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Abstract

Transcriptome variation plays an important role in affecting the phenotype of an organism. However, an understanding of
the underlying mechanisms regulating transcriptome variation in segregating populations is still largely unknown. We
sought to assess and map variation in transcript abundance in maize shoot apices in the intermated B736Mo17
recombinant inbred line population. RNA–based sequencing (RNA–seq) allowed for the detection and quantification of the
transcript abundance derived from 28,603 genes. For a majority of these genes, the population mean, coefficient of
variation, and segregation patterns could be predicted by the parental expression levels. Expression quantitative trait loci
(eQTL) mapping identified 30,774 eQTL including 96 trans-eQTL ‘‘hotspots,’’ each of which regulates the expression of a
large number of genes. Interestingly, genes regulated by a trans-eQTL hotspot tend to be enriched for a specific function or
act in the same genetic pathway. Also, genomic structural variation appeared to contribute to cis-regulation of gene
expression. Besides genes showing Mendelian inheritance in the RIL population, we also found genes whose expression
level and variation in the progeny could not be predicted based on parental difference, indicating that non-Mendelian
factors also contribute to expression variation. Specifically, we found 145 genes that show patterns of expression
reminiscent of paramutation such that all the progeny had expression levels similar to one of the two parents. Furthermore,
we identified another 210 genes that exhibited unexpected patterns of transcript presence/absence. Many of these genes
are likely to be gene fragments resulting from transposition, and the presence/absence of their transcripts could influence
expression levels of their ancestral syntenic genes. Overall, our results contribute to the identification of novel expression
patterns and broaden the understanding of transcriptional variation in plants.
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Introduction

The maize species exhibits high levels of phenotypic variation,

which is likely the result of both genetic and epigenetic variation

[1]. Dissection of genetic and epigenetic variation may shed light

on the understanding of phenotypic variation and provide tools to

accelerate maize breeding. The maize genome has a complex

organization with interspersed repetitive elements and genes [2].

The genomes of different maize inbreds can vary substantially due

to single nucleotide polymorphisms [3], small insertions/deletions

[4–5], gene copy number variation (CNV) and genomic presence-

absence variation (PAV) [2,6–7]. Transposable elements, discov-

ered in maize by Barbara McClintock [8–9], comprise a significant

portion of the maize genome [2,10–13] and can contribute

substantially to genomic variation among lines [14–17]. There are

many examples illustrating the potential for transposons to capture

and mobilize genes or gene fragments [14,18–24]. In addition to

genetic changes, there is also evidence for epigenetic variation

among maize inbred lines. The epigenetic differences vary within

maize populations and show relatively stable trans-generational

inheritance [25]. These diverse forms of genetic and epigenetic

variation likely interact to affect relative transcript abundance,

which contributes to phenotypic variation among maize individ-

uals.

Exploring transcriptome variation and elucidating the underly-

ing mechanisms of transcriptional regulation may further our

understanding of the molecular bases of phenotypic variation [26–

27]. Several groups have used microarray profiling to compare the

transcriptomes of maize inbreds [28–33]. A comparison of the F1

hybrids and the parents revealed that much of the parental

variation resulted in additive expression with some rare examples

of unexpected expression in the F1 [28,33]. A recent RNA-seq
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based analysis of transcriptomic variation in 21 maize elite inbred

lines found that a substantial number of genes showed presence/

absence expression patterns [34].

Genetical genomics or expression quantitative trait loci (eQTL)

mapping is an efficient method for understanding the genetic basis

of transcriptome variation [26–27,35–36]. eQTL mapping uses

transcript abundance as a phenotypic trait and maps the genomic

loci controlling the transcript abundance [35]. eQTL are generally

classified as cis- or trans- depending on whether they are physically

linked to the gene that is regulated or unlinked, respectively. Both

cis- and trans-eQTLs have been identified in plants and while trans-

eQTLs are more abundant, they generally explain less expression

variation than cis-eQTLs [37–42]. Several eQTL mapping

experiments have utilized microarrays to reveal the complexity

of transcriptome variation and their underlying genetic regulators

such as trans-eQTL hotspots in human, animals and plants

[37,39,42–44]. eQTL mapping of transcriptome variation has also

been employed directly to help dissect phenotypic variation

[42,45–46]. The analyses of transcriptome variation in segregating

populations have generally focused on exploring how a single locus

contributes variation to transcript abundance in a Mendelian

fashion. However, there is also the potential for non-Mendelian

segregation of gene expression levels [47].

RNA-based sequencing (RNA-Seq) provides several key advan-

tages for transcriptome research including robust expression

detection especially for lowly expressed genes, unprecedented

access to the fine structure of the transcriptome, and powerful

detection of all the transcripts not depending on the reference

genome annotation [48–49]. Here, we employed RNA-Seq on

shoot apices of a well-studied maize intermated RIL population

derived from B73 and Mo17 (IBM) [50]. We characterized the

relationship of transcriptional variation between the progeny

population and the parents in detail to understand how the

parental variation combines to affect transcript abundance. This

analysis identified a number of genes that exhibit unexpected

patterns of expression variation including paramutation-like

segregation patterns and presence/absence expression patterns

between progeny and parents. Meanwhile, global eQTL mapping,

a pair-wise epistasis scan and co-expression analysis were

conducted to dissect the possible factors underlying this variation.

Results

Global expression variation in maize was assessed using the

intermated B736Mo17 recombinant inbred line (IBM RIL)

population [50]. The IBM RIL population provides higher genetic

resolution than conventional RIL populations due to four

generations of intermating before self-pollination (Figure 1A)

[50–51]. RNA-seq was conducted on the shoot apices (4 mm cubic

dissected tissue that includes the shoot apical meristem and several

leaf primordia) of two-week old seedlings from the inbred lines B73

and Mo17, and 105 recombinant inbred lines (RILs) from the

IBM population. In total, 3.47 billion reads (NCBI sequence read

archive accession number-SRA054779) were obtained, trimmed

for sequence quality and aligned to the B73 genome sequence v2

(AGPv2) [2]. For each genotype, an average of 23.5 million single

end reads (93,102 bp) were uniquely mapped to the annotated

genes (Table S1). Based on the uniquely mapped reads, 28,603

genes were expressed in at least 10% of the RILs or at least one of

the two parents at a false discovery rate of 0.05. A subset of 22,242

of these genes was expressed in both parents and in at least 90% of

the RILs. Prior to further analysis, quantitative Real Time-PCR

(qRT-PCR) was employed to assay the accuracy of the RNA-seq

results by randomly selecting ten genes that exhibit a range of

mean expression-levels. The qRT-PCR results largely confirmed

the RNA-seq results, showing the accuracy of RNA-seq for RNA

profiling (Figure S1) as in previous studies [48–49].

Variation in gene expression levels in RILs
A population of RILs is expected to segregate 1:1 for the

parental alleles and provides an opportunity to examine variation

in transcript abundance within the RILs and the relationship

between the population and the parents. We first focused on the

expression levels of 22,242 genes that were detected in both

parents and at least 90% of the IBM RILs. The mean expression

levels in the RILs were similar to the mid-parent values for most

genes (Figure 1B). Transgressive segregation, defined here as at

least 10% of RILs exhibiting expression levels outside the parental

range, was observed for 598 genes (2.6%). The other 21,644

(97.4%) genes have expression levels in the RILs that are within

the parental range. The level of variation for gene expression levels

in the RILs was significantly correlated with the difference

between the two parents (Pearson’s product-moment correlation:

r = 0.728, P,2.2E-16; Figure 1C). The type of distribution for

expression levels within the RIL population relative to the parents

was assessed using a t score [52]. We found that 4,822 (22%) genes

fit bimodal distributions, 14,564 exhibited normality (65%) and

the remaining 2,856 (13%) showed other unclassified distributions.

Genes with little or no expression difference among the parents

typically exhibited a normal distribution in the RILs (Figure 1D).

However, many genes with large expression differences among the

parents exhibited a bimodal distribution among the RILs

(Figure 1D). These trends indicated that much of the variation

in gene expression levels in the RILs is reflective of differences

present between the parents.

