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Abstract

Background: Uncovering epigenetic states by chromatin immunoprecipitation and microarray hybridization (ChIP-chip) has
significantly contributed to the understanding of gene regulation at the genome-scale level. Many studies have been
carried out in mice and humans; however limited high-resolution information exists to date for non-mammalian vertebrate
species.

Principal Findings: We report a 2.1-million feature high-resolution Nimblegen tiling microarray for ChIP-chip interrogations
of epigenetic states in zebrafish (Danio rerio). The array covers 251 megabases of the genome at 92 base-pair resolution. It
includes ,15 kb of upstream regulatory sequences encompassing all RefSeq promoters, and over 5 kb in the 59 end of
coding regions. We identify with high reproducibility, in a fibroblast cell line, promoters enriched in H3K4me3, H3K27me3 or
co-enriched in both modifications. ChIP-qPCR and sequential ChIP experiments validate the ChIP-chip data and support the
co-enrichment of trimethylated H3K4 and H3K27 on a subset of genes. H3K4me3- and/or H3K27me3-enriched genes are
associated with distinct transcriptional status and are linked to distinct functional categories.

Conclusions: We have designed and validated for the scientific community a comprehensive high-resolution tiling
microarray for investigations of epigenetic states in zebrafish, a widely used developmental and disease model organism.
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Introduction

The advent of chromatin immunoprecipitation (ChIP) com-

bined with ChIP DNA hybridization to microarrays (ChIP-chip)

or high-throughput sequencing (ChIP-seq) has enabled genome-

wide mapping of post-translational histone modifications and

binding sites for transcription factors and chromatin regulators in a

variety of mammalian cell types [1–7]. Among histone post-

translational modifications (PTMs) examined, trimethylation of

H3 lysine 4 (H3K4me3) marks the promoter of most genes; in

contrast, H3K27me3 is associated with a fraction of promoters of

inactive or weakly expressed genes within a facultative hetero-

chromatin environment [1,3]. Interestingly, embryonic stem cells

harbor chromatin domains co-enriched in H3K4me3 and

H3K27me3, which contain transcriptionally ‘poised’ developmen-

tally-regulated genes [1]. Upon differentiation, activated genes

undergo H3K27 demethylation while retaining H3K4me3,

whereas silenced genes retain H3K27me3 and may (or may not)

be demethylated on H3K4 [1,4,8]. Co-enrichment in H3K4me3

and H3K27me3 has been proposed to constitute a mark of

priming for transcriptional activation (or repression) in embryonic

stem cells, a concept since extended to various somatic progenitor

cell types [4,6,9,10].

Genome-wide epigenetic state maps are also being built in non-

mammalian species such as Drosophila melanogaster and Xenopus laevis

primarily because of their attractiveness in developmental studies.

H3K4 methylation has been detected by ChIP-chip on promoter

regions of Drosophila embryos [11] along with, in cultured cells,

regions marked by methylated H3K27 [12,13] (see also [14]). In

addition, maps of H3K4me3- and H3K27me3-enriched regions

have been established by ChIP-chip and ChIP-seq in Xenopus with

the aim of improving 59 end gene annotation and establishing the

spatial environment of methylated H3K4 and H3K27 domains in

developing embryos [15,16].

Epigenomic information has also started to emerge in zebrafish

(Danio rerio). A custom-made promoter array covering 21.5 kb to

+0.5 kb relative to the transcription start site (TSS) at ,250 base-

pair (bp) intervals has initially been used to map H3K4me3

binding sites in embryos [17]. Representation by at least two

probes was required for a region to be included on the array. The

design included 11,117 promoter regions which owing to

redundancy in the genome assembly mapped to 12,545 locations

in the genome [17]. More recently, a NimbleGen 385,000-probe

array covering ,31 megabase (mb) of the zebrafish genome with a

median ,80 bp resolution was used for the determination of

H3K4me3, H3K27me3, H3K36me3 and RNA polymerase II
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enrichment sites before and after zygotic gene activation [18]. The

tiled regions included selected developmentally-regulated genes

and two contiguous regions on chromosomes 3 and 11, collectively

including 685 RefSeq genes.

We report here a high-density 2.1-million probe array design

covering ,20 kb of upstream regulatory regions and exons of all

12,697 RefSeq zebrafish genes, at a median 92-bp resolution. We

used these arrays to map regions of trimethylated H3K4 and H3K27

over .251 mb of the genome, or 17.5% of the Zv8 genome assembly,

in the embryo-derived fibroblast ZF4 cell line [19]. The data notably

uncover developmentally regulated genes marked by H3K4me3 and

H3K27me3 despite the differentiated state of ZF4 cells. The array

constitutes a robust platform for epigenetic investigations in zebrafish,

a widely used developmental and disease model organism.

