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Background. Atherosclerotic plaque instability is a common cause of stroke and ischemic infarction, and identification of
monocyte-associated genes has become a prominent feature in cardiovascular research as a contributing/predictive marker.
Methods. Whole genome sequencing data were downloaded from GSE159677, GSE41571, GSE120521, and GSE118481. Single-
cell sequencing data analysis was conducted to cluster molecular subtypes of atherosclerotic plaques and identify specific genes.
Differentially expressed genes (DEGs) between normal subjects and patients with unstable atheromatous plaques were
screened. Weighted gene coexpression network analysis (WGCNA) was performed to find key module genes. In addition, GO
and KEGG enrichment analyses explored potential biological signaling pathways to generate protein interaction (PPI)
networks. GSEA and GSVA demonstrated activations in plaque instability subtypes. Results. 239 monocyte-associated genes
were identified based on bulk and single-cell RNA-sequencing, followed by the recognition of 1221 atherosclerotic plaque-
associated DEGs from the pooled matrix. GO and KEGG analyses suggested that DEGs might be related to inflammation
response and the PI3K-Akt signaling pathway. Eight no-grey modules were obtained through WGCNA analysis, and the
turquoise module has the highest correlation with unstable plaque (R2 = 0:40), which contained 1323 module genes. After
fetching the intersecting genes, CXCL3, FPR1, GK, and LST1 were obtained that were significantly associated with plaque
instability, which had an intense specific interaction. Monocyte-associated genes associated with atherosclerotic plaque
instability have certain diagnostic significance and are generally overexpressed in this patient population. In addition, 11
overlapping coexpressed genes (CEG) might also activated multiple pathways regulating inflammatory responses, platelet
activation, and hypoxia-inducible factors. GSVA showed that the corresponding pathways were significantly activated in high
expression samples. Conclusions. Overexpression of CXCL3, GK, FPR1, and LST1 was advanced recognition and intervention
factors for unstable plaques, which might become targets for atherosclerosis rupture prevention. We also analyzed the potential
mechanisms of CEG from inflammatory and oxidative stress pathways.
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1. Introduction

Atherosclerosis (AS) is a common cardiovascular disease
with a high mortality and morbidity rate due to chronic
inflammatory changes caused by the accumulation of
cholesterol on the walls of blood vessels over time. Athero-
sclerosis mainly occurs in medium and large arteries, char-
acterized by the formation of multifocal atherosclerotic
plaques on the inner wall of arteries [1–4]. Atherosclerotic
plaques are mainly composed of lipids, necrotic cells, and
some inflammatory factors, which are divided into stable
and unstable plaques according to the stability of the pla-
ques. The rupture of unstable atherosclerotic plaques often
leads to serious consequences, including ischemic stroke
and acute myocardial infarction. Some studies have found
that more than 70% of fatal coronary thrombosis is caused
by the rupture of unstable plaques [5, 6]. In-depth elucida-
tion of the molecular mechanism of unstable plaque forma-
tion to achieve early recognition and intervention is of great
significance to prevent severe clinical complications. How-
ever, the specific molecular mechanisms involved in the
instability of atherosclerotic plaques are very complicated
and have not been fully reported. It is imperative to conduct
in-depth research on it.

Currently, only a few studies have reported the possible
factors involved in the formation and rupture of unstable
plaques. For example, Bao et al.’s study suggested that
CD5L, S100A12, and CKB were involved in regulating the
stability of atherosclerotic plaques [7]. Other studies
reported that visfatin could act as an inflammation mediator
and ultimately aggravated the instability of atherosclerotic
plaques [8, 9]. Liu et al. reported the downregulation of
IGFBP6 expression in unstable carotid atherosclerotic pla-
ques and indicated that it might be an available prediction
marker for vulnerable plaques [10]. Besides, a previous
study has confirmed that EFEMP1, BGN, and RILP may
have potential diagnostic value for atherosclerotic plaque
rupture [11]. Another study suggested that the stability of
atherosclerotic plaques may be related to oxidative stress of
cells, and the oxidative stress caused by excessive reactive
oxygen species in cells plays an important role in atheroscle-
rosis. In carotid plaques, SIRT6 can promote the occurrence
of oxidative stress through various ways, and it is obviously
overexpressed in unstable carotid plaques, suggesting that
the process of oxidative stress is a dangerous factor in the
stability of plaques. Summarily, many studies have identified
various factors that may contribute to plaque instability.
However, it is worth noting that the above research and
analysis on plaque instability are mostly limited to the tran-
scriptome level. Existing studies have confirmed the differ-
ence in cell composition between ruptured and stable
plaques [12–14]. Also, the underlying mechanism of macro-
phages and foam cells involved in atherosclerotic plaque
instability and rupture has been partially characterized
[15, 16]. Numerous studies have reported that monocytes
play an essential role in atherosclerotic, but monocyte-
associated genes’ effect on plaque instability is still not
very clear [17–21]. Therefore, it is essential to explore
the clinical significance and potential mechanisms of

