). Thus, in contrast to auxin distribution being primarily deter-
mined by carrier-mediated transport (12, 13), the GA distribution appears to be con-
trolled by an entirely different mechanism.
In this study, we gain a mechanistic understanding of how GA distributions are con-

trolled. We developed a multiscale model of GA dynamics within the maize leaf growth
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zone by combining a detailed model of the GA metabolism
within each cell with cellular growth dynamics. Focusing on
the maize leaf enabled us to compare model predictions to spa-
tial metabolite and enzyme data (which is not feasible in
smaller species such as Arabidopsis [17]), revealing that bioactive
GA distribution is predominantly determined by spatial varia-
tions in metabolism.
We applied the model to investigate how drought and cold

affect GA distribution, to understand how these stresses alter
leaf growth. Mild drought reduces maize leaf growth by reduc-
ing DZ size, bioactive GA levels, and the transcript levels of the
GA20ox biosynthesis enzymes (30). The model revealed that
GA20ox activity is increased to counteract the reduction in
GA20ox transcripts, suggesting that the lower bioactive GA lev-
els and growth response are mediated instead by increased tran-
scription of the GA 2-oxidase (GA2ox) catabolic enzymes.
The role of GA in the response to cold, which inhibits cell

division rates but not DZ size (31), is still unclear. Measure-
ments revealed a substantial reduction in the GA2ox transcripts,
suggesting that cold reduces GA degradation. However, the
model showed that GA2ox activity is increased to counteract
the reduced transcript levels and maintain bioactive GA con-
centrations at control levels. Thus, the model reveals insights
into drought and cold responses, suggesting that the modula-
tion of specific oxidation rates determines the bioactive GA dis-
tributions that underpin growth regulation.

Results

Model description. To understand how GA distribution is reg-
ulated, we constructed a cell-based model that describes GA
biosynthesis, degradation, and dilution (due to cell growth)
within the maize leaf growth zone (Fig. 1 A and B). The model
exploits the simple linear leaf geometry and represents the leaf
as a single file of cells. Based on a stable leaf elongation rate
during the first 5 d after emergence (31), we considered leaf
growth to be in steady state. The model integrates cell growth
and division rates from experimental measurements (32) (Fig. 1
C–F). Cell length decreases slightly close to the base of the leaf
before increasing with distance along the growth zone (Fig.
1C). Velocity is zero at the base of the leaf and increases with
distance along the growth zone (Fig. 1D). Using these data, we
calculated the relative elongation rates (Fig. 1E), which follow a
roughly bell-shaped curve, and the cell division rates (Fig. 1F),
which show a bell-shaped curve spanning the DZ. The model
also integrates the increase in the leaf’s cross-sectional area
along the growth zone to accommodate increases in cell volume
when simulating dilution (33). Consistent with the approxi-
mate doubling of both the width and thickness of the leaf (33),
volumetric quantifications showed that the leaf cross-section
increases more than fivefold across the growth zone (Fig. 1G).
With these growth dynamics (Fig. 1 C–F), the maize leaf
growth zone is represented by a file of approximately 1,400
cells, with ∼700 cells in the DZ and ∼700 cells in the EZ.
These growth dynamics are used to simulate dividing and
growing cells (SI Appendix).
In the model, we incorporated the subcellular structure of

the cells. Within the DZ, cells predominantly contain a nucleus
and cytoplasm; we assumed that the nuclear volume is constant
and equal to 50% of the cell volume at the most basal position
(noting that the nuclear volume stays constant in the virtual
absence of endoreduplication in maize leaves [31]) and thus
that cell growth in the DZ occurs due to cytoplasmic expan-
sion. Within the EZ, growth occurs primarily by rapidly

increasing vacuolar volume. Based on cell length and cross-
sectional area distributions (Fig. 1 C and G), we calculated that
cell volume increases ∼12-fold over the EZ, which, under the
assumption of vacuolar expansion (with no increase in the
nucleus or cytoplasm volume), results in the volume of the cells’
vacuole being approximately 92% of the cells’ volume when they
enter the mature zone. This value agrees with previous sugges-
tions that the vacuole takes up 90 to 95% of the cell volume
(34).