Results

Zebrafish High-density Promoter Array Design
The zebrafish Zv8 assembly (www.sanger.ac.uk/Projects/D_re-

rio) reports 1,441,241,298 bp with 24,147 protein-coding genes, of

which 12,697 are RefSeq genes. To tile all zebrafish promoters at

high resolution, we designed a high-density microarray (Figure 1).

Tiled regions on the array were defined based on the UCSC

refFlat.txt annotation file from the Zv7 assembly, Zv8 being

unpublished at the time. This file only covers NCBI genes; thus the

array contains 12,697 RefSeq genes, corresponding to 14,836

RefSeq transcripts, and covers the upstream regulatory regions

(including promoters) of all 14,836 transcripts. The array contains

2,168,225 isothermal probes with an average probe length of

55 bp, encompassing 9,987 tiled regions with a mean tiled region

length of 25,208 bp (median length 20,000 bp). Median probe

spacing is 92 bp and total tiled region coverage is 251,749,428 bp,

representing 17.5% of the Zv8 zebrafish genome size. Genes are

evenly divided between the positive and negative DNA strands,

with approximately 2% mapping to both strands, mostly due to

transcripts mapped to two or more places in the genome (data not

shown). The array design is available under GEO accession

number GSE23872 and the array is available from the supplier.

Profiling of H3K4me3 and H3K27me3 on Promoters in
Zebrafish Fibroblasts

Chromatin from ZF4 cell cultures was subjected to 3-4

independent H3K4me3 and H3K27me3 ChIPs. Consistency in

the amount of DNA precipitated by each antibody was

determined by spectrophotometry (data not shown). ChIP DNA

from two replicates was amplified, labeled and hybridized to the

tiling arrays. To establish the reproducibility of the ChIP-chip

replicates, correlation analysis of log2 ChIP/Input ratios between

replicates was done with values resulting from MaxSixty

calculations. This algorithm was derived from the MaxFour

algorithm [20] which we and others have previously extended to

MaxTen calculations [21,22]. MaxSixty scores each gene by

finding the highest average log2 ratio among 60 consecutive probes

per tiled region. Robust reproducibility between replicates was

demonstrated by two-dimensional scatter plots for H3K4me3 and

H3K27me3 (correlation coefficient R.0.99; Figure 2A). MaxTen

applied to these arrays also showed strong correlations between

replicates (R = 0.988 for H3K4me3 and R = 0.987 for

H3K27me3; data not shown). Reproducibility was also shown

by the similarity of enrichment profiles within tiled regions and by

the similarity of the mapping of detected peaks (see below), as

exemplified in Figure 2B. Additional validation of the ChIP-chip

data was provided by the similarity of H3K4me3 and H3K27me3

enrichment profiles detected on the arrays (Figure 3A) and by

qPCR from non-amplified ChIP DNA (Figure 3B) (see also [23]).

Two-dimensional scatter plots of MaxSixty values for

H3K4me3 vs. H3K27me3 log2 signal intensities for all promoters

showed distinct enrichment patterns for each of these modifica-

tions, supporting profiles evidenced by SignalMap scanning

(Figures 4A and 4B). Using a peak detection algorithm with a

false discovery rate (FDR) of #0.1 for each modification, we

identified a total of 8435 H3K4me3-enriched promoters and 3199

H3K27me3-enriched promoters (Figure 4B). Among those, we

also identified 2120 promoters co-enriched in H3K4me3 and

H3K27me3 (Figure 4B; blue data points), suggesting that regions

co-enriched in these modifications exist in zebrafish, or non-

exclusively, that distinct cell populations in the ZF4 culture harbor

either modification on these regions.

Because in our analysis genes with TSSs located close to each

other were mapped to the same promoter region, the actual

number of genes with a promoter enriched in either modification

was higher than the number of promoters identified. Applying the

peak detection algorithm with FDR#0.1 to genes, we found 8617

genes with an H3K4me3-enriched promoter and 3298 genes with

an H3K27me3-enriched promoter; these are subsequently re-

ferred to as ‘H3K4me3 genes’ and ‘H3K27me3 genes’, respec-

tively (Figure 4C). We also identified 2234 ‘H3K4me3/K27me3

genes’ which made up 26% of all H3K4me3 genes and 68% of all

H3K27me3 genes. These numbers were in the range of those

shown in earlier studies of mouse and human cells despite

differences in cell types, detection methods and peak calling

algorithms [1,3–6,22,24].