monocyte-associated genes in atherosclerotic plaque insta-
bility through the combined single-cell sequencing and
transcriptomics data analysis.

In this study, we combined single-cell sequencing data
analysis, differential expression analysis, and WGCNA anal-
ysis to obtain significant monocyte-associated candidate
genes related to atherosclerotic plaque instability. Further-
more, we detected the expression status of the obtained c-
andidate genes in monocytes and unstable plaques and
explored its diagnostic significance. Finally, GSEA, GSVA,
coexpression analysis, etc., were used to explore the underly-
ing mechanism preliminarily.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. The datasets (sin-
gle-cell sequencing data: GSE159677 with 6 qualified sam-
ples; transcriptome data: GSE41571, GSE120521, and
GSE118481 with 11, 8, and 16 qualified samples, respec-
tively) included in this study were all obtained from GEO
databases (https://www.ncbi.nlm.nih.gov/geo/). The tran-
scriptome data were proceeded by log2 conversion and nor-
malization, then used for subsequent analysis. Due to the
small sample size, the SVA software package is used to inte-
grate GSE41571 and GSE120521 datasets into a merged
dataset containing ten stable plaque samples and nine unsta-
ble plaque samples, and batch correction between the two
datasets is also solved.

2.2. Single-Cell Sequencing Data Analysis. To obtain
monocyte-associated genes in atherosclerotic plaque, the
GSE159677 dataset, which contained 6 matched samples,
was used for single-cell sequencing data analysis through
the Seurat and SingleR packages. We integrated the data of
6 samples and performed data normalization. Hereafter,
data quality control was carried out. Briefly, cells with less
than 50 genes and more than 5 percent of mitochondrial
genes will be removed. The number of highly variable genes
was set at 1500. Principal component analysis (PCA) was
performed on the top 1500 variable genes to visualize tran-
scriptional variability. T-SNE method was used for further
dimensional reduction of the principal components (p value
< 0.05), and then, cells were clustered. Monocyte-related
genes were extracted using the FindAllMarkers function.

2.3. Weighted Coexpression Network Analysis (WGCNA).
WGCNA analysis was performed on the GSE118481 dataset
to find gene module genes significantly associated with pla-
que instability. An appropriate soft threshold was reasonably
selected as the degree of scale independence reached 0.9.
Besides, the min module size is set to 30, and modules with
a similarity over 0.8 will be merged. Genes in modules that
most significantly correlated with unstable plaque were con-
sidered crucial genes associated with plaque instability.

2.4. Identification of Significant Monocyte-Associated
Candidate Genes Related to Plaque Instability. We per-
formed differential expression analysis on the merged dataset
using the limma package. jlogFCj > 1 and adj.p-value < 0:05
were used as the threshold to identify differentially expressed
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genes (DEGs). LogFC < −1 and logFC > 1 represented genes
downregulated and upregulated in unstable plaques, respec-
tively. Overlapping genes identified by single-cell sequencing
data analysis, differential expression analysis, and WGCNA
analysis were considered to be significant monocyte-
associated candidate genes related to plaque instability. These
overlapping candidate genes will be used for further analysis.

2.5. Determination of Expression and Diagnostic Value of
Candidate Genes. To determine the candidate genes’ ability
to distinguish the stable from unstable plaques, we per-
formed receiver operating characteristic (ROC) curve analy-
sis in the R software (version 3.6.3) using the pROC package
(for analysis) and the ggplot2 package (for visualization).
Subsequently, we measured the area under the ROC curve
(AUC) to evaluate the candidate genes’ diagnosing capabil-
ity. Moreover, we also extracted the expression profile data
of candidate genes and then drew the violin plot to deter-
mine their expression patterns.