GA biosynthesis involves a series of oxidation steps, convert-
ing the precursor, geranylgeranyldiphosphate, to the bioactive
GA4 and GA1 (35, 36). GA biosynthesis has been shown to
be predominantly regulated at the later steps of this pathway
(37), whereby GA53 and GA12 are converted to bioactive GAs
(35, 36). Focusing on the pathway that leads to the more prev-
alent bioactive GA in maize, GA1 (9) (Fig. 1B), we simulated
GA biosynthesis and degradation within each cell: GA53 under-
goes a series of oxidation steps mediated by GA20ox to produce
GA20, which is converted to the bioactive GA1 by GA 3-oxidase
(GA3ox) (35). GA2ox degrade the bioactive GA1 and precursor
GA20 to GA8 and GA29, respectively, which are in turn converted
by the GA2ox to their catabolite forms (35). We represented
these reactions by a system of ordinary differential equations
(ODEs) for the metabolite, enzyme, and complex concentrations:
Each step was modeled using the law of mass action by assuming
the GA metabolite first binding to the enzyme with a reversible
reaction, and the resulting complex then dissociating into the
next GA metabolite in the pathway and the enzyme (38). We
assumed that enzymes are translated at a rate proportional to the
transcript level.

The reactions involved in the GA metabolism pathway
downstream of GA53 occur in the cytoplasm (35, 36), and we
assumed that the enzymes and complexes are only present in
this compartment. Data in Arabidopsis suggest that GA metabo-
lites are also present in the nucleus and the vacuole (39). In
absence of analogous data in maize, we assumed this to be simi-
lar in maize, hence within the model assuming equal metabolite
concentrations throughout the cell.

Prescribing the growth dynamics and distributions of the
GA53 concentration and GA20ox, GA3ox, and GA2ox transcript
levels, the cell-based model could be simulated to predict the
distributions of the downstream metabolites, enzymes, and
complexes. The spatial distributions of the GA53 concentration
and GA20ox, GA3ox, and GA2ox transcript levels are upstream
inputs, each of which were represented by a sum of b-spline
functions (40) with coefficients that were estimated using the
experimental data as part of the model fitting (SI Appendix).

To summarize, we developed a cell-based model that
describes GA metabolism and dilution within the maize leaf
growth zone; the key assumptions behind this cell-based model
(described above) are compiled in SI Appendix, Table S1.

Derivation of a reduced model. The cell-based model com-
prises 17 ODEs for each cell in the growth zone, which for
1,400 cells results in a system of 25,200 ODEs, which can be
simulated until they reach a steady state. For a given parameter
set, the cell-based model took several hours to run to predict
the steady-state distributions, making detailed parameter sur-
veys impractical. To estimate model parameter values that
enable the model to reproduce the experimental data, we
needed to derive a reduced model to reduce the simulation
time (Fig. 2A). We derived a continuum description of the cell-
based model, considering quantities in terms of distance from
the leaf base. We further reduced the model by assuming that
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the ratio between the enzyme concentrations and metabolite con-
centrations are small (an approximation typically taken when
modeling enzyme reactions [41] and shown previously to be
appropriate for GA20ox-mediated oxidation [42]). The resulting
reduced model involved a system of six ODEs in terms of distance
from the leaf base for the concentrations of GA44, GA19, GA20,
GA1, GA29, and GA8 (highlighted with green stars in Fig. 1B)
that depend on eight oxidation rate constants (one associated with
each oxidation step, which encompasses the translation rate, bind-
ing rates, and enzyme activity), the four input functions (repre-
senting the spatial distributions of GA53 concentration and
GA20ox, GA3ox, and GA2ox transcript levels; pink stars in Fig.
1B), and the prescribed growth dynamics.
To aid clarity, we provide a summary of the model assump-

tions underlying the reduced model in SI Appendix, Table S1.
As described in the text below, using the reduced model, we
were able to estimate the reduced model parameters for a given
experimental dataset, and therefore all model results presented
in Figs. 2–5 were created by simulating the reduced model.