H3K4 and H3K27 Trimethylation Occupancy Profiles on
Promoters and on 59 End of Coding Regions

To assess the average enrichment profiles of H3K4 and K27

trimethylation and the overlap of these modifications, we

Figure 1. Design of the zebrafish ChIP-chip tiling array. Array
probe design (upper chart) and median promoter coverage within the
tiled regions, shown for the positive strand. Probes are represented by the
dashed lines. Spacing between dashes symbolizes probe spacing. Note:
the array was designed from the Zv7 assembly as the Zv8 assembly was
unpublished at the time. Zv7 reported a genome size of 1,440,582,308 bp;
Zv8 currently reports a genome size of 1,441,241,298 bp.
doi:10.1371/journal.pone.0015651.g001
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computed a composite metagene for the collection of genes

enriched in one or both modifications over the tiled regions. On

H3K4me3-only genes, H3K4me3 displayed no enrichment over

the first ,14 kb but showed marked enrichment starting at ,1 kb

upstream of the TSS and extending, yet decreasing, over ,2 kb

into the coding region (Figure 5A). Maximal enrichment was

detected at nucleosome +1 after the TSS. On H3K27me3-only

genes, H3K27me3 displayed wider enrichment on either side of

the TSS than H3K4me3 on H3K4me3-only genes, but lower

maximal enrichment (Figure 5B). Moreover, in contrast to

H3K4me3, maximal H3K27me3 level occurred exactly over the

TSS, indicating a modified chromatin arrangement at the TSS in

genes harboring trimethylated H3K4 or H3K27 only. Over

regions detected with both modifications, H3K4me3 and

H3K27me3 showed a slightly higher level particularly over the

5 kb upstream of the TSS, relative to on ‘‘-only’’ regions,

suggesting that H3K4me3 and H3K27me3 co-enriched promoters

harbor a distinct chromatin configuration.

Figure 2. Reproducibility of zebrafish ChIP-chip experiments. (A) Two-dimensional scatter plots of MaxSixty values for H3K4me3 and
H3K27me3 log2 signal intensities detected in each of two ChIP-chip replicates from ZF4 cells. Correlation coefficient (R) and regression line are shown.
(B) H3K4me3 and H3K27me3 profiles detected by ChIP-chip in two independent replicates through 310 kb of zebrafish chromosome 10. Data are
expressed as log2 ChIP/input ratios. Position of methylation peaks are shown as blue horizontal bars. Tracks representing primary transcripts and tiled
regions are also shown. Primary transcripts included in the region are as follows: 1) sin2; 2) NM_001003421; 3) NM_200663; 4) NM_001008616; 5)
ENSDART00000081978; 6) ripply3, 7) ENSDART00000081992; 8) dyrk1aa; 9) ENSDART00000058411; 10) ENSDART00000088605; 11) NM_001037708;
12) hyou1; 13) hist2h2l; 14) znf259. Red bars in the H3K4me3 tracks indicate probes with out-of-scale signal intensity.
doi:10.1371/journal.pone.0015651.g002
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Recent sequential ChIP data from blastula-stage zebrafish

embryos have provided evidence for H3K4me3- and H3K27me3

co-enrichment on a proportion of genes in this species [18], raising

the possibility that at least some of these genes may be H3K4me3/

H3K27me3 ‘bivalent’. To assess this possibility in our study, we

carried out sequential H3K4me3RH3K27me3 ChIP, and vice

versa, using a recently improved protocol [18]. Figure 5D indicates

that sox3 and sox2 were co-enriched in both H3K4me3 and

H3K27me3 regardless of which modification was immunoprecip-

itated first (right panel), supporting the single ChIP data

(Figure 5D, left panels; see also Figure 3). This was in contrast

to bactin1 which is only enriched in H3K4me3 (Figure 5D). The

sequential ChIP assay, therefore, suggests H3K4me3/K27me3

bivalency on the sox2 and sox3 promoters.

Trimethylation of H3K4 or H3K27 Delineates Genes
Associated with Distinct Functional Categories

To address the biological significance of enrichment in

trimethylated H3K4 or H3K27 revealed by ChIP-chip, we

identified Gene Ontology (GO) terms enriched among these

genes. We found enrichment in distinct terms for genes harboring

either or both marks (Figure 6A; Table S1). Enriched GO terms of

H3K4me3 genes were related to translation and protein

processing, catabolic and metabolic processes and cell cycle

control. GO terms for H3K27me3 genes included signal

transduction functions and included transcription factors impli-

cated in developmental and organismal processes. H3K4me3/

K27me3 genes were enriched in metabolic and synthetic

processes, and in developmentally-regulated transcription, chro-

matin regulation, signaling and developmental functions

(Figure 6A,B; Table S1). The latter pertained primarily to early

embryo and fetal development (including genes of the four hox loci;

Figure 6C and data not shown) and to ectodermal differentiation

with emphasis on neuronal differentiation (Table S1). A large

number of genes involved in signaling, chromatin and transcrip-

tion regulation were also developmentally regulated. The

functional groups identified here in the ZF4 zebrafish cell line

are thus overall similar to those reported earlier in other cell types

such as mouse or human embryonic stem cells [1,3,5], somatic

progenitors [6,9] and differentiated cells [2,25], albeit on different

sets of genes. Association with developmentally-regulated genes

seems therefore to be a feature of H3K4me3/K27me3 co-

enrichment, regardless of species or cell type; however, we also

found association of trimethylated H3K4 and H3K27 with

metabolic processes, which to our knowledge has not been

reported earlier.