2.6. Functional Enrichment Analysis of DEGs. The DAVID
database (https://david.ncifcrf.gov/) was widely used in bio-
informatics analysis [22]. In our study, we used the DAVID
database to carry out functional enrichment analysis to gain
an in-depth understanding of the potential mechanisms of
DEGs in plaque instability. Briefly, we carried out two func-
tional enrichment analyses, including Gene Ontology (GO)
analysis and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis. The analysis results were shown
in the form of bubble charts.

2.7. Gene Set Enrichment Analysis (GSEA). It was critical to
explore the as-yet-undiscovered pathways associated with
plaque instability. Therefore, based on the merged dataset,
we performed GSEA and result visualization using the R
packages clusterProfile and enrichplot, respectively. For this
analysis, we used “h.all.v7.4.symbols.gmt” as the reference
gene set.

2.8. Identification and Functional Analysis of Overlapping
Coexpressed Genes (CEGs) of Candidate Genes. Using the
merged dataset, we performed coexpression analysis on can-
didate genes, and genes with a Pearson correlation coeffi-
cient r greater or equal to 0.70 were considered as CEGs.
GeneMANIA (http://www.genemania.org) was an online
database that provided functional analysis services [23]. In
our study, GeneMANIA was implemented to explore the
molecular function of overlapping CEGs. In addition, we
analyzed the related genes in GeneMANIA database in
STRING database (https://cn.string-db.org/) at protein level.

2.9. Functional Similarity Analysis of Candidate Genes and
Correlation Analysis of PI3K-ATK Pathway-Related Genes.
We used GoSemSim package to analyze the interaction
between protein of the candidate genes and scored their
similarities. The scores were used to judge the functional
effect. Finally, we selected the gene with the highest score
and made a correlation analysis with PI3KR5 and other
candidate genes.

2.10. Gene Set Variation Analysis (GSVA) and Identification
of Correlations between the Candidate Genes. GSVA was
performed using the R package “GSVA” to identify signaling
pathways associated with candidate genes. Specifically, we
performed the above analysis by dividing the samples into
high and low expression groups according to the median
expression values of candidate genes. Besides, “h.all.v7.4.-
symbols.gmt” was the reference gene set of GSVA. Mean-
while, we calculated the Pearson correlation coefficient
between the candidate genes based on the merged dataset
to explore their relationship.

2.11. Statistical Analysis. Statistical analysis involved in this
study was completed on the R (version 3.6.3) platform.
Comparison of candidate gene expression in stable and
unstable plaques was performed using independent sample
t-tests. Unless otherwise stated, p values less than 0.05 were
considered statistically significant.

3. Results

3.1. Extraction of Monocyte-Related Genes. To obtain
monocyte-related genes in atherosclerotic plaques, we first
integrated and quality-controlled the single-cell sequencing
data from the six samples included in GSE159677. The top
1500 variable genes are shown (Figure 1(a)). Further, the
normalization of single-cell sequencing data was carried
out, and 15 principal components (p value < 0.05) were used
for subsequent analysis (Figures 1(b) and 1(c)). This study
identified 10 cell clusters using the Seurat package, and
cluster 2 was classified as monocytes (Figure 1(d)). We sub-
sequently extracted cell cluster-associated specific genes and
presented the top 10 genes for each cell cluster in a heatmap
(Figure 1(e)). The extracted 239 monocyte-related genes will
be used in subsequent studies.

3.2. Extraction of Genes Associated with Plaque Instability
Phenotype. We utilized WGCNA analysis to identify mod-
ules significantly associated with the phenotype of unstable
atherosclerotic plaques. Module genes were considered to
be significantly associated with plaque instability. The
parameters were set as follows: (1) MergeHeightCut = 0:25,
(2) scale-free R2 = 0:9, (3) minimum size of module genes
= 30, and (4) soft-thresholding power = 11. Ultimately, we
obtained eight nongrey modules, among which the tur-
quoise module containing 1323 genes had the strongest pos-
itive correlation with the unstable plaque phenotype
(R2 = 0:40, p‐value = 5:3e − 52) (Figures 2(a)–2(d)). Genes
included in this module will be selected for conducting fur-
ther analysis.