Paramutation-like expression pattern in RILs
While the majority of genes exhibit expression patterns in the

RILs that are quite predictable from the parental levels, there were

a subset of genes (0.7%) that have average expression levels in the

RILs that are greater than 2-fold different than the mid-parent,

indicative of other potential patterns of expression variation. It is

Author Summary

Phenotypes are determined by the expression of genes,
the environment, and the interaction of gene expression
and the environment. However, a complete understanding
of the inheritance of and genome-wide regulation of gene
expression is lacking. One approach, called expression
quantitative trait locus (eQTL) mapping provides the
opportunity to examine the genome-wide inheritance
and regulation of gene expression. In this paper, we
conducted high-throughput sequencing of gene tran-
scripts to examine gene expression in the shoot apex of a
maize biparental mapping population. We quantified
expression levels from 28,603 genes in the population
and showed that the vast majority of genes exhibited the
expected pattern of Mendelian inheritance. We genetically
mapped the expression patterns and identified genomic
regions associated with gene expression. Notably, we
detected gene expression patterns that exhibited non-
Mendelian inheritance. These included 145 genes that
exhibited expression patterns in the progeny that were
similar to only one of the parents and 210 genes with
unexpected presence/absence expression patterns. The
findings of non-Mendelian inheritance underscore the
complexity of gene expression and provide a framework
for understanding these complexities.

Transcriptome Variation in Maize IBM Population
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possible that some of these genes may have expression patterns

similar to those observed for genes that are subject to paramuta-

tion such that the expression levels in all RILs would be similar to

the expression level of one of the parents [53]. The distribution of

expression patterns in the RILs was compared to the parental

expression patterns for 8,269 out of 28,603 detected genes that

have at least two-fold expression level difference between B73 and

Mo17. There were 145 genes (86 of these genes are from the

22,242 genes expressed in both parents and 90% of the RILs) with

paramutation-like expression patterns for the RILs in which one

parent was within the expression distribution (two standard

deviations from the population mean) of the RILs but the other

parent had an expression level at least three standard deviations

from the population mean (Figure 2A; Figure S2; Table S2). It is

important to note that, while these genes exhibit patterns that are

similar to those expected due to paramutation these genes may

either be directly regulated by paramutation or be secondary

targets that are influenced by another factor that is subject to

paramutation. For many (80/145) of these genes one of the two

parents had an expression level that was outside the range of all

RIL genotypes. The expression levels of B73 and Mo17 relative to

the population mean and standard deviation helps illustrate

several trends observed for these genes (Figure 2A). The majority

of these genes (124/145) had patterns in which the RILs were all

expressed at levels similar to the lower parent as might be expected

given that most examples of paramutation involve a paramuta-

genic allele that is expressed at lower levels than the paramutable

allele (Figure 2B). The expression level for these genes was assessed

in the F1 hybrid relative to the two parents (Figure S3). Well

characterized examples of paramutation in maize include some

examples of dominant expression in the F1 as well as other

examples that do not exert effects until the F2 generation [54–57].

Figure 1. The intermated B736Mo17 recombinant inbred lines (IBM RIL) and the relationship between expression variation in the
RILs and expression fold change in the parents. (A) A schematic diagram of construction of the maize IBM RIL population (adapted from [50–
51]). In (B), (C) and (D), the x-axis is the absolute value of log2 of expression-level in B73 divided by the level in Mo17. The numbers in parenthesis
show the gene numbers in each category. (B) The expression-level relationship between the population mean and the parental difference. The y-axis
is the log2 value of population expression-level average divided by the mid parent value of genes representing the expression-level deviation from
the parents. (C) The coefficient of variation (CV) for gene expression levels in the RILs was significantly correlated with the parental differences. The y-
axis shows the coefficient of expression-level variation of genes in the IBM RIL population. (D) The type of distribution observed in the RILs is
influenced by the scale of parental difference. The proportion of genes that exhibit normal, bimodal or unclassified distributions of expression levels
in the RILs vary according to the level of differential expression in the parental genotypes.
doi:10.1371/journal.pgen.1003202.g001

Transcriptome Variation in Maize IBM Population
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The genes that had high levels of expression in all RILs were

expressed at additive levels in the F1. The genes that had

expression levels similar to the lower parent included many

examples of additive expression but also had a number of cases

with partial to complete dominance in expression such that the F1

had levels more similar to the lower parent (Figure S3). Ten of the

genes with paramutation-like patterns were selected for analysis in

F2 individuals (Figure S4). Seven of the ten genes exhibited

paramutation-like patterns in the F2 individuals and these include

examples of both high and low expression.

Mapping the basis of expression level variation
The basis for the regulatory variation in transcript levels was

examined using a high-resolution SNP genetic map of the IBM

population based upon 7,856 high quality SNP markers derived

from the RNA-seq data to perform eQTL analysis for the 22,242

genes that are expressed in both parents and at least 90% of the

RILs. This approach is likely to capture much of the variation for

gene expression that segregates in a Mendelian fashion but is less

likely to capture the basis of variation for examples of gene

expression such as those described above. A total of 30,774 eQTLs

(a= 0.05) with a threshold logarithm of odds (LOD). = 4.17 were

identified for 19,304 genes, of which 5,303 (27.5%) were

controlled only by a single cis-eQTL, 6,201 (32.1%) controlled

by both cis- and trans-eQTLs and 7,800 (40.4%) only by trans-

eQTLs. The 30,774 eQTLs include 11,504 (,37%) cis-eQTLs

and 19,270 (,63%) trans-eQTLs (Figure 3A and Table S3). The

number of eQTLs affecting the expression level of each gene

ranged from zero to six. In general, cis-eQTLs tend to have larger

effects than trans-eQTLs (Figure S5A). For example, 83.7% of cis-

eQTLs account for at least 20% of the expression variation in

contrast to only 12.7% of the trans-eQTL meeting this criterion.

However, there are examples of trans-eQTLs that contribute

substantially to expression variation. There were 133 trans-eQTLs

that contribute at least 60% of the variation for expression of a

target gene. The overall contribution of cis- and trans-eQTLs was

heavily influenced by the level of expression variation in the

parents (Figure S5B). The contribution of cis-eQTLs increased as

the parental expression level became increasingly different. In

addition, the amount of variation explained by the cis-eQTL also

increased as the parental expression levels become more different

(Figure S5C) while the amounts of variation explained by trans-

eQTL decreased as the parental differences increased (Figure

S5D). The proportion of cis- and trans-eQTL for the 598 genes

exhibiting transgressive segregation was similar to the proportion

of cis- and trans-eQTL for the global eQTL analysis, however, the

genes with transgressive segregation were more often (37%)

controlled by multiple eQTLs with opposite effects than all genes

(27%).

The genomic distribution of trans-eQTL was assessed in an

attempt to identify potential trans-eQTL hotspots that might reflect

substantial regulatory differences between B73 and Mo17. The

analysis of trans-eQTL density in a 1 Mb (which is slightly larger

than the average physical distance between adjacent markers with

a recombination event) sliding window revealed 96 significant

(P,0.01) trans-eQTL hotspots (Figure 3B and Table S4), including

10 major hotspots that contain at least 200 trans-eQTLs (Table 1).