Figure 3. Quantitative PCR validation of ChIP-chip data. (A) ChIP-on-chip profiles of H3K4me3 and H3K27me3 enrichment on indicated genes.
Position of primary transcripts and TSS (arrow) are shown. (B) ChIP-qPCR analysis of H3K4me3 and H3K27me3 enrichment on the same genes as in
(A) from separate duplicate ChIPs. ChIP DNA was not WGA amplified prior to PCR. Position of amplicons and primer sequences for each gene are
shown in Table S3. Note the correlation between ChIP- chip and ChIP-qPCR data.
doi:10.1371/journal.pone.0015651.g003
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H3K4 and H3K27 Trimethylation in Relation to Gene
Expression

We next assessed the proportion of expressed genes carrying

trimethylated H3K4 and/or H3K27 using an Agilent expression

microarray platform by, first, defining present (expressed) and

absent (not expressed) calls. We found that 81% of H3K4me3

genes were expressed, representing an enrichment over the

proportion of expressed Refseq genes identified in ZF4 cells

regardless of the associated histone modification (57%; P,1024

relative to the proportion of expressed RefSeq genes; Chi-square

with Yates’ correction; Figure 7A). In contrast, the vast majority of

H3K27me3 genes was not expressed (84%; P = 0.005), while 48%

of H3K4me3/K27me3 genes (P,1024) were expressed

(Figure 7A). Percentile analysis of expression levels indicated that

80% of expressed H3K4me3 genes showed high (.75th percentile;

28% of genes) or moderate (25th–75th percentile; 52% of genes)

expression while 20% were only weakly expressed (25th percentile;

Figure 7B). In contrast, expression of the majority (64%) of

H3K27me3 genes was at low level. Moreover, a significant

proportion (48%) of H3K4me3/K27me3 genes was moderately

expressed, however H3K4me3/K27me3 genes also harbored a

greater proportion of weakly expressed genes than H3K4me3-only

genes, at the expense of strongly expressed genes (P,1024, relative

to H3K4me3; Figure 7B). Therefore, as in other species or cell

types examined [1,3,5,18], there is in cultured zebrafish cells a

relationship between expression status, assessed by mRNA

Figure 4. H3K4me3 and H3K27me3 enrichment profiles in ZF4 cells. (A) Distinct H3K4me3 and H3K27me3 enrichment profiles on indicated
genomic regions. Genomic positioning is indicated by nucleotide number of the first (59) and last (39) probe in the tiled region. Gene names or
accession numbers as well as their genomic position are shown in blue. (B) 2-D scatter plot of averaged MaxSixty values for H3K4me3 vs. H3K27me3
log2 signal intensities. Data points (all points being shown in gray) were colored to visualize classification according to peak calling highlighting
H3K4me3-enriched promoters (purple; N = 6315), H3K27me3-enriched promoters (green; N = 1079) and H3K4me3/K27me3-co-enriched promoters
(blue; N = 2120). Red line is the regression line through all data points. (C) Venn diagram analysis of H3K4me3 and H3K27me3 genes.
doi:10.1371/journal.pone.0015651.g004
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detection or H3K36me3 occupancy on exons [18], and histone

modifications associated with the corresponding genes. While the

vast majority of expressed genes are marked by H3K4me3,

trimethylation of H3K27 is mainly associated with the promoter of

repressed genes, but can also mark a proportion of weakly

expressed genes when they are co-enriched with H3K4me3.

Enriched GO terms and corresponding gene list among

expressed and non-expressed genes marked by H3K4me3,

H3K27me3 or by both modifications are provided in Table S2.

In particular, repressed H3K4me3/K27me3 genes included genes

with transcriptional regulatory and signaling functions involved in

development (Table S2). For instance, all developmentally-

regulated H3K4me3/K27me3-coenriched hox genes, except three

(hoxb5b, hoxc5a and hoxc9a) were not expressed (Table S2).

H3K4me3/K27me3 genes that are expressed, though at low

level, were enriched in cell adhesion, macromolecule metabolism

functions and included transcriptional regulators and cofactors

(Table S2). Interestingly, expressed genes with chromatin

remodeling functions (although marked by H3K4/K27me3)

included the HP1 homologs cbx1a and cbx1b, zinc-finger protein

znf703, ring-finger protein rnf168, nucleosome assembly protein 1-

like 1 nap1l1, chromobox homolog 4 cbx4 and the Polycomb

repressor complex components bmi1 and eed (Table S2). Of note,

two additional Polycomb genes expressed in ZF4 cells, ezh2 and

suz12, were enriched in H3K4me3 only.