GA1 distribution is predominantly determined by spatial
variations in metabolism. To test whether the reduced model
could represent our observations, we initially parameterized the

reduced model using published experimental measurements of
metabolite and transcript levels within 12 leaf segments along
the maize leaf growth zone, fitting the reduced model parame-
ters independently to data from B104 (9) and B73 inbred
lines (30). Prior to fitting, we converted the metabolite meas-
urements (in ng/gDW) (SI Appendix, Figs. S4 and S5) to nM
concentrations (SI Appendix, Figs. S6 and S7). After the conver-
sion, the spatial metabolite distribution profiles were globally
similar to the original data but could differ in detail; for exam-
ple, in the nM concentration profile, the peak GA1 was slightly
closer to the leaf base than in the corresponding GA1 measure-
ments (SI Appendix, Fig. S8). Based on these data, we estimated
parameters by minimizing a weighted sum-of-squares criterion
(detailed in SI Appendix, section 2.3.4). With the estimated
parameters, the reduced model showed a reasonable agreement
with the experimental measurements (Fig. 2 B–K and SI
Appendix, Fig. S10) and faithfully reproduced the peak in the
cytoplasmic GA1 level within the DZ (Fig. 2I).

Using the reduced model enabled us to estimate the model
parameters (i.e., the rate constants in the metabolism network);
thus, we were able for the first time to assess the relative impact
of individual cellular and subcellular processes on the established
GA1 distribution. Removing either the presence of dilution
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Fig. 1. Model summary. (A) Schematic representation of the maize leaf showing the division, elongation, and mature zones. We model the leaf as a file of
cells, with cytoplasmic expansion in the division zone and vacuolar expansion in the elongation zone. (B) The gibberellin biosynthesis and degradation net-
work. In the network diagram, red boxes are used for the metabolites, blue boxes are used for the enzymes, pink stars label the components modeled as
input/forcing functions (parameterized via data on GA53 metabolite levels and gene expression levels of GA20ox, GA3ox, and GA2ox), and green stars label
the components that are solutions of the ODEs (which are fitted to measurements of the corresponding metabolites). (C–G) Growth dynamics for maize leaf
4, B73. (C) Experimental measurements of cell lengths away from the leaf base; data show averages calculated via interpolation using measurements from
n = 3 leaves. (D) Cell velocities calculated from data in (C). (E) Cell relative elongation rates (RERs) calculated from data in (D). (F) Cell division rates calculated
from data in (C) and (D). (G) Experimental data for the leaf cross-sectional area (mean ± SE with n = 10). C–F show bars at the x-axis marking the DZ region
(n = 3). The corresponding growth dynamics for other cases are shown in SI Appendix, Figs. S1–S3.
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(Fig. 3A) or the presence of cell movement (Fig. 3B), or the
presence of both dilution and cell movement (Fig. 3C), had lit-
tle effect on the predicted GA distributions. Similar results were
obtained for B104 (SI Appendix, Fig. S10). The influence of
dilution and cell movement on the GA distribution depends on
the magnitudes of the rate constants—with the estimated rate
constants, the metabolism network quickly reaches an equilib-
rium within each cell so that dilution and cell movement are
slower processes that have little effect on the predicted GA con-
centrations (SI Appendix, Fig. S11, which shows how dilution
and cell movement have an effect on the GA1 distribution if the
rate constants are smaller). We conclude that dilution and cell
movement have only minor effects on the GA distributions and
that the GA1 distribution is predominantly determined by the
spatial variations in metabolism.
The estimated parameters provide insights into the mechanisms

that determine the distributions of the GA metabolites and differ-
ences between B73 and B104. The parameter estimates obtained
(SI Appendix, Table S2) suggest that for B73 the GA2ox-mediated
degradation rate of the precursor GA20 is small but that there is a

faster GA3ox-mediated conversion of GA20 to the bioactive GA1,
which explains the low GA20 concentrations observed. In contrast,
for B104, the degradation of GA20 is fast, whereas the conversion
of GA20 to GA1 is slower. To test this model prediction experi-
mentally, we therefore directly compared the rates of GA2ox and
GA3ox in the growth zone of B73 and B104 leaves. In agreement
with the model prediction, these data revealed that in B73, GA3ox
enzyme activity (producing GA1) is consistently higher than
GA2ox activity (producing GA29; Fig. 3D). Moreover, as predicted
by the model, in B104 the inverse situation occurs (Fig. 3E).