These hotspots have many more trans-eQTL than other genomic

regions and in the majority (78%) of examples the target genes

regulated at the trans-eQTL hotspots show a consistent pattern

with significantly more target genes altered in expression in the

same direction by the haplotype at the trans-eQTL hotspot

Figure 2. Paramutation-like expression patterns in the IBM RILs. (A) Two-dimensional representation of expression level variation among
B73, Mo17 and the IBM RILs. The plot illustrates the expression level of B73 and Mo17 relative to the population mean and standard deviation for all
28,603 genes. The x-axis represents the number of standard deviations of difference between B73 and the RIL population while the y-axis represents
the number of standard deviations between Mo17 and the population mean. Each point represents the expression relationship between the two
parents and the RILs for one gene. The blue and red circles indicate genes with paramutation-like expression patterns in which B73 is at least three
standard deviations outside the range of the RILs (blue) or Mo17 is at least three standard deviations outside the range of the RILs (red). The density
plots provide a visual representation of each type of pattern that was identified. To provide better resolution for those genes with paramutation-like
expression patterns, four genes, of which the parental expression levels were extremely out of the range of the expression levels in the RILs, were not
plotted, but listed in Table S2. (B) The distribution of expression levels is shown for two genes with paramutation-like expression patterns. The y-axis
shows the RPKM value for the normalized expression levels.
doi:10.1371/journal.pgen.1003202.g002

Transcriptome Variation in Maize IBM Population
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Figure 3. eQTL mapping, trans-eQTL hotspots, and pathways regulated by three trans-eQTL hotspots. (A) Genomic distribution of eQTLs
identified in maize shoot apices. The x-axis indicates the genomic positions of eQTLs, while the y-axis shows the genomic positions of expressed
genes (e-traits). The 10 maize chromosomes are separated by grey lines. The color of each point reflects the R2 value. eQTLs with R2 values greater
than 20% were plotted in red, R2 values less than 20% are indicated in blue. Totally, 30,774 eQTLs were divided into 11,504 (,37%) cis-eQTLs and
19,270 (,63%) trans-eQTLs. (B) The distribution of trans-eQTLs hotspots. The x-axis shows the genomic position of detected eQTLs (unit = 1 Mb),
while the y-axis represents the number of trans-eQTLs in each 1 Mb length genomic region. The horizontal blue line for eQTL hotspots indicates the
threshold, which is represented by the maximum number of trans-eQTLs expected to randomly fall into any interval with a genome-wide P = 0.01.
The 10 maize chromosomes were divided by vertical black lines. The black lines linking (A) and (B) show several examples of the corresponding trans-
eQTL hotspots in (A) and (B). A total of 96 trans-eQTLs hotspots were identified and 10 trans-eQTLs hotspots regulated at least 200 trans-eQTLs. (C)
Genes regulated by three trans-eQTL hotspots are involved in specific metabolic pathways. The expression levels of these genes in pathways were
regulated by trans-eQTLs located in these hotspots. The numbers beside these genes are the proportional changes which were the additive effects of
the trans-eQTLs of Mo17 alleles divided by the population mean of expression levels of the target genes.
doi:10.1371/journal.pgen.1003202.g003

Transcriptome Variation in Maize IBM Population
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(haplotype bias). More examples in which the B73 allele (49) at the

trans-eQTL hotspot promoted higher expression of the target loci

than the Mo17 allele (26) were identified. The lists of target genes

regulated by each of the trans-eQTL hotspots were used to search

for GO enrichments; 43% of the trans-eQTL hotspots target lists

exhibited enrichments for at least one GO term (Table S5). We

performed further analyses for the ten trans-eQTL hotspots that

had at least 200 targets (Table 1). Nine of these ten trans-eQTL

hotspots showed consistent haplotype bias (six for B73 and three

for Mo17) and the targets for each of these hotspots had GO

enrichments for at least one term. Multiple genes in the same

MaizeCyc pathway [58] are observed to be co-regulated by the

same trans-eQTL hotspot (Figure 3C, Table S6). These trans-

eQTL hotspots may be due to functional differences in transcrip-

tional regulators. At least in some cases it might be expected that

differential expression of a regulator present at the trans-eQTL

hotspot is the cause of the differences in trans-regulation.

Structural variants associated with the regulatory
variation

To examine the influence of structural rearrangements-gene

copy number variation (CNV) and genomic presence/absence

variation (PAV) on gene expression, we compared our transcrip-

tomic data for the 28,603 expressed genes with previous

Comparative Genomic Hybridization (CGH) data [59]. We

focused on the full set of 28,603 genes as the more limited set of

22,242 genes assessed for eQTL analysis required expression to be

present in both parents while some of the PAV are expected to

abolish expression in Mo17. There are 1,212 expressed genes with

CNV/PAVs that affect the gene or flanking regions (Table S7).

The structural rearrangements include copy number gains in B73

or Mo17 as well as PAV that are present in B73 but absent in the

Mo17 genome. We might expect that copy number gains would

lead to increased expression in the genotype with more copies

while PAV would only be expressed in one genotype. There was

evidence that this was true in many cases (Table S8 and Figure 4).

eQTL mapping was conducted on these CNV/PAV-related genes

and a total of 1,466 were identified for 1,009 genes, of which 704

(69.8%) were controlled by cis-eQTLs. The cis-eQTLs proportion

of genes with CNV/PAVs nearby is significantly higher (P = 0.00)

than those of all detected genes (Figure 4A). Noteworthy was the

observation that 89.2% of these genes entirely within the PAV

were controlled by cis-eQTLs, while ,10% of these genes have

trans-eQTLs, indicating that other regulators underlie the expres-

sion variation in addition to PAVs. There was also evidence for an

enrichment of cis-acting variation when the CNV/PAV occurred

in regions surrounding the gene. Nearly half (120/242) of the

genes entirely within structural variants exhibit differential

expression in B73 and Mo17. There were many examples in

which the RIL genotype at the gene of interest was highly

correlated with the expression difference (Figure 4B, 4C).

Typically, the copy number of genes entirely within CNV/PAV

regions positively correlated with the genes’ expression (99 out of

the 120 differentially expressed genes between the two parents)

(Figure 4B). We also noted examples (21/120) in which a copy

number gain was associated with lower expression in the parents

(Figure 4C).

Unexpected patterns for presence/absence expression in
the RILs

We were struck that a large proportion of genes were only

detected in a subset of the RILs or parents. While there were

22,242 genes expressed in both parents and the RILs, there were

an additional 6,361 genes that had detectable (False Discovery

Rate-FDR.0.05) levels in at least 10% of the RILs or at least one

of their parents. These 6,361 genes may include (a) some genes

with very low expression levels that manage to cross the threshold

of detectability in some samples but not others, (b) genes that are

only expressed in one parent and that based on Mendelian

segregation would therefore be expected to be expressed in only

50% of the RILs, and (c) genes with unusual regulatory

mechanisms. We elected to impose a more restrictive set of

filtering criteria for expression to limit the number of low-

expressed genes near the detection threshold. Based on the

alignment of RNA-seq reads to non-genic genomic regions, an

RPKM of 1.03 corresponds to a FDR of 0.01 and 499 of the 6,361

genes have a RPKM value of §1.03 in at least 10% of the RILs or

at least one of their parents. A substantial proportion of these

Table 1. Trans-eQTL hotspots with at least 200 trans-eQTLs.

Hotspot_name Chr
StartPos
(Mb)

EndPos
(Mb) #_cisa #_transb

#_eQTL/
(Mb6#_genes) B73c Mo17d Sig. Biase

GO Term
enrichment

MaizeCyc
enrichment

Zm_eQTL_HS14 2 3 5 56 353 3.18 289 64 4.77E-33 Yes No

Zm_eQTL_HS20 2 202 206 70 263 2.10 161 102 2.75E-04 Yes No

Zm_eQTL_HS25 3 4 6 28 228 3.51 110 118 5.96E-01 Yes No

Zm_eQTL_HS29 3 214 218 63 336 2.95 87 249 9.76E-19 No No

Zm_eQTL_HS35 4 157 160 30 379 5.92 321 58 1.38E-41 Yes Yes

Zm_eQTL_HS37 4 176 182 45 420 2.80 274 146 4.22E-10 Yes Yes

Zm_eQTL_HS41 4 236 238 38 259 2.78 242 17 2.04E-44 Yes Yes

Zm_eQTL_HS60 7 0 2 22 162 2.57 119 43 2.36E-09 Yes No

Zm_eQTL_HS65 7 156 160 51 274 2.14 82 192 3.03E-11 Yes Yes

Zm_eQTL_HS95 10 145 147 35 221 2.83 64 157 3.95E-10 Yes Yes

a,bIndicates the number of cis- and trans-eQTLs in each eQTL hotspot, respectively.
cIndicates the number of eQTLs, where the B73 allele increased the expression level in the RIL population.
dIndicates the number of eQTLs, where the Mo17 allele increased the expression level in the RIL population.
eShows the significance level deviating from the random distribution between B73 and Mo17. The GO enrichments and the pathway enrichments of the regulated
genes by hotspots were conducted using BiNGO plugin in Cytoscape based on the annotation information from AgriGO and MaizeCyc database, respectively. The
results of GO enrichments and pathway enrichments are in Table S5 and Table S6, respectively.
doi:10.1371/journal.pgen.1003202.t001
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genes (289/499) were expressed in only one of the parents and

were observed in approximately 50% of the RILs (with the Chi-

square test at the P value,0.01). The lack of expression in one

parent and half of the RILs may reflect differences in genome

content or regulatory variation. eQTL analysis of these genes

revealed that 186 (64%) of these genes had cis-eQTL that

explained .20% of the expression variation and 54 of these genes

intersect with CNV/PAVs. However, there were also 92 (32%) of

these genes that had evidence for at least one strong trans-eQTL

with R2.20%. In total, eQTLs could explain more than 20% of

the expression variation of 273 of these 289 genes (96.1%).