Discussion

The advent of comprehensive genome-wide tools for analyzing

chromatin states and binding of transcription regulators has

Figure 5. Distribution of H3K4me3 and H3K27me3 on promoters. Metagene analysis of the distribution of H3K4me3 and H3K27me3 occupancy
on (A) H3K4me3-only, (B) H3K27me3-only and (C) H3K4me3/K27me3 tiled regions, relative to the TSS (red vertical bar). (D) Sequential ChIP analysis of
H3K4me3 and H3K27me3 co-enrichment on the sox3, sox2 promoters and on bactin1, downstream of the coding region. Panels on the left show results
from the first ChIP using antibodies indicated on the x-axis. The graph on the right shows results of the re-ChIP experiment as indicated on the x-axis.
doi:10.1371/journal.pone.0015651.g005
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provided significant advances in our understanding of gene

regulatory networks in many systems. Although ChIP-seq can

provide full genome coverage, ChIP-chip approaches remain

valuable for analysis of focused regions. Epigenetic states have

been mapped by ChIP-chip in primarily mouse, man, Drosophila

and Arabidopsis (e.g., [1,5,7,12,21,26,27]). In zebrafish, only

recently have promoter arrays been reported for a few hundreds

of RefSeq genes [18], or for most RefSeq genes but at low

resolution [17]. These have proven useful to identify novel

H3K4me3-enriched regions, highlighting putative novel promot-

ers [17], and for mapping epigenetic transitions during develop-

ment [18]. We now extend these studies and report a high-density

array covering 251.7 mb of the zebrafish genome at 92-bp

resolution.

We identify over 8600 genes enriched in H3K4me3 and 3300

genes enriched in H3K27me3. These numbers are in the range of

those reported earlier in mice and humans, arguing for robust

genome coverage of the modified histones immunoprecipitated.

Moreover, we find that in addition to the 52% of H3K4me3/

K27me3 genes, 19% of genes marked by H3K4me3 only are not

expressed. This figure is reminiscent of the 28% of inactive genes

recently found to be marked by H3K4me3 only in blastula-stage

zebrafish embryos [18]. GO term analysis reveals that these genes

encode ribosomal proteins, molecules involved in protein metab-

olism, as well as histone H2A and H3 isoforms (Table S2). How

genes enriched in H3K4me3-only are repressed remains to be

determined. In light of the complexity of combinations of modified

histones that decorate the genome, it is unlikely that these genes

are ‘‘monovalent’’ as referred to previously [18] because

monovalency would imply that they are not enriched in any

other histone mark. Repression of these genes may involve low

levels of H3K27me3 below the peak detection limit, co-

enrichment in di- or trimethylated H3K9, co-enrichment in other

repressive histone marks, or non-exclusively, DNA methylation.

Similar arguments may account for the transcriptionally active

state of H3K27me3-only genes. These are also unlikely to exist in

a monovalent state and may be co-occupied by a level of

H3K4me3 below peak detection, together with other non-assessed

transcriptionally permissive modifications.

Whether genomic regions are effectively co-enriched in a

combination of trimethylated H3K4 and H3K27, as suggested by

sequential ChIP experiments in mouse embryonic stem cells [1], in

zebrafish embryos [18] and in this study, remains debated [15,18].

The proportion of H3K4me3/K27me3 genes identified in ZF4

cells, the proportion of transcriptionally inactive H3K4me3/

K27me3 genes, and the functional categories of H3K4me3/

K27me3 genes determined by GO annotation, are consistent

with those reported in mouse and human embryonic stem cells

Figure 6. Genes marked by H3K4me3 and/or H3K27me3 are linked to distinct functional GO terms. (A) GO term enrichment of genes
containing H3K4me3, H3K27me3 or H3K4/K27me3 promoters in ZF4 cells. The twelve most significant GO terms are shown as a function of
significance from bottom (highest significance) to top. (B) Representation of all enriched GO terms among H3K4/K27me3 genes. All enriched GO
terms are listed in Table S1. (C) H3K4me3 and H3K27me3 enrichment profiles on the developmentally regulated hoxc locus, expressed as log2 ChIP/
Input (y axis).
doi:10.1371/journal.pone.0015651.g006
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[1,3–5,8], mouse blastocysts [7] and zebrafish embryos [18]. It

seems therefore that H3K4me3/K27me3 co-enrichment repre-

sents a signature of developmentally- or differentiation-regulated

genes. Nonetheless, the geographic distribution of these marks

relative to one another needs to be considered when interpreting

occupancy profiles on linearized genomes averaged from cell

populations. Spatial differences and fluctuations in the deposition

of these marks are indeed likely to occur, based on mosaic gene

expression patterns observed in cell cultures [28] and during

embryonic development [15].