As one may expect, doubling the GA20ox-mediated oxida-
tion rates increased the predicted GA1 concentrations (Fig. 3F
and SI Appendix, Fig. S12), whereas doubling the GA2ox rates
decreased the predicted GA1 concentrations (Fig. 3F and SI
Appendix, Fig. S13), although the qualitative features of the
GA1 distribution remained the same. Varying the oxidation
rate associated with the GA3ox-mediated step had little effect
on the GA1 predictions (Fig. 3F and SI Appendix, Fig. S14;
doubling the GA3ox oxidation rate increased the rate at
which GA20 is converted to GA1, but this also decreased the
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Fig. 2. Summary and predictions of the reduced model, fitted to the control wild-type data for B73. (A) Schematic summarizing the differences between
the original cell-based model and the reduced model. (B–K) Measured and predicted distributions of GA metabolites and enzymes along the maize leaf.
Data for B73 maize are shown with red stars and fitted reduced model predictions are shown with solid blue lines. (I) also shows the mean position of the
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GA20 concentrations: at quasi-steady state these processes can-
celed each other out, resulting in little effect on the GA1

distribution).
The reduced model also enabled us to investigate the impor-

tance of the spatial distributions of the GA53 metabolite and

enzyme transcript levels. With constant GA53, the predicted
GA1 formed only a small peak in the DZ and increased as cells
left the growth zone (Fig. 3G and SI Appendix, Fig. S15),
whereas with constant enzyme levels, the GA1 peak in the DZ
was less pronounced (Fig. 3H and SI Appendix, Fig. S16). We
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Fig. 3. Analyzing the reduced model predictions for control, wild-type dynamics. (A–C) Effect of model components on the predicted cytoplasmic GA1 con-
centration: (A) with (solid line) and without (dashed red line) dilution; (B) with (solid line) and without (dashed red line) cell movement away from the leaf
base; (C) with (solid line) and without (dashed red line) dilution and cell movement away from the leaf base. (D,E) Degradation/oxidation of GA20 by GA2ox
(production rate of GA29) and GA3ox (production rate of GA1) in (D) B73 and (E) B104 wild-type leaves. Data show mean ± SE for n = 4. (F) Effect of the oxida-
tion rates on the predicted GA1 distribution. (G) Effect of setting the GA53 concentrations to be spatially constant on the predicted GA1 distribution. (H) Effect of
setting the enzyme transcript levels to be spatially constant on the predicted GA1 distribution (for [F–H], see SI Appendix, Figs. S12–S16 for the corresponding pre-
dictions of the other components). (A–C) also show the mean position of the boundary between the DZ and EZ (dashed black lines; SI Appendix, Table S3, n = 3).
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Fig. 4. Effect of GA20ox overexpressing line (UBI::GA20-OX-1) on GA pathway. (A) RERs for wild-type and GA20ox overexpressing line (UBI::GA20-OX-1), cal-
culated from mean cell velocity data given in SI Appendix, Fig. S2 (n = 3). (B–L) Measured and predicted distributions of GA metabolites and enzymes along
the maize leaf for wild-type (blue) and the GA20ox overexpressing line (UBI::GA20-OX-1) (red). Data shown with blue squares (control) and red stars (UBI::
GA20-OX-1); fitted model predictions are shown with solid lines. Predictions are from the reduced model with estimated parameters given in SI Appendix,
Table S4. Metabolite data (B, G–L) show mean concentrations calculated from mean values from data on metabolite levels (SI Appendix, Fig. S5), dry weight
(SI Appendix, Fig. S3C), and leaf cross-sectional area (SI Appendix, Fig. S3B). Transcript data (C–F) show mean values for n = 3. (J) also shows the mean position
of the boundary between the DZ and EZ for wild-type (dashed blue line) and UBI::GA20OX-1 (dashed red line), n = 3.
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conclude that the spatial variations in both GA53 and enzyme
transcription are essential to create the GA1 distribution that
underpins growth regulation.

Activity of the heterologous GA20ox is higher than the native
enzyme. We next set out to test whether the reduced model
could explain the effect of experimental perturbations on GA
metabolism, distribution, and leaf growth. We first studied the
effects of overexpressing the AtGA20-oxidase1 biosynthesis
enzyme (UBI::GA20-OX-1), which enhances bioactive GA

levels and growth in both Arabidopsis (43, 44) and maize by
increasing DZ size (9) (Fig. 4A). To investigate how overex-
pressing AtGA20-oxidase1 affects the metabolism dynamics, we
simulated the UBI::GA20-OX-1 dynamics by including an
additional enzyme, AtGA20ox, in the reduced model and incor-
porating terms representing the rate at which the AtGA20ox
enzyme mediates the three oxidation steps: GA53 to GA44, GA44