The other 210 of these genes exhibited unexpected patterns of

expression that could be classified into four groups (Table S9). The

type I pattern included 40 genes that were expressed in both

parents but were not detected (RPKM = 0) in over 10% of the

RILs. The type II pattern included 19 genes that were not detected

(RPKM = 0) in the parents but were detected in at least 10% of the

RILs. The type III patterns include genes that were expressed in

one parent but not the other and had expression in very few RILs

(type IIIA – 66 genes) or the majority of the RILs (type IIIB – 85

genes) (Figure 5A). A subset of genes (2 type I genes and 19 type III

genes) with unexpected expression patterns also exhibited para-

mutation-like expression patterns. These unexpected patterns of

expression detected by RNA-seq were validated for the majority of

genes tested (43/55) using RT-PCR on a subset of the RIL

genotypes (Figure S6). In addition, the same type of expression

patterns could be observed in an independent set of B736Mo17

F2 individuals for all the six tested genes (Figure 5B). These RT-

PCR assays confirmed that the unexpected segregation patterns

for presence or absence of gene expression observed in the RILs

are reproducible. Further, genomic PCR was employed to assess if

the expression presence/absence transcript variation might be

attributable to differences in genome content. We found that genes

exhibiting presence/absence transcript variation could be ampli-

fied from genomic DNA of each of the IBM RILs that were tested

(Figure S7), indicating that the difference in expression was not

due to segregation for genomic presence of the sequence. For each

of the four patterns, the proportion of RILs expressing a gene was

compared to the mean expression level in genotypes that express

the gene (Figure 5C). Some of these genes are quite highly

expressed and there is a substantial range in the number of

genotypes with expression. To further distinguish the genes with

unexpected expression patterns from the genes with very low

expression levels that manage to cross the threshold of detectabil-

ity, we examined the maximum expression levels, population

mean RPKM and the standard deviations in the population of the

genes with unexpected expression patterns in comparison to all

detected genes expressed in more than 90% of the RILs. Although

the maximum expression levels, population mean RPKMs of

genes with unexpected expression patterns are slightly lower than

those of all expressed genes, the differences are not significant

(Figure S8). Importantly, the standard deviation of expression

levels of genes with unexpected expression patterns is similar to

that of all other genes (Figure S8).

The observation that there were many examples in which the

proportions of RILs with detected expression was close to 25% or

75% (Figure 5C) may suggest that multiple genetic factors play

interaction roles underlying the unexpected expression patterns for

some of these genes. To test this hypothesis, a genome-wide

epistasis scan with all possible pair-wise marker interactions was

employed to search for evidence of two-locus interactions that

control expression for genes that were detected in approximately

one-quarter or three-quarters of the RILs. If two different loci are

both required to achieve expression of a gene, these loci could

both be present in one parent (type III) or could have one

functional locus in either parent (type II). In these examples we

would expect 25% of the RILs to exhibit expression of the gene.

There are 28 type IIIA and 10 type II genes with expression in

only ,25% of the RILs using Chi-square test with the p-

value,0.01 as the cut-off. A genome-wide scan for two-locus

Figure 4. eQTL with CNV/PAV nearby and the influence of CNV/PAV on transcriptome variation. (A) The proportion of genes with cis-
eQTL detected. Genes located within/near structural variants are enriched for cis-eQTLs, especially for genes entirely within CNV/PAV. (B) The
expression distribution in the RILs of gene GRMZM2G016150, which is entirely a CNV event, is positively correlated (P = 3.7E-46) to increased copy
number at this locus in the RILs. (C) The expression distribution in the RILs of gene GRMZM2G024775, which exhibits a gain of a copy in B73 and lines
containing the B73 allele, shows a negative correlation (P = 6.3E-61) between the gain of a copy in B73 and the lower copies in Mo17. In (B) and (C),
the x-axis represents the genotype of RILs for the specific gene, while the y-axis indicates the normalized expression levels in the RILs and their
parents.
doi:10.1371/journal.pgen.1003202.g004

Transcriptome Variation in Maize IBM Population

PLOS Genetics | www.plosgenetics.org 7 January 2013 | Volume 9 | Issue 1 | e1003202



interactions that control the variation of expression for these 38

genes found that 92% of these could be explained by a two locus

interaction (Figure S9A, S9B). In half of the cases in which a two-

locus interaction explained a significant proportion of the

expression variation we found that one of the two loci mapped

in cis to the gene itself. We could also envision a scenario in which

two different loci are required for loss of expression of a gene and

this would be expected to result in expression in 75% of the RILs.

Figure 5. Four types of unexpected expression patterns between the RILs and their parents. Type I: genes expressed in both B73 and
Mo17, but not expressed in at least 1/10 of the RIL population. Type II: genes not expressed in both B73 and Mo17, but expressed in at least 1/10 of
the RIL population. Type III: genes expressed in either B73 or Mo17, have abnormal segregation ratio of expression versus non-expression in RILs,
such as 1:3, 3:1 etc. Type IIIA are genes tending to be expressed in fewer RILs than the expected 1:1 ratio while Type IIIB are genes that tend to be
expressed in more RILs than the expected 1:1 ratio. In (A), gene transcripts in the Type I,III categories were amplified by RT-PCR from RNAs isolated
from an independent replication of 10 genotypes from the IBM population. Thirty-five cycles of PCR was conducted for genes GRMZM2G403162 (Type
I), GRMZM2G168987 (Type II), GRMZM2G103479 (Type IIIA), GRMZM2G170588 (Type IIIB) and a housekeeping gene (Actin). The number under each
band shows the RPKM value in each RIL. (B) RT-PCR assay of individuals in an F2 population from the cross between B73 and Mo17. The
corresponding genes from top to bottom are GRMZM2G403162, GRMZM2G053790, GRMZM2G168987, GRMZM2G071808, GRMZM2G103479, and
GRMZM2G170588. (C) The percent of RILs with expressed genes with unexpected expression patterns and population mean of their expression levels
in the RILs. The x-axis represents the percent of RILs, while the y-axis indicates the log2 score of the population mean of RPKM. The two grey vertical
lines mark 10% and 90% of the RILs. (D) The number of genes for each of these unexpected expression patterns and the proportion of syntenic and
non-syntenic genes in each expression pattern.
doi:10.1371/journal.pgen.1003202.g005

Table 2. Gene family size for genes with unexpected expression patterns.

Genes Count Single Copy (%) Gene family size (%) Average gene family size

2 3–6 7–10 .10

Type I 40 35.0*** 22.5*** 25 2.5*** 15.0*** 8.42

Type II 19 26.3*** 26.3*** 15.8** 15.8* 15.8*** 5.50*

Type IIIA 66 39.4*** 22.7*** 24.2 3.0*** 10.6*** 5.28***

Type IIIB 85 34.1*** 10.6 40.0*** 8.2 7.1*** 5.30***

All maize 39400 18 13 28.9 10.8 29.3 8.64

*,**,***represent P,0.05, P,0.01, and P,0.001, respectively. The significances were calculated by 10,000 permutations of randomly selected genes of which the gene
number is equal to each expression pattern.
doi:10.1371/journal.pgen.1003202.t002
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There are 71 type IIIB and 28 type I genes that are expressed in

,75% of the RILs and for 91% of these genes the pattern of

presence/absence can be explained by a two-locus interaction,

including 12 examples in which one of the two loci maps in cis to

the gene itself (Figure S9C, S9D). This suggests that a significant

subset of the genes with unexpected patterns of presence-absence

for expression can be explained by two-locus interactions.