Average enrichment profiles of H3K4me3 and H3K27me3 over

promoter regions evidenced in our metagene analysis are in

agreement, in terms of enrichment level and width of occupancy,

with recent ChIP-chip data from zebrafish embryos [18]. This

observation provides additional validation of our arrays. A peak of

occupancy over the 59 end of gene bodies (TSS) is therefore a

consistent feature of these histone marks regardless of species, cell

type or mode of detection (array, sequencing or qPCR).

Nevertheless, a noticeable difference in the distribution of

H3K4me3 among species or cell types examined to date lies in

the detection of a ‘‘dip’’ immediately upstream of the TSS in

mouse and human cells [7,10,22,29]. This dip is not apparent in

the Xenopus ChIP-chip or ChIP-seq data [15,16], nor in the

zebrafish ChIP-chip data [17,18] (this study). This difference is

unlikely to be due to array design, in particular probe spacing,

because that is very similar (80–92 bp) in the mouse [7], human

[10] or zebrafish [18] (this study) arrays used. It is also probably

not due to fundamental differences in chromatin preparation

because mouse, human and zebrafish chromatin was cross-linked

with formaldehyde, extracted under similar salt concentrations,

and fragmented by sonication. Similar dips in acetylated H3K9

and H4K16 occupancy have also notably been detected in the

mouse [30]. Such dips have initially been interpreted as

nucleosome depletion at the TSS of transcribing genes [29], and

have subsequently been interpreted to result from differential

biochemical extraction of histones during chromatin preparation

for ChIP in these regions of nucleosome instability [14,31].

Detectable H3K4me3 enrichment at the TSS in Xenopus and

zebrafish [15–18] (this study) irrespective of chromatin preparation

and buffers used in these studies, suggests differences in

nucleosome composition in this region between fish and mammals.

It may also lie in differences in representation of the profiles.

Another possibility may involve the bioinformatic collapse of TSSs

close to each other which we have performed in our metagene

computations, in particular when single transcription units contain

multiple TSSs under one gene. Alternatively, the difference in

H3K4me3 enrichment at the TSS could be due to potential

variability introduced by less robust prediction of TSSs in RefSeq

genes in zebrafish, for which genes are still being annotated. All

these possibilities remain to be explored in future studies.

The array reported here currently represents, to our knowledge,

the highest genomic coverage and probe density available for studies

in zebrafish. In addition to covering all RefSeq promoters, the array

also notably spans the entire coding region of 42% of the genes

represented on the array. This feature will most likely prove useful for

uncovering at high resolution fluctuations in epigenetic states on gene

regulatory and coding regions during development, in disease models

and developmental mutants, or in the context of exon splicing [32].

Figure 7. Gene expression status in relation to histone modification enrichment. (A) Percentage of expressed and non-expressed genes
marked by indicated histone modifications, and among all RefSeq genes co-represented on both the Agilent and Nimblegen arrays (n = 11,971). (B)
Percentile analysis of expression levels of genes marked by indicated modifications. Low, 25th percentile; Mid, 25th,x,75th percentile; High, .75th

percentile. Only expressed genes (blue bars in A) are taken into the analysis. Numbers within the pie charts indicate the number of genes in each
category; numbers are the bottom indicate the number of expressed genes (Present call) marked by either or both histone modifications.
doi:10.1371/journal.pone.0015651.g007
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Materials and Methods

Cells and Antibodies
The ZF4 zebrafish embryo-derived fibroblast cell line (Amer-

ican Type Culture Collection; www.atcc.org) [19] was cultured in

DMEM/F2 Glutamax buffered with bicarbonate, 15% fetal

bovine serum, 50 mg/ml Gentamicin and 40 mg/ml bovine

pancreas insulin, in a humidified atmosphere of 5% CO2 at

28uC. Antibodies to H3K4me3 were from Diagenode (cat# pAb-

003-050; www.diagenode.com) and antibodies to H3K27me3

were from Millipore (cat# 07-449; www.millipore.com).

Expression Microarray Analysis
RNA was isolated from batches of ,106 cells using the RNeasy

Mini Kit (Qiagen; www.qiagen.com). RNA samples were stored at

280uC until processed for microarray. Microarray techniques

were according to Agilent’s One-Color Microarray-Based Gene

Expression Analysis (Quick Amp Labeling) manual Version 5.7

(Agilent; www.agilent.com). Briefly, ,400 ng total RNA and

spike-in RNA were used to prepare cDNA and Cy3-labeled

cRNA. Labeled cRNA was fragmented prior to hybridization.

Arrays were hybridized and washed as per Agilent’s protocol.

Arrays used contained 44K probes representing all known genes

and one probe for each non-redundant UniGene clusters. Arrays

also contained 153 different negative control probes. Array format

was 4x 44K and was custom-designed by Agilent. For analysis of

gene expression in the context of histone modifications, only genes

represented on the Agilent and Nimblegen arrays were considered.