to GA19, and GA19 to GA20. Initially, we assumed that for each
of these steps the native and heterologous GA20ox enzyme tran-
scripts mediate the same rate of metabolite oxidation, and we
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Fig. 5. Influence of drought and cold on GA pathway. (A) B73 maize plants subjected to cold conditions. (B) B73 maize plants subjected to drought condi-
tions. (C) Measured DZ lengths in control (blue), drought (green), and cold (red) condition (mean ± SE with n = 3 replicates). (D) RERs in control (blue),
drought (green), and cold conditions (red). (E) Measured bioactive GA1 levels (in ng/gDW) in control (blue), cold (red), and drought (green) conditions
(mean ± SE with n = 3 replicates). (F) Measured leaf cross-sectional areas in control, cold, and drought conditions (mean ± SE with n = 10 for drought, and
n = 12 for cold). (G) Mean GA concentrations (in nM) calculated using data in (E) and (F) and SI Appendix, Fig. S3. (H–Q) Metabolite and enzyme distributions
in control (blue), cold (red), and drought (green) conditions. Data shown with stars and fitted model predictions with solid lines. (D, E, G, and O) show bars at
the x-axis marking the mean DZ region for control (blue), drought (green), and cold (red) conditions (n = 3). Predictions in (H–Q) use the reduced model and
assume that the activity of GA20ox is changed under drought conditions, whereas the activity of GA2ox is changed under cold conditions. Metabolite data
(H, L–Q) show mean concentrations calculated from mean values from data on metabolite levels (SI Appendix, Fig. S4), dry weight (SI Appendix, Fig. S3C),
and leaf cross-sectional area (SI Appendix, Fig. S3A). Transcript data (I–K) show mean values for n = 3–7 (positions 0–30 and 95 mm) and n = 1–3 (posi-
tions 35–85 mm).
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tried to fit the reduced model to metabolite and transcript data
from wild-type and UBI::GA20-OX-1 (9). With this assumption,
we found that the reduced model could not recapitulate the spa-
tial distributions of transcript and metabolite levels observed
experimentally (SI Appendix, Fig. S17); the reduced model sug-
gests that for the downstream GAs to be higher in UBI::GA20-
OX-1 requires GA53 to also be higher, which is not reflected in
the experimental data (Fig. 4 B and G–L).
We solved this conundrum by allowing each of the three

GA20ox-mediated oxidation rates to be different between the
native and heterologous enzymes, which led to reasonable
agreement between the reduced model and data (Fig. 4 B–L).
Considering the estimated parameters (SI Appendix, Table S4),
the estimated conversion rate of GA53 to GA44 is ∼20 times
higher for AtGA20-oxidase1 and the conversion rates of GA44

to GA19 and GA19 to GA20 are approximately double that of
the native enzyme. This explains why downstream GA concen-
trations were higher in the overexpression line (Fig. 4 G–L)
despite GA53 concentrations being lower (Fig. 4B). These dif-
ferences are likely due to differences in translation efficiency,
protein degradation, or enzyme activity between the native and
heterologous enzymes. The reduced model shows that the dif-
ferences in GA20ox activity result in the GA1 concentration
having a higher maximum but decreasing to a similar level at
the boundary between the DZ and EZ (at approximately 18
mm and 25 mm from the leaf base for wild-type and UBI::
GA20-OX-1, respectively) (Fig. 4J), consistent with the GA1

distribution controlling the DZ size via a threshold mechanism
(i.e., the transition to the EZ occurring where GA1 levels
decrease below a threshold value) (9). We conclude that the
reduced model recapitulates published data and identifies
details in the molecular regulation of GA metabolism, such as
differential specificity in the activities of the native and heterol-
ogous gene product.

Drought and cold regulate distinct enzymatic reactions. Next,
we used the reduced model to determine whether and how GA
distributions are affected by environmental stress and if this could
explain the growth response. We applied the reduced model to
published experimental data involving drought conditions (30)
and newly collected data in cold conditions (31). Both stresses
reduced the leaf elongation rate by 20 to 30% (30, 31) (Fig. 5 A
and B), but this was due to different underlying cellular behaviors:
a reduction in DZ size in drought conditions (30, 45) (Fig. 5C
and SI Appendix, Table S3) and a reduction in division and elon-
gation rates in cold conditions (31) (Fig. 5D and SI Appendix,
Fig. S2).
Measured metabolite levels (in ng/gDW) showed GA1 levels