Non-syntenic genes enriched in the genes with
unexpected expression patterns

The genes that exhibit presence/absence expression patterns

in progeny relative to their parents were further characterized.

As a group, these genes with unexpected expression patterns

were enriched for single copy genes, and for low copy number

gene families relative to all maize genes (Table 2). The FGS

(Filtered Gene Set) genes of maize represent an attempt to

identify higher confidence gene models and remove gene

fragments and transposon-derived sequences [2]. However,

there are likely a number of gene fragments and transposon-

derived sequences still present within the FGS. Comparative

genomic localization can provide more confidence in syntenic

genes as ‘‘real’’ genes [60]. Only 36/210 genes with presence/

absence expression patterns are in syntenic locations relative to

other grass species (Figure 5D). This is a smaller proportion

than expected based on the finding that 67.5% of all FGS

genes are located in syntenic positions. It is worth noting that

while the genes with unexpected patterns are enriched for

non-synteny there is a subset of these genes that do have

synteny and likely represent functional genes (Table S9).

Annotation of the syntenic genes with unexpected presence/

absence expression patterns reveal a variety of putative

functions such as serine threonine protein kinase, electron

transport sco1 family protein and basic leucine-zipper 44

protein, but there is no evidence for GO enrichments within

this set of genes.

Genes with unexpected expression patterns are likely to
be transposon-related genes

The 174 genes with unexpected segregation patterns that are

non-syntenic with other grass species may represent insertions

of these genes or gene fragments in the maize genome. To test

the hypothesis, the genomic regions surrounding these genes

were examined for enrichment of specific classes of repetitive

sequences (Figure S10). Over one-third (65) of the 174 genes

had a CACTA-like element within 20 kb and these include

examples of all types of unexpected expression patterns. This is

significant (P = 0.00) enrichment of CACTA-like transposable

elements surrounding these genes relative to the expected

genomic frequency (Figure 6A). The 65 genes with CACTA-

like sequences nearby (3.20 exons) and the other 145 genes

with unexpected segregation patterns (3.10 exons) tended to

have fewer exons (P = 0.00) than the average exon number

(4.88 exons) of all maize genes (Figure 6B). These features, less

exons, non-syntenic genomic localization and CACTA-like

Figure 6. Enrichment of CACTA-like elements and fewer exon number bias in genes with unexpected expression patterns. (A) The
proportion of genes with a CACTA-like element in different flanking genomic blocks. (B) Genes with unexpected expression patterns preferentially
contain fewer exons.
doi:10.1371/journal.pgen.1003202.g006
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element enrichment, suggest that many of these genes may be

gene fragments that were captured and transposed by

CACTA-like transposons.

Transposon-related genes with unexpected expression
patterns could regulate the expression of their ancestral
syntenic genes

We proceeded to assess whether the non-syntenic gene

fragments with presence/absence expression might affect the

regulation of homologous full-length syntenic genes (ancestral

syntenic genes) elsewhere in the maize genome. All 174 of the non-

syntenic genes were homologous to at least a portion of another

maize gene (E value,1.0E-10). The correlation between the

expression level of each of these genes and the other homologous

full-length sequences (possible ancestral syntenic genes) was

assessed in the RIL population. There were 25 examples in which

the presence/absence expression patterns of the non-syntenic

genes were correlated with transcript abundance for ancestral

syntenic genes (Table S10). For example, the presence/absence

expression of a gene fragment located on chromosome 3 was

highly correlated with the abundance of a transcript from its

ancestral syntenic gene annotated as an Erwinia Induced Protein 1

located on chromosome 5 (Figure 7A). A comparison of the

expression levels for the two sequences revealed an inverse

correlation such that the presence/absence of transcripts from the

gene fragment correlated with low or high expression of the

ancestral syntenic gene (Figure 7B). However, the presence/

absence of transcripts from the transposed fragment does not result

from genomic differences among RILs because according to the

genomic PCR amplifications this gene fragment exists in all tested

RILs (Figure 7C). The expression pattern of gene

GRMZM2G004617 was also identified to be controlled by two-

locus interaction (Figure 7D). Many (20) of the other 25 examples

involve similar negative correlations between presence/absence of

a gene fragment and abundance of a full-length transcript (Table

S10). These examples provide evidence for the ability of

transposed gene fragments to influence transcript abundance of

their ancestral syntenic genes.

Discussion

We used RNA-Seq to profile the shoot apex transcriptome

variation within the maize IBM RIL population and to compare

this variation to the parental B73 and Mo17 transcriptomes. In

our study, we revealed that: (i) Much of the variation (the

population mean, the coefficient of variation) in gene expression

levels in progeny is reflective of differences present among the

parents; (ii) A genome-wide search for paramutation-like expres-

sion identified 145 genes with paramutation-like patterns in the

progeny; (iii) Multiple genes in a pathway are regulated in the

same direction by a trans-eQTL hotspot, indicative of transcrip-

tional regulators; (iv) CNV/PAVs could be either positively or

negatively correlated with expression level variation; (v) A set of

Figure 7. Co-expression complementary effect between a transposon-related gene and its ancestral syntenic gene. (A) The
homologous relationship between the transposon-related gene (GRMZM2G004617) and its ancestral syntenic gene GRMZM2G154301. The blue dotted
lines and the light blue area show the homologous region between the two genes. The grey boxes represent the coding regions, while the open
boxes indicate the untranslated regions. The transposon annotation was done using CENSOR (http://www.girinst.org/censor/index.php). The blue
triangle and diamond represent helitron element and CACTA-like element, respectively. (B) The negative co-expression correlation between the two
genes. (C) The validation of RT-PCR and genomic DNA PCR of the transposon-related gene (GRMZM2G004617), which exhibits unexpected expression
patterns in the RILs. (D) Two-marker interaction (M3735 located in chromosome 4 is designated as locus A and M5604 in chromosome 7 is denoted as
locus B, neither of which are linked to the differentially expressed genes) was significantly associated with the transcriptomic variation of type I gene
GRMZM2G004617 in the RILs (P = 1.3E-07). aabb shows the genotype of B73, while AABB represents Mo17 genotype. The numbers close to the
genotype show the number of RILs with the same genotype. The y-axis shows the normalized expression levels (RPKM). The blue triangle indicates
the expression level in B73, while the red diamond indicates the expression level in Mo17.
doi:10.1371/journal.pgen.1003202.g007
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210 genes were identified that exhibited unexpected presence/

absence expression patterns within the RILs relative to the

parents; and (vi) These genes with unexpected presence/absence

expression patterns in the RILs likely include functional genes as

well as transposed gene fragments that may contribute to

regulatory variation of their ancestral syntenic genes. These

findings provide an insightful understanding of the mechanisms

that contribute to transcriptome variation in maize populations.

We will discuss the identification of trans-eQTL hotspots and the

implications for the unexpected segregation patterns of gene

expression.

Trans-eQTL hotspots
The analysis of eQTLs allows for the dissection of the genomic

regions that affect transcript abundance. Cis-regulatory eQTL

reflect regulatory variation that is tightly linked to a gene and

affects the allelic expression levels. In contrast, trans-eQTL reflects

regulatory variation at unlinked genomic positions. The analysis of

all trans-eQTL can reveal trans-eQTL hotspots, also known as trans-

eQTL clusters, which are genomic regions that affect the

expression of many unlinked loci [39,61]. These trans-eQTLs are

thought to reflect differences in gene regulation that may be

important for phenotypic variation [39,41–42,44].