3.3. Identification of 4 Significant Monocyte-Associated
Candidate Genes Related to Plaque Instability. PCA analysis
revealed significant differences in gene expression between
stable and unstable plaques (Figure 3(a)). In our current
study, a total of 1221 DEGs were identified from the merged
dataset, which may play an important role in the develop-
ment of unstable plaques (Figure 3(b)). The heatmap
showed the top 20 upregulated and downregulated genes
(Figure 3(c)). Only overlapping genes identified in single-

3Oxidative Medicine and Cellular Longevity

https://david.ncifcrf.gov/
http://www.genemania.org
https://cn.string-db.org/


50

75

100
IGLC2

IGHA1

IGHG1

IGHG2

IGHG3

IGKC
TPSAB1

CCL19

Non-variable count: 21115

1e−03 1e−01
Average expression

1e−01

Variable count: 1500

IGLC3
JCHAIN

25

0

St
an

da
rd

iz
ed

 v
ar

ia
nc

e

(a)

−20

−10 10 20 300

GSM4837523
GSM4837524
GSM4837525
GSM4837526
GSM4837527
GSM4837528

−10

10

0

PC
_2

PC_1

(b)

0.0

0.000 0.025 0.050
Empirical

PC: p–value
PC 1: 0
PC 2: 0
PC 3: 2.2e–307
PC 4: 1.66e–280
PC 5: 4.29e–312
PC 6: 0
PC 7: 7.48e–240
PC 8: 5.39e–289

0.075 0.100

0.1

Th
eo

re
tic

al
 [r

un
if 

(1
00

0)
]

0.2

0.3

PC 9: 1.51e–266
PC 10: 4.87e–178
PC 11: 6.08e–224
PC 12: 1.03e–203
PC 13: 3.08e–230
PC 14: 9e–257
PC 15: 1.03e–203

(c)

−25

−40 −20 20 400

25

0

T_cells

T_cells

Macrophage

Macrophage

Endothelial_cells DC

tS
N

E_
2

tSNE_1

Monocyte

Monocyte

Smooth_muscle_cells

Smooth_muscle_cells

Tissue_stem_cells

Tissue_stem_cells

NK_cellB_cell
Neutrophils

Endothelial_cells

DC

NK_cell
B_cell

Neutrophils

(d)

Figure 1: Continued.
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cell sequencing data analysis, WGCNA analysis, and differ-
ential expression analysis will be considered significant
monocyte-associated candidate genes related to plaque
instability. We intersected the genes identified by the three
approaches to obtain 4 overlapping genes, including CXCL3,
FPR1, GK, and LST1, which will be used as candidate genes
for follow-up research (Figure 3(d)).

3.4. Overexpression of Four Candidate Genes and Its
Promising Diagnostic Significance. In our study, we deter-
mined the expression status of four candidate genes (CXCL3,
FPR1, GK, and LST1) and corresponding diagnostic signifi-
cance in unstable plaques. Our study showed that these can-
didate genes had moderate and above discriminative
capability and could effectively discriminate between stable
and unstable plaques. Besides, we detected the overexpres-
sion of the candidate genes in unstable atherosclerotic pla-
ques in the merged dataset (Figures 4(a)–4(d)). Not only
that, but we also detected their upregulated expression in
monocytes (Figures 5(a)–5(d)). In conclusion, our study sug-
gested that the expression of four candidate genes was signif-
icantly upregulated, which has a certain diagnostic value for
unstable plaques.

3.5. Functional Enrichment Analysis of DEGs. We performed
GO enrichment analysis and KEGG pathway analysis through
the online DAVID database. GO enrichment analysis had
three parts, including cellular components (CC), biological
process (BP), and molecular function (MF). For BP, DEGs
were mainly enriched in signal transduction, inflammatory
response, immune response, etc. (Figure 6(a)). Regarding
CC, DEGs were mainly enriched in the plasma membrane,
integral component of membrane, etc. (Figure 6(b)). In terms
of MF, DEGs were significantly enriched in protein binding,
protein homodimerization activity, etc. (Figure 6(c)). In addi-
tion, KEGG pathway analysis showed that these genes were
particularly related to the PI3K-Akt signaling pathway, path-
ways in cancer, and focal adhesion (Figure 6(e)).