Arrays were quantitated using GenePix (http://www.

moleculardevices.com). Data were background-corrected and

normalized using quantile normalization with the Limma package

from Bioconductor (http://www.bioconductor.org). Probes were

then scored for detection of expression in each experiment. A

probe was assigned a ‘Present’ score if (Mean(FPI) - Mean(BPI)) /

StDev(BPI) was equal to or greater than two, where FPI is the set

of foreground pixel intensities, and BPI is the set of background

pixel intensities. Probes received an ‘Absent’ score otherwise.

Genes were assigned Present/Absent calls as follows: gene G

received a ‘Present’ score if a majority of probes from the replicate

experiments corresponding to G scored Present; G was scored

Absent otherwise. Average gene expressions were then calculated

for each gene by taking the median probe intensity for all probes

intensities in the replicate experiments that corresponded to each

gene. Gene expression quantiles were calculated by determining

the 0th, 25th, 75th and 100th percentile for the set of genes which

scored as ‘Present’ in the detection test above. Microarray

expression data are MIAME compliant and have been deposited

in a MIAME compliant database (GEO accession number

GSE23872).

Chromatin Immunoprecipitation
To prepare chromatin, ZF4 cells (156106) were harvested,

washed in PBS and crosslinked in suspension for 8 min in 1%

formaldehyde in PBS containing 20 mM Na-butyrate. Cross-

linking was stopped by adding glycine to 125 mM. Cells were

washed twice by gentle vortexing in 0.5 ml PBS/20 mM Na-

butyrate and centrifugation at 400 g in a swing-out rotor for

10 min at 4uC. The supernatant was removed and cells were lysed

by thorough vortexing in 300 ml lysis buffer (50 mM Tris-HCl,

pH 8.0, 10 mM EDTA, 1% SDS, protease inhibitors and 20 mM

Na-butyrate) and sonication on ice for 8630 sec, with 30-sec

pauses on ice in-between, using a Sartorius Labsonic M sonicator

with a 3-mm diameter probe at setting 0.5 cycle and 30% power

(Sartorius; www.sartorius.com) to an average fragment length of

400 bp, assessed by agarose gel electrophoresis. Samples were

centrifuged at 12,000 g for 10 min at 4uC and the supernatant

(chromatin) was diluted in RIPA ChIP buffer (10 mM Tris-HCl,

pH 7.5, 140 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 1%

Triton X-100, 0.1% SDS, 0.1% Na-deoxycholate, protease

inhibitors, 20 mM Na-butyrate) to 2 U A260 before immunopre-

cipitation.

Chromatin in 100 ml RIPA ChIP buffer was mixed with 10 ml

antibody-Dynabeads Protein A (Invitrogen) complexes overnight

at 4uC. To generate these complexes, 2.4 mg primary antibody was

pre-mixed with Dynabeads Protein A for 2 h at 4uC in RIPA

buffer. The immunoprecipitated ChIP material was washed three

times in RIPA buffer and once in 10 mM Tris-HCl, pH 8.0,

10 mM EDTA buffer. Cross-link was reversed, proteins digested

and DNA eluted in a single step for 2 h at 68uC in 150 ml ChIP

elution buffer (20 mM Tris-HCl, pH 7.5, 5 mM EDTA, 20 mM

Na-butyrate, 50 mM NaCl, 1% SDS and 50 mg/ml proteinase K)

containing 5 mg RNase (Roche; www.roche.com). After magnetic

separation, beads were re-eluted with another 150 ml ChIP elution

buffer for 15 min and both eluates were pooled. Eluted DNA was

purified by phenol-chloroform isoamylalcohol extraction and

ethanol precipitation using 10 ml acrylamide as carrier and

dissolved in MilliQ H2O. ChIP and input DNA was amplified

using the Whole Genome Amplification WGA4 kit (Sigma-

Aldrich; www.sigmaaldrich.com), omitting cell lysis and DNA

fragmentation steps. Amplification products were cleaned up using

the QiaQuick PCR Purification Kit (Qiagen) and eluted in 30 ml

elution buffer diluted ten times (Qiagen). After DNA purification,

samples were quantified by NanoDrop (NanoDrop Technologies;

www.nanodrop.com). WGA4-amplified DNA (5 ml) were used for

quantitative (q)PCR validation. ChIPs were done from at least four

independent chromatin preparations, from which two were sent to

NimbleGen.