Due to the limitations of mapping resolution, the identified

trans-eQTL hotspots could result from the presence of a single

causal regulatory factor (pleiotropic effects) or several tightly linked

loci that affect transcript levels of different genes (genetic coupling)

[62]. In addition, each trans-eQTL hotspot is relatively large

(,1 Mb) and will likely include the targets of the hotspot itself as

well as several other trans-eQTLs that only regulate a small

number of genes. Most of the trans-eQTL hotspots identified in our

study showed significant haplotype effect bias, which means the

haplotype of one parent could increase expression levels of

significantly more target genes than expected. The hotspots with

haplotype effect bias are more likely to reflect ‘‘master regulators’’,

while some of the others may be a result of genetic linkage, even

though we had already taken gene density into account. It might

be expected that variation in an important regulatory locus may

result in variation for transcript levels for a number of genes that

share related GO annotation or are present in the same

biochemical pathway. Here, the expression level of genes involved

in these pathways were found to be consistently altered in the same

direction by trans-eQTL hostpots, which implies that pathway

variation may exhibit genetic variation underlying the phenotypic

variation among different elite inbred lines.

The regulatory variation provided by the trans-eQTL could be

the result of differences in the expression level for a regulator

located within the trans-eQTL (a cis-eQTL) or it could be the result

of a qualitative variant for a gene located within the genomic

region. If the cause of the trans-eQTL hotspot is a cis-regulatory

variant then we would expect to find a cis-eQTL located within the

trans-eQTL that is highly correlated with the expression level of the

target genes. The analysis of these cis-eQTLs located within the

trans-eQTL hotspot did not find enrichment for transcription

factors. However, we did identify transcription factors or other

putative regulatory genes. These candidate genes provide a

potential avenue for future research to understand the basis of

regulatory variation in maize (Table S11).

Transgressive segregation for eQTL
The majority of genes behave in a manner that is predictable

based on the expression levels of the parents. In general, genes

with relatively little expression variation in the parental genotypes

exhibit a normal distribution of expression levels centered on the

parental levels in the offspring and the genes with variation

between the parents exhibit a bimodal distribution in the offspring.

Our results showed that for the majority of genes expression trait

variation is mainly caused by additive effects, which differs from

the results observed in Arabidopsis, and rice where non-additive

gene action was the more common form of regulating transcript

accumulation [39–42].

However, a portion of genes exhibit transgressive segregation in

the RILs such that at least 10% of the RILs exhibit expression

levels outside the parental range. The proportion of transgressive

segregation for expression traits was small (2%) compared with the

levels reported in other species [39–42]. The measurement of

eQTL for many genes at once provides an opportunity to assess

the potential causes of transgressive segregation. One likely cause

of transgressive segregation would be the presence of multiple

trans-eQTL including examples in which both parental haplotypes

promote expression. For example, if a single gene has two trans-

eQTLs for which the B73 allele promotes higher expression and

two other trans-eQTLs in which the Mo17 allele promotes higher

expression then one might expect to observe a number of RILs

with expression levels that are higher or lower than the parental

values due to segregation of these trans-eQTLs. Indeed, we found

that the 598 genes with transgressive segregation tended to have

higher numbers of trans-eQTL than the other genes and that these

frequently included a mixture of B73/Mo17 favorable alleles for

the underlying gene expression trait.

Unexpected patterns of gene expression in off-spring
relative to parents

While the majority of genes behaved in predictable fashions in

the RILs relative to parents and had variation that could be

attributed to eQTL there were some genes with unexpected

expression patterns. We focused our analysis on a couple of subsets

of these genes including genes with paramutation-like pattern of

expression and genes with unexpected patterns of presence/

absence of the transcripts.

When two parents exhibit variation in a trait it would be

expected that off-spring would exhibit a similar range of variation.

However, we found a number of genes for which none of the

recombinant off-spring had expression levels similar to one of the

parents. This is an apparent violation of Mendel’s principle of

segregation and might be reminiscent of paramutation. Para-

mutation describes instances in which there is communication

between two alleles that are present in a heterozygote [53,63–65].

The paramutable allele can be altered to behave more like a

paramutagenic allele. Most of the examples of paramutation have

been described in maize [64]. These examples include a variety of

stabilities and behaviors [64] but are often sensitive to mutations in

the same genes [65–67]. It has been hypothesized that paramuta-

tion will affect numerous other genes but that these other examples

may not have been noted due to the lack of observable

phenotypes. A recent study in tomato identified several transcripts

that had expression patterns in RIL genotypes that were not

indicative of the parental levels and could indicate paramutation

[47]. We searched for examples of genes that had expression

patterns that might be expected to result from paramutation.

There were 145 examples of genes for which all of the RILs had

expression similar to one of the parents while the other parent had

a unique expression pattern. The majority (55%) of these genes

represent examples in which the RILs all had expression levels

similar to the lower expressing parent. The fact that these patterns

were observed in RILs that have been subjected to .6 generations

of inbreeding would suggest that these patterns of expression are

relatively stable. While we do not have evidence to show direct
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interaction of the alleles in the heterozygote, we propose that the

expression patterns observed for many of these 145 genes are the

result of paramutation-like phenomena. Our analysis of expression

in a RIL population relative to the parents suggests that

paramutation-like mechanisms may contribute to regulatory

variation for a number of maize loci. The analysis of F2

individuals provided further evidence for paramutation-like

patterns for seven of the ten genes tested. It is possible that some

of these examples may reflect spontaneous mutation or epimuta-

tion in the specific B73 and Mo17 individuals that were used for

this study and these may account for the lack of validation for

some examples. We also examined our dataset for genes whose

expression was only detectable in a subset of the RIL population or

at least one of the parents. Nearly 500 genes with various patterns

of segregation for the presence/absence of transcripts were

identified using a relatively stringent (FDR = 0.01) expression

threshold. If the threshold for detection was relaxed (FDR = 0.05),

the number of genes with segregation for presence/absence of

transcripts increased to 4,689. These results suggest the presence

of substantial qualitative as well as quantitative variation for the

maize transcriptome following segregation. We further evaluated

these genes to begin to understand the causes and consequences

for this variation.

The most likely cause for variation in presence/absence of a

transcript would be examples in which one parent expresses a gene

and the other parent does not. In these instances we would expect

approximately 50% of the RIL progeny to exhibit expression of

the gene. Over half (289/489) of the genes with segregation for the

presence of transcripts exhibit this type of pattern. This pattern

could be caused by a strong cis-regulatory variant or actual

difference in genome content such as PAV [6,59]. The mapping of

regulatory variation for these 289 genes revealed that many of

them can be attributed to variation mapping to the location of the

gene itself and likely reflect sequence differences in regulatory

regions or content variation. Alternatively, the presence/absence

of a transcript could reflect a strong trans-regulatory variant and a

subset of the genes do exhibit trans-eQTL. This set of genes with

expression in one parent and roughly 50% of RILs are expected

based on previous studies of maize genome content variation and

regulatory variation [68].

Many of the genes with segregation for the presence of

transcripts exhibit other, unexpected, patterns of expression.

These include genes that are expressed in both parents but a

few RILs, genes expressed in neither parent but many of the RILs

and other patterns. These segregation patterns are not expected to

result from traditional single, gene segregation. We did not find

evidence that there was segregation for the presence/absence of

these genes within the genomic DNA of progeny. It is quite

possible that many of these unexpected patterns of segregation for

transcript presence reflect epigenetic or small-RNA based

regulatory mechanisms. For instance, an example from tomato

illustrates that a miRNA present in one of the parents can become

detectably expressed in all the hybrids and their progeny [47]. In

addition, there are examples of molecular dominance in siRNA

levels and DNA methylation in Arabidopsis F1 plants [69–70]. It

will be important to further understand the mechanisms that

generate these unexpected patterns of segregation to understand

the inheritance of traits in RIL populations.