3.6. Gene Set Enrichment Analysis (GSEA). Herein, GSEA
was carried out to explore underlying pathways involved
in the development of unstable plaques, which may
participate in the regulation of plaque instability. Our
results suggest that multiple signaling pathways may be
involved, including “HALLMARK_INFLAMMATORY_
RESPONSE” and “HALLMARK_PI3K_AKT_MTOR_SIG-
NALING” (Figure 7).
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3.7. Identification and Functional Analysis of Overlapping
Coexpressed Genes (CEGs) of Candidate Genes. We identified
11 overlapping CEGs of the candidate genes (CXCL3, FPR1,
GK, and LST1) in the merged dataset. Figure 8 shows the corre-
lation between the candidate genes and 11 overlapping CEGs.
Further, functional analysis from the GeneMANIA database
suggested that these genes were closely related to regulating
inflammatory responses (Figure 9(a)). From the protein inter-
action analysis of STRING database, we can see that there is a
close relationship between related genes (Figure 9(b)).

3.8. Gene Set Variation Analysis (GSVA) and Identification
of Correlations between Candidate Genes. Our study found
that there was a significant positive correlation between
these candidate genes (CXCL3, FPR1, GK, and LST1)
(Figure 9(c)). Then, we conducted GSVA to explore signal-
ing pathways associated with the candidate genes in unstable
plaques. This study revealed that multiple pathways, includ-
ing “HALLMARK_PI3K_AKT_MTOR_SIGNALING” and
“HALLMARK_INFLAMMATORY_RESPONSE,” were sig-
nificantly activated in the samples with high expression of

the candidate genes (Figures 9(d)–9(g)). Notably, this result
was consistent with that of the GSEA.

3.9. Evaluation of Protein Interaction and Correlation
Analysis of PIK3R5 Gene. We analyzed each candidate gene
at the level of biological process (BP) and cellular compo-
nent (CC) and got the protein similarity score of the candi-
date genes. In the box diagram, the line in the box indicates
the median value of functional similarity, and it can be seen
that the score of FPR1 is the highest (Figure 10(a)). In the
correlation analysis diagram, FPR1 is positively correlated
with PIK3R5 and other overlapping genes significantly
(Figures 10(b)–10(e)).

4. Discussion

Atherosclerosis (AS) is an occlusive artery disease that usu-
ally occurs in middle-aged and older adults, which seriously
threatens patients’ health and life quality [24, 25]. In partic-
ular, unstable atherosclerotic plaques rupture, leading to
blood embolism, which can lead to a series of serious clinical
consequences that can be fatal for patients [26, 27]. It is
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Figure 4: Expression level and diagnostic ability of the candidate genes in merged dataset. (a) CXCL3. (b) FPR1. (c) GK. (d) LST1 (∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001).
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Figure 5: The expression level of the candidate genes at the single-cell level was shown in t-SNE and violin plots. The redder the color
represented the higher expression level. (a) CXCL3. (b) FPR1. (c) GK. (d) LST1.
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Figure 6: Functional enrichment analysis of 1221 differentially expressed genes (DEGs) by DAVID database: (a) biological process (BP); (b)
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therefore critical to explore biomarkers associated with pla-
que instability and to take targeted interventions and pre-
ventive measures to reduce fatal clinical complications. In
this study, we sought to combine single-cell sequencing data
with transcriptome data to elucidate the clinical significance
and potential mechanisms of monocyte-associated genes in
atherosclerotic plaque instability.

As we all know, monocyte recruitment in the vascular
wall plays an important role in the development of athero-

sclerosis [28, 29]; however, there are relatively few studies
about the role of monocyte-associated genes on atheroscle-
rosis. Our current study identified four (CXCL3, FPR1,
GK, and LST1) significant monocyte-associated candidate
genes related to atherosclerotic plaque instability using
single-cell sequencing data analysis, WGCNA analysis, and
differential expression analysis methods. We found that
these candidate genes were significantly overexpressed in
unstable plaques compared with stable plaques. Single-cell
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Figure 7: GSEA plot showed that multiple signaling pathways may be involved in the regulation of plaque instability, including
“HALLMARK_INFLAMMATORY_RESPONSE” and “HALLMARK_PI3K_AKT_MTOR_SIGNALING.”
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Figure 8: Continued.
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Figure 8: Correlations between the candidate genes and 11 overlapping coexpressed genes (CEGs): (a) CXCL3; (b) FPR1; (c) GK; (d) LST1.
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Figure 9: Continued.
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sequencing data analysis indicated that the expression of
these genes was upregulated in monocytes. There are some
other studies that support our findings. Gargalovic et al.
found that CXCL3 might contribute to the inflammatory
effects of oxidized1-palmitoyl-2-arachidonyl-sn-3-glycero-
phosphorylcholine in the atherosclerotic lesion, which is
crucial for the recruitment of monocytes [30]. Autoradio-
graphy and immunohistochemical analysis in one study
has confirmed abundant FPR1 expression in atherosclerotic
lesions [31]. Many studies have shown that GK is an essen-
tial enzyme in the formation of triacylgycerol [32, 33], which
contributes to the development and progression of athero-
sclerosis [34, 35]. Furthermore, it was found that the candi-
date genes have the upper-middle ability to distinguish the
stable and unstable plaques (AUC > 0:850 for all), which
suggests that the four upregulated monocyte-associated can-
didate genes may be underlying biomarkers for early identi-
fication and intervention of unstable plaques.