Sequential ChIP
Sequential H3K4me3RH3K27me3 and H3K27me3RH3K4me3

ChIPs were performed essentially as described [18]. The first

immunoprecipitation was performed with 150 ml of 2 A260 units

chromatin using 5 ml H3K4me3 or H3K27me3 antibody (H3K4me3

Diagenode pAB-003-050 and H3K27me3, Millipore 07-449) cova-

lently coupled to 8 ml tosyl-activated beads (Invitrogen). Immunopre-

cipitated chromatin was eluted in 130 ml sequential ChIP elution buffer

(0.1% SDS, 50 mM NaHCO3) for 20 min at 37uC. Twenty

microliters of the eluate were used for analysis of the first ChIP by

qPCR. For the second round of ChIPs, the remaining 100 ml were

divided in two, diluted 10 times in RIPA buffer and ChIPs carried out

with relevant bead-only negative controls. The re-ChIP DNA was

eluted with ChIP elution buffer as described in the single ChIP protocol

above, and ChIP samples were analyzed by qPCR.

Quantitative PCR
ChIP DNA was analyzed before whole genome amplification by

duplicate qPCR on a MyiQ Real-time PCR Detection System

using IQ SYBRH Green (BioRad; www.biorad.com) [23].

Sequences of ChIP primers used are shown in Table S3. PCR

conditions were 95uC for 3 min and 40 cycles of 95uC for 30 sec,

60uC for 30 sec and 72uC for 30 sec.

DNA Labeling and Promoter Array Hybridization
ChIP and input DNA fragments were labelled with Cy5 and

Cy3, respectively, and hybridized onto Nimblegen custom-

designed zebrafish promoter arrays (www.nimblegen.com) (see

Figure 1). Arrays covered the upstream regulatory sequences,

including promoters, of all 12,697 zebrafish RefSeq genes, ranging
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from 215,000 to +5,000 bp relative to the TSS. Probes consisted

of 2.17 million 55-mers (range 55-70-mers) tiled throughout non-

repetitive sequences at a median spacing of 92 bp. Sequence

source for probes was the zebrafish Zv7 assembly (www.sanger.ac.

uk/Projects/D_rerio) as the Zv8 assembly was not published at the

time. However, all references to numbers of genes or nucleotides

covered are to the Zv8 assembly. ChIP and input DNA labeling,

hybridization and detection were performed at NimbleGen.

ChIP-chip data are MIAME compliant and have been deposited

in a MIAME compliant database (GEO accession number

GSE23872).

ChIP-chip Data Analysis
Signal intensity data were extracted from scanned images using the

NimbleScan software. Log2 ChIP/Input ratios were scaled and

centred around zero by subtracting the bi-weight mean for the log2

ratio values for all features on the array from each log2 ratio value.

Peaks were detected by searching for four or more probes with a

signal above a cut-off value using a 500-bp sliding window. Cut-off

values were a percentage of a hypothetical maximum defined as

(mean +6[standard deviation]). Ratio data were randomized 20 times

to evaluate the probability of false positives, and each peak was

assigned a false discovery rate (FDR) score. Normalization and peak

detection were performed by Nimblegen as per their protocols

(http://www.nimblegen.com/products/chip/data_guide.html). This

process uses a cut-off range of 90% to 15%, with higher cut-offs

corresponding to more stringent peak detection, as reflected in the

FDR. The Nimblegen protocol was evaluated as part of a study that

objectively analyzed the performance of a number of commercially

available ChIP-chip array platforms and detection algorithms [33],

and found to deliver reliable results.

Metagene Computation
Metagene analysis was performed essentially as described [17].

Genes with a high probability of enrichment (FDR #0.10) in

H3K4me3 or H3K27me3 within the tiled region were used to

assemble a metagene of average composite binding. Each region

was interrogated for probes and these were mapped into a 20-kb

wide window at the appropriate offsets based on strand

orientation. Linear interpolation was used to estimate the fold

enrichment at each base position within the window. This

interpolation left the 59 and 39 ends of the window under-

represented. The metagene was created by calculating the mean of

the values mapped to each position by all the regions found

enriched in either or both modifications. If the offset corresponded

to the exact location of a probe within a specific tiled region, values

were directly measured; if not, values were linearly interpolated

from the values of the two flanking probes [17]. Genes enriched by

only one mark were selected from the entire set of genes harbor-

ing the mark and then removing from that set all genes also

possessing a peak for the other mark. Genes enriched in both

modifications were selected from the entire set of genes harboring

either mark.

Gene Ontology Analysis
Gene ontology (GO) term enrichments within a target gene set

were calculated using Bioconductor GOstats [34]. GOstats

identifies functional terms for selected genes and provides a

significance of enrichment for a term by giving a P-value

indicating the probability that the identified term is enriched

among the target genes relative to what would be expected by

chance based on the number of genes in the genome that belong to

this term.

Supporting Information

Table S1 GO terms enriched among genes marked by
H3K4me3, H3K27me3 or both marks.

(XLS)

Table S2 Enriched GO terms with gene list among
expressed and non-expressed genes marked by
H3K4me3, H3K27me3 or both marks.

(XLS)

Table S3 ChIP-qPCR primers used in this study.

(DOC)
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