are reduced in both drought and cold conditions (Fig. 5E). We
first converted these measurements to concentrations (nM), taking
into account the cross-sectional area. In drought, cross-sectional
areas are similar to those of the control (Fig. 5F), so that as for
the GA1 measurements, GA1 concentrations (in nM) are also
reduced (Fig. 5G). However, in cold, cross-sectional areas are
much lower (Fig. 5F), resulting in GA1 concentrations that are in
fact similar to those in control conditions (Fig. 5G). We con-
cluded that drought conditions, but not cold conditions, reduce
the GA1 concentrations. Measured GA53 levels (in ng/gDW) were
little affected by drought or cold (SI Appendix, Fig. S4), resulting
in GA53 concentrations that were increased in cold (once con-
verted to nM), suggesting that cold affects the pathway upstream
of GA53 (Fig. 5H). These observations illustrate the importance of
conversion to nM concentrations when interpreting metabolite
measurements.

Measurements of transcript levels revealed that drought
reduces GA20ox levels and increases GA2ox levels (Fig. 5 I and
K), whereas cold reduces GA2ox levels (Fig. 5K). We first tested
whether these perturbed enzyme transcript levels cause the
observed metabolite distributions, assuming identical oxidation
rate constants, by fitting the reduced model to the control, cold
and drought transcript and metabolite data. With this assump-
tion, we were unable to reproduce the metabolite distributions
(SI Appendix, Fig. S18). The predicted difference between GA1

in control and drought conditions was much less than
observed, whereas GA1 was predicted to be higher in cold than
in control conditions, again in contrast to the data.

To resolve this discrepancy, we hypothesized that drought
and cold regulate the GA pathway by additional mechanisms
(e.g., translation, protein stability, or enzyme activity). To test
this theory, we fitted the reduced model to the data, allowing
the oxidation rate constants for either the GA20ox-mediated
steps, the GA3ox-mediated step, or the GA2ox-mediated steps
to be different in cold and drought. To select among the result-
ing 16 possible cases (SI Appendix, Table S5), we used the
Akaike Information Criterion (AICc) (46), a statistical measure
that assesses the goodness of fit while penalizing model com-
plexity by taking into account the number of model parame-
ters. Fitting the model and calculating the AICc in each case
provided a means to select among the possible cases. Consider-
ing the AICc values obtained (SI Appendix, Table S5), our
results suggest that the rate constants governing the GA20ox-
mediated steps are perturbed in drought and that the rate con-
stants governing the GA2ox-mediated steps are perturbed in
cold (Fig. 5 H–Q). The parameter estimates (SI Appendix,
Table S6) suggest that in drought, the conversion rates of GA53

to GA44 and GA19 to GA20 are similar to those in control con-
ditions, whereas the conversion rate of GA44 to GA19 is approx-
imately doubled, providing an explanation as to why GA19

concentrations are similar in drought and control conditions
while GA44 is lower in drought. The parameter estimates sug-
gest that in cold the degradation rates of both GA20 and GA29

are higher than in control conditions, so that overall degrada-
tion is substantially increased in cold despite the GA2ox tran-
script levels being lower.

Thus, our modeling approach identifies specific GA enzyme
activities impacted by drought and cold and explains the
observed metabolite levels. Although in drought GA20ox tran-
script levels are lower than in control conditions (Fig. 5I), the
reduced model predicts that GA20ox enzymes mediate the
GA44-to-GA19 oxidation step at a higher rate. This prediction
suggests that GA1 synthesis in drought is similar to that in con-
trol conditions and that the lower GA1 concentrations are
caused by increased degradation mediated by increased GA2ox
transcript levels. In cold, the GA2ox transcripts are expressed at
lower levels than in control conditions, but the rate constant
associated with GA2ox-mediated GA20 degradation is increased,
explaining why GA1 concentrations are similar in control and
cold conditions.

Enzyme activity measurements support model predictions.
To test the surprising model prediction that enzyme activities
(relative to their transcript levels) increase in response to cold
and drought, we performed further experiments to measure the
enzyme activity directly. We considered six reactions for each
condition: GA53, GA44, and GA19 were used to determine
GA20ox activities, and GA1, GA29, and GA8 were used to
obtain GA2ox activities. The enzymes were extracted from
10 mm segments from the maize leaf growth zone. These data
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(SI Appendix, Fig. S19) were used to calculate the oxidation
rate constants (SI Appendix contains details).
In agreement with the model predictions, the oxidation rate

mediated by GA2ox increased in cold conditions (Fig. 6). For
drought, there was a trend for higher oxidation rates associated
with GA20ox activity, also in support of the model predictions.
Therefore, these in vivo activity measurements support the in
silico prediction of increased specific enzyme activities in cold
(GA2ox) and drought (GA20ox) conditions.