There is a growing appreciation for the qualitative variation

among the genomes and transcriptomes of maize inbreds. Inbreds

of maize can have substantial variation for gene content [6–

7,59,71]. These inbreds can also have substantial variation for the

presence of transcripts [29,34]. The F1 genotypes will contain the

full set of genes found in both parents and generally tend to

express this full set leading to a potential contribution to heterosis

[72]. In this study, we showed that the RILs can also vary in

transcriptome content relative to the parental genotypes. This

leads to questions about the functional consequences of variation

in transcriptome content. Many of the studies on genome content

and variation in transcriptome content have found that the

variable genes are under-represented for syntenic genes with

functional annotations. Consistently, we found that only 36 of the

210 genes with unexpected patterns of segregation for expression

were located in syntenic chromosomal positions. The variation for

the presence of expression for these genes may directly impact

phenotypes. The other 174 genes include a number of inserted

sequences relative to gene order in other grass species. The maize

genome is known to be littered with gene fragments that have been

captured and mobilized by transposons [14,22–23,73]. In many

cases, the presence of these gene fragments is variable among

maize genotypes [14–15,74] and can contribute to novel

transcripts [24]. Here we provide evidence that the presence/

absence of transcripts from these gene fragments can act to

modulate the expression level of the full-length parent gene. This

suggests that some of the qualitative variation for gene fragment

transcripts acts to provide a trans-acting regulator for the full-

length gene and suggests a mechanism for the origin of selectable

variation in expression level for single genes.

Materials and Methods

Plant materials
A maize IBM (Intermated B736Mo17) RIL population derived

from the cross of the inbred lines B73 and Mo17 [50] was used to

assess segregation of gene expression. At least 10 seedlings per

genotype of 105 IBM RILs and their parents were planted in a

single growth chamber. A randomized block design was employed

with three replicates. The order of the flats within each block was

rotated daily to minimize the effects of local environmental

variation. Fourteen days after planting, at least 6 healthy seedlings

were harvested and a 4 mm cubic tissue including the shoot apex

were dissected and pooled for each genotype-replication combi-

nation. After separately grinding tissue from each genotype-

replication pool in liquid nitrogen, RNA was extracted using the

TRIzol and Qiagen RNeasy mini kit following the manufacturer’s

instructions.

RNA–seq and bioinformatic analysis
The three replicate RNA samples of each genotype were pooled

with barcoding. RNA sequencing libraries were prepared and

sequenced using the Illumina Hi-Seq2000 with 103–110 cycles.

The resulting sequencing data were trimmed and aligned to the

B73 reference genome v2 (AGPv2) [2] by Data2Bio (http://www.

data2bio.com/). The majority (69–80%) of the trimmed reads

were uniquely mapped and 94% of mapped reads were located in

annotated gene regions. The uniquely-mapped reads were further

analyzed for SNPs and read counts per genes in the RILs and their

parents. RPKM values were determined using Cufflinks v0.9.3

(http://cufflinks.cbcb.umd.edu/) based on the uniquely mapped

reads of each genotype. The AGP v2 5b maize genome annotation

was used as a reference, while maximum intron

length = 60,000 bp and the quartile normalization option were

employed. To establish a threshold for detectable expression, we

conducted global permutation tests with 10,000 randomly selected

non-genic fragments from B73 RNA-seq data [75]. We found the

RPKMs were 0.055, 1.03, 2.02 and 5.41 as cutoffs for gene

expression at different significant levels of FDR = 0.05, 0.01, 0.005

and 0.001, respectively. For the initial analyses, a transcript
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presence/absence was assessed using a threshold of 0.055 RPKM.

For the more stringent analysis of unexpected segregation patterns

a threshold of 1.03 RPKM was employed and gene presence

required values .1.03 and absence required a value of 0.0.

Intermediate values were not assigned presence or absence calls.

Global expression analysis
The 22,242 genes expressed in more than 90% of the RILs and

the parents were used to interrogate the global expression

variation. The population mean and coefficient of variation of

gene expression levels were summarized for the attributes of the

RIL population, whereas the absolute value of log2 of the

expression-level in B73 divided by the level in Mo17 was used for

the expression fold change between B73 and Mo17. The

Kolmogorov-Smirnov test was applied to judge whether the

expression levels of genes fit a normal distribution in the RIL

population. The t statistic, introduced by Bessarabova et al. [52],

was employed to distinguish between one-modal (normal) and

bimodal distributions. We simulated 10,000 normal distribution

data (m= 0, s= 1), each containing 105 numbers, to obtain the

global threshold of t= 3.24 (P = 0.01). We treated the expression

levels, which did not fit either normal or bimodal distribution, as

unclassified distribution. The relationship between coefficient of

variation and abs(log2(B73/Mo17)), and the relationship between

t value and abs(log2(B73/Mo17)) of the variation of global gene

expression were assessed by Pearson’s product-moment correlation

analysis in R (http://www.R-project.org).

Ten randomly selected genes with expression-level (RPKM)

ranging from 0.05 to 2552.91 were selected to validate the

expression profiling accuracy of RNA-seq by quantitative RT-

PCR (qRT-PCR) using the same RNA samples as the ones used

for RNA-seq. For qRT-PCR, cDNA samples ware amplified using

the iQ SYBR Green Supermix on the CFX96 Real-Time PCR

detection system (Bio-Rad, Hercules, CA). Each PCR reaction

contained 25 ml of reagent, consisting of 5 ml cDNA; 12.5 ml of the

iQ SYBR Green Supermix; 2.5 ml of nuclease-free water; and 5 ml

of the forward and reverse primers (1 mM stock). The qRT-PCR

conditions included an initial incubation at 95uC for 3 min,

followed by 40 cycles of 95uC for 10 sec, 58uC for 20 sec, and

72uC for 25 sec.

To test the expression pattern of the paramutation-like genes,

we examined gene expression in the shoot apex from 18

individuals from an F2 population derived from a cross between

B73 and Mo17. The F2 individuals, Mo17 and B73 were grown in

a growth chamber using similar conditions as those used to obtain

the RNA-seq data from the RIL population. RNA samples from

the shoot apex were isolated from 2-week old seedlings and

reverse-transcribed into the first strand cDNAs for the qRT-PCR

quantification. Ten randomly selected paramutation-like genes

were examined for the relative quantitation of expression level in

the F2 individuals and their parents. qRT-PCR was performed

with the SYBR Green master mix according to the manufacturer’s

instructions (Applied Biosystems, Carlsbad, California). Three

replicates were conducted to calculate the average and standard

deviation of expression levels. The 22DDCT method was employed

to calculate the relative quantitation of expression levels with the

housekeeping gene Actin as the endogenous control and B73 as the

reference genotype.

To validate the unexpected expression patterns we conducted

two experiments. In the first experiment, we replanted 10 IBM

RIL genotypes, using the same growth conditions as used in the

RNA-seq experiment, with 10 plants per genotype and sampled

the shoot apices of the seedlings 14 days after planting. RNA was

isolated from at least 6 healthy plants per genotype. In the second

experiment, we tested the expression variation of genes with

unexpected expression patterns in 18 individuals from an F2

population derived from a cross between B73 and Mo17. A total of

55 genes with unexpected expression patterns were randomly

selected for validation. RT-PCR was conducted using a Touch-

down PCR program [76]. Two cycling phrases were set for the

Touchdown PCR program: the TM reduced from 72uC to 62uC
by 1uC every successive cycle in the first phrase with 10 cycles,

while 25 other cycles were used for the amplification in the second

phrase with TM = 62uC. Thus, 35 cycles were conducted. We also

conducted genomic DNA PCR amplifications on the same RILs

with the Touchdown PCR program on 8 randomly selected genes

with unexpected expression patterns to check whether the

extraordinary expression occurred only at the transcript level.

The concentration of the template cDNA and DNA was 10 ng/ml

for all the validations of RT-PCR and genomic PCR. All primer

information can be found in Table S12.

To examine the expression patterns in hybrids of B73 and

Mo17 for the paramutation-like genes, we dissected shoot apices

from 10 plants from B73, Mo17 and their reciprocal hybrids,

isolated RNA and conducted RNA-seq. For this experiment, the

plants were grown in the same growth chamber conditions used

for the original RNA-seq experiment, using consistent protocols

for sampling, library preparation, RNA-seq and analysis.