Meanwhile, our study was also devoted to exploring the
underlying mechanisms of the candidate genes in athero-

sclerotic plaque instability. Previous studies have reported
that CXCL3, FPR1, and LST1 were closely associated with
inflammation and oxidative stress, while GK played a central
role in adipogenesis and gluconeogenesis [25–28]. CXCL3 is
a well-known proinflammatory gene [36, 37]. FPR1 serves as
a receptor that mediates oxidative stress signaling in the
mammalian cell [38, 39, 40]. A study found that LST1 regu-
lates inflammatory response in a model of inflammatory dis-
ease [41]. As for GK, it also shows a potential relationship
with oxidative stress [42]. Previous studies have reported
that these candidate genes were closely associated with
inflammation and oxidative stress. It is consistent with our
previous study that a high functional similarity was found
among the candidate genes, which indicates that these can-
didate genes may act on several similar pathways. In our
study, GO and KEGG analyses suggested that DEGs might
be related to inflammation response and the PI3K-Akt sig-
naling pathway. GSEA indicated that multiple pathways,
including “HALLMARK_PI3K_AKT_MTOR_SIGNAL-
ING” and “HALLMARK_INFLAMMATORY_RESPONSE,”
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Figure 9: (a) Functional analysis of 11 coexpressed genes from the GeneMANIA database. (b) Protein interaction analysis network diagram
of related genes on STRING database. (c) Correlation between the candidate genes. (d–g) Four heatmaps showed the results of gene set
variation analysis (GSVA) of the candidate genes, arranged by CXCL3, FPR1, GK, and LST1.
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were excessively activated in unstable plaque. GSVA showed
that these two pathways were also significantly activated in
high expression samples of the candidate genes. Further-
more, coexpression analysis suggested that these candidate
genes may be related to regulating inflammatory response.
In conclusion, existing evidence showed that the candidate
genes were likely to affect the atherosclerotic plaque instabil-
ity through the inflammatory response and PI3K/Akt/
mTOR signaling pathways, a well-known pathway relating
to oxidative stress. Previous studies have shown that inflam-
mation played an important role in the progression of ath-
erosclerosis, which may be involved in driving plaque
instability [43–46]. Another study showed that it could affect
the initial recruitment of white blood cells to the final rup-
ture of unstable atherosclerotic plaques [47]. In addition,
numerous studies have reported its crucial role in the rup-
ture of atherosclerotic plaque [48–51]. Similarly, our current
study also indicated that the candidate genes were closely
related to the excessive activation of inflammatory response
in unstable plaques, which may be one of the potential
mechanisms that aggravated the instability of atherosclerotic
plaques. From the existing evidence, we speculate that the
crosstalk between the candidate genes and PI3K/Akt/mTOR
signaling pathway may activate inflammatory response lead-
ing to atherosclerotic plaque instability.

However, it was undeniable that our study conclusions
may also have certain limitations due to the insufficient sam-
ple size, which required further in vivo and in vitro experi-
mental verification.

5. Conclusions

Taken together, this study shows that the upregulated
CXCL3, GK, FPR1, and LST1 may be effective biomarkers
for early identification and intervention of unstable athero-
sclerotic plaques. Besides, we speculate that they may play
a synergistic role with CEGs in regulating inflammation
and PI3K/AKT/mTOR signaling pathways, thereby aggra-
vating the instability of atherosclerotic plaques and promot-
ing plaque rupture.
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