Discussion

GA regulates plant growth and growth response to environ-
mental conditions (1, 2). Understanding how local bioactive
GA levels are controlled is key to understanding these growth
responses. However, often in studies of GA metabolism only
static measurements are made of metabolite and transcript lev-
els. Although static measurements have led to profound insight
into how GA regulates growth, our approach to use computa-
tional modeling in combination with in vivo measurements
allows us to expand our knowledge to the dynamics of the reac-
tions in responses to heterologous transgenes and environmen-
tal conditions.
We presented a mathematical model that simulates the key

cellular and subcellular processes governing GA distribution in
the maize leaf growth zone. The modeling revealed that the
bioactive GA1 distribution is predominantly determined by the
spatial variations in metabolism. We validated the model by
demonstrating that it recapitulates experimental data from both
wild-type and plants overexpressing the AtGA20-oxidase1 bio-
synthesis enzyme (UBI::GA20-OX-1). This revealed that the
heterologous AtGA20-oxidase1 enzyme is substantially more
active than the native maize version, with a much higher rate of
conversion of GA53 to GA44.
The model also allowed us to obtain drought and cold

responses that could not be deduced from the gene expression

and metabolite distributions alone. The modeling suggested
that the GA1 concentrations in the stressed conditions are not
the result of changes in enzyme transcript levels alone. Instead,
oxidation rates associated with specific enzymes were increased
in the stressed conditions, suggesting that stress-induced post-
transcriptional regulation of enzyme activities has a major
effect on GA1 levels under these conditions. Subsequent enzyme–
activity assays validated these model predictions, suggesting that
further studies of GA oxidation enzymes at the protein level are
needed to understand the regulation of bioactive GA levels and
growth.

The predicted GA1 distributions provide an explanation for
how GA metabolism regulates the growth dynamics. Higher
GA1 concentrations in UBI::GA20-OX-1 and the lower GA1

concentrations under drought shift the position at which the
GA1 reaches a threshold value thought to determine the DZ
length (9, 30) (i.e., a larger DZ in UBI::GA20-OX-1 and a
smaller DZ in drought). The modeling enabled us to identify
which specific oxidation steps are affected in these cases to cre-
ate this GA1 distribution and growth response. The reduction
in leaf growth in cold is due to a different cellular mechanism:
a reduction in division and elongation rates rather than DZ
length (31). Our study revealed that once converted to nM
concentrations, the GA1 distribution in cold conditions is
approximately the same as in control conditions, explaining
why the growth zone lengths are not affected. Our findings
therefore suggest that the growth inhibition by cold does not
appear to be regulated by the GA pathway.

While the model predictions generally agreed well with the
experimental measurements, there were naturally some differences.
These differences may have been caused by variability in the data
(for instance, differences between the predictions and data at the
GA1 peak in the control case in Fig. 5O may be caused by the rel-
atively large SEs in the measured GA1 levels in this region, shown
in Fig. 5E). Additional differences may be caused by biological
phenomena or variability not explicitly considered in the model.

GA20ox 
reaction rates

(min-1)

GA2ox 
reaction rates

(min-1)

GA19 → GA20A B C

D E F

GA53 → GA44 GA44 → GA19

GA29 → GA29 catabolite GA8 → GA8 cataboliteGA1 → GA8

Distance (mm) Distance (mm) Distance (mm)

Distance (mm) Distance (mm) Distance (mm)

Fig. 6. Reaction rates calculated from measurements of enzyme activity for control (blue) drought (green), and cold (red) conditions. (A–C) Reactions medi-
ated by GA20ox: GA53 to GA44 (A), GA44 to GA19 (B), and GA19 to GA20 (C). (D–F) Reactions mediated by GA2ox: GA1 to GA8 (D), GA29 to GA29 catabolite (E), and GA8

to GA8 catabolite (F). Data show mean ± SE calculated from degradation rate data (SI Appendix, Fig. S19, n = 3) and enzyme transcript levels (Fig. 5 H–J, n = 1–7).
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Fitting the model to the data required us to develop a reduced
model. Although cell-based models, which simulate popula-
tions of dividing and growing cells, are often used to investi-
gate hormone dynamics (13, 29, 47), the simulation times
involved typically make formal parameter estimation impracti-
cal. Simulations are particularly slow for the maize leaf growth
zone, which contains ∼1,400 cells in each file (31), in contrast
to only ∼70 in Arabidopsis (48). It was therefore necessary to
derive a continuum approximation of the cell-based model.
This approach, to move from the Lagrangian (or material)
viewpoint to the Eulerian (or spatial) one, has played a major
role in understanding plant growth kinematics (49–51),
although it has received limited attention by hormone model-
ers (52, 53). We also considered methods for integrating spa-
tially varying inputs (i.e., components that are regulated by
upstream processes not included in the model) via b-spline
representations. There is much potential to translate these
modeling approaches to study dynamics in other cell-based
systems.
Our study demonstrates the usefulness of a detailed model

of GA metabolism within the growing maize leaf. To gain a
more complete insight, this model could be extended, for
example, to investigate the downstream GA signaling pathway
and growth regulation, the parallel pathway that mediates the
synthesis of the bioactive GA4 (which is the main bioactive
GA in other species such as Arabidopsis (54)), GA metabolism
dynamics in other plant organs, or how GA metabolism
enzymes are regulated by other hormones (29, 55). Further-
more, the transcript and metabolite measurements used here
are from the entire leaf segment, although in Arabidopsis
roots, GA levels and responses have been shown to vary
between tissues (8, 56, 57). Studying whether differences
between tissues exist in maize leaves could motivate a more
detailed 2-dimensional or 3-dimensional model that incorpo-
rates cellular geometries and tissue-specific processes. Such
model developments would be able to reveal further details
regarding the intricate and interacting multiscale interactions
involved in organ growth regulation.

Methods

Modeling. Full details of the mathematical model are provided in the SI
Appendix. We defined a cell-based model integrating growth, metabolism, and
dilution (SI Appendix, section 2) and used this to derive a reduced model (SI
Appendix, section 3). We simulated the reduced model by specifying growth
using experimental measurements (SI Appendix, section 2.3.1) and used the

metabolite and transcript data to estimate the reduced model parameters using
Matlab’s lsqnonlin optimization algorithm (SI Appendix, section 2.3.2–4). All
code and data are provided in a GitLab repository.

Plant material and growth conditions. Plant material and growth condi-
tions were as described in ref. (31) (cold) and ref. (30) (drought).

Hormone profiling. For hormone profiling, sampling, extraction, purification,
and hormone metabolic profiling were performed as described in ref. (9). Data
for the UBI::GA20OX-1 experiment (Fig. 4, Fig S5) were reprinted from ref (9 Cur-
rent Biology, Vol: 22, Hilde Nelissen, Bart Rymen, Yusuke Jikumaru, Kirin
Demuynck, Mieke Van Lijsebettens, Yuji Kamiya, Dirk Inze, and Gerrit T.S.
Beemster, A Local Maximum in Gibberellin Levels Regulates Maize Leaf Growth
by Spatial Control of Cell Division, p1183-1187, 2012, with permission from
Elsevier.

Transcript levels. Enzyme transcript levels were measured as described in
ref. (9). Transcript data for the UBI::GA20OX-1 experiment (Fig. 4) are as pub-
lished in ref. (9). In the drought–cold experiment (Fig. 5), GA20ox levels are the
summation of the measured levels of GA20ox1, GA20ox2.1, and GA20ox2.2;
GA3ox is the level of GA3ox2; and GA2ox levels are the summation of GA2ox3.1,
GA2ox3.2, GA2ox4, GA2ox6.2, GA2ox7.1, and GA2ox7.3, each measurement
being the mean of n = 3 to 7 replicates for positions 0 to 30, located around
the GA maximum; 95 mm, located at the end of the growth zone; and of
n = 1 to 3 replicates for positions 35 to 85 mm, where GA levels are rela-
tively stable.

Kinematic analysis. Kinematic analysis and measurements of division–zone
length were performed as described in ref. (32). The cross-sectional areas were
calculated by measuring the volumes of 1 cm segments of leaf.

Assay of GA metabolism enzymes. Enzymes were extracted from 10 seg-
ments of the fourth maize leaf, and enzyme activities were measured directly as
described in SI Appendix, section 1.

Data Availability. All code and data used in this paper have been deposited
in GitLab (https://gitlab.com/leahband/ga_maize_project/).
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