For the analyses of attributes of genes with unexpected

presence/absence expression patterns, we downloaded the gene

family information of the whole B73 gene set from EnsemblPlants

(http://plants.ensembl.org/index.html). Gene family relationships

were constructed through EnsemblCompara GeneTrees by using

the phylogenetic approach [77]. The syntenic information of

maize genes was obtained from the CoGe database (http://

genomevolution.org/CoGe/).

Transposon enrichment effect analyses
We annotated 20 Kb of flanking sequence for the genes with

unexpected expression patterns (Type I, Type II and Type IIIA

and Type IIIB) in 5 Kb windows as a fragment Bin by

RepeatMasker (http://repeatmasker.org). As controls, 210 genes

were randomly selected and 10,000 permutations were conducted.

Then, we annotated the adjacent fragments from 5 Kb upstream

and downstream for all the FGS and summarized the number of

all the different kinds of transposon-like sequences in the adjacent

fragment of genes.

eQTL mapping
Data2Bio (http://www.data2bio.com/) identified 648,230 pu-

tative SNPs in 28,603 genes (72% of all maize genes) using RNA-

Seq reads from the RILs and their parents. High quality unique

SNP markers with minimal missing data in the RILs were selected,

grouped and integrated into chromosomes before constructing the

genetic map. Maximum Likelihood Estimation with minimal

threshold LOD score = 3.0 by JoinMap 4.0 [78] was employed to

construct a high-resolution genetic map. The expression-levels of

22,242 genes were treated as expression traits (e-traits) for the

global gene eQTL mapping. The genetic determinants controlling

variation in e-traits were mapped via composite interval mapping

[79–80] with a walking speed of 1 cM in the procedure of

SRmapqtl and Zmapqtl of QTL cartographer [81]. A global

permutation with 1000 randomly selected e-traits61000 replicates

were done as a representative null distribution of 1,000,000

maximum likelihood ratio test (LRT) statistics. A global permu-

tation threshold as the significant cutoff of eQTL mapping was

obtained at a significance level of 0.05, giving a likelihood ratio test

value of 19.23, which corresponds to a Logarithm of Odds (LOD)
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score of 4.17. The range with a 1.0 LOD drop on each side from

the LOD peak point was selected as the confidence interval. If two

adjacent peaks overlap in less than 10 cM, we treated them as one

eQTL. A global permutation of randomly distribution of trans-

eQTLs along the whole maize genome was performed to find the

threshold of trans-eQTLs hotspots. One thousand of the maximum

number of trans-eQTL scattering in 1 Mb genomic region of each

permutation were obtained to compute the cutoff of hotspots.

Further, we took gene density into account to rule out the gene

number factor for the identification of trans-eQTL hotspots. For

global trans-eQTLs hotspots, the cutoff (#_trans-eQTLs/

(Mb6#_genes)) was 1.25. The GO enrichments and the pathway

enrichments of the regulated genes by hotspots were conducted

using BiNGO plugin [82] in Cytoscape [83] based on the

annotation information from AgriGO [84] and MaizeCyc

database [58], respectively.

Epistasis scan of the transcriptomic variations of genes
with unexpected expression patterns

The epistasis scan with all possible pairwise marker interactions

for the genes with unexpected expression patterns was conducted

with a generalized linear model. We employed an a-level of 0.05

(P,2.1E-06), which was adjusted by following the suggestion of

dividing the a-level by the number of possible independent

pairwise interactions among recombinant blocks [85].

Relating CNVs to transcriptome variation
We obtained genomic variation information between B73 and

Mo17 from Springer et al. 2009. The formula of CGH signal

abundance of B73 and Mo17 of log2(Mo17/B73) were used to

classify different CGH types [59]. The segments with a peak at

log2(Mo17/B73) = 0 were simply classified as B = M, while the

segments with a peak at log2(Mo17/B73) = 20.43 were classified as

B73,Mo17_SNP. B = M_int represents segments with an inter-

mediate value between 0 and 20.43. Mo17.B73_CNV shows

segments that are predicted to occur in more copies in Mo17 than in

B73. B.M_CNV indicates segments containing significantly more

copies in B73 than in Mo17, while B.M_int represents segments

having intermediate more copies in B73 than in Mo17. B.M_PAV

shows segments present in B73 but absent in Mo17. Of these

genomic variants we mainly focused on CGH segments B.M_int,

B.M_CNV, B.M_PAV and M.B_CNV for the relationship

analyses between genomic variation and transcriptome variation in

the maize IBM RIL population. First, we coordinated genes with

CGH segments by coding scripts to compare the coordinates of

genes (according to the annotation of the maize reference genome

AGPv2) with the CGH segments. Four main relationships could be

obtained as genes entirely within CGH segments, genes intersecting

CGH segments, genes in regions having multiple CGH segments,

and other. Second, we filtered expressed genes and CGH segments.

We limited the analysis to the expressed genes, which we defined as

those displaying a normalized expression value (RPKM) of at least

1.03 (corresponding to 21 reads per gene, FDR = 0.01) in more than

40% of the samples. Further, we considered the pair-wise datasets

between genes and CNVs only if genes were expressed in at least 40

samples for each inferred genotype (B73 and Mo17) in the RIL

population. Finally, we conducted eQTL mapping of genes with

CNVs nearby, for the inference of associations between structural

variation and expression levels.

RNA–seq data availability
The raw RNA-seq data on shoot apices of the IBM RIL

population used in this study were submitted to NCBI’s Sequence

Read Archive (SRA) with accession number SRA055066 and will

be released to public after approval of publication. The

transcriptome profiling data were also deposited in MaizeGDB

(http://www.maizegdb.org/).

Supporting Information

Figure S1 Expression level correlation between RNA-seq and

qRT-PCR. The x-axis denotes the RPKM value quantified by

RNA-seq, while the y-axis shows the average CT value obtained

via qRT-PCR. The validations were done on ten randomly

selected genes that exhibit a range of mean-expression levels in

seven RILs and the two parents. The r in the graphs indicates the

correlation coefficient. The graphs (A)–(I) represent the genes:

GRMZM2G005040, GRMZM2G149452, AC206951.3_FG017,

AC199782.5_FG001, AC207890.3_FG002, AC199782.5_FG002,

AC206642.4_FG001, GRMZM2G108348, and

GRMZM2G152908, respectively. ** represents the significant

level (P,0.10). Seven genes exhibited significant correlation

coefficients between the RPKM derived from the RNA-seq data

and the average cycle threshold (CT) value derived from the qRT-

PCR data. Two genes in D (AC199782.5_FG001) and G

(AC206642.4_FG001) did not exhibit significant correlation

between the RNA-seq and qRT-PCR results. However, these

two genes have very little variation in expression among the RILs

and therefore we might not expect a strong correlation of variance

between the two technologies. The remaining gene

(GRMZM2G044856), which exhibited the lowest RPKM value,

could not be detected by qRT-PCR.

(TIF)

Figure S2 Distribution of expression levels for all genes with

paramutation-like expression patterns. The y-axis shows the

RKPM value for the normalized expression levels. The x-axis

represents all genes with paramutation-like expression patterns.

The blue triangle represents B73, while the red diamond indicates

Mo17. All genes with paramutation-like expression patterns were

expressed in the RILs at the expression levels close to one of the

parents. The majority of these genes (124/145) had patterns in

which the RILs were all expressed at levels similar to the lower

parent, while a few genes (21) were expressed at levels close to the

higher parent.

(TIF)

Figure S3 Distribution of d/a values for all differentially

expressed genes (2-fold changes) and genes with a paramutation-

like pattern. (A) Distributions of d/a ratios in the hybrids and the

two parents for paramutation-like genes with lower parental

expression level in the RILs. (B) Distributions of d/a ratios in the

hybrid and the two parents for paramutation-like genes with

higher parental expression level in the RILs. The d/a values

represented here indicate the hybrid expression levels relative to

the low-parent and high-parent levels. In total, 63 of these

paramutation-like genes showed dominant expression patterns in

the hybrids (B736Mo17 and Mo176B73), in which the genes

were expressed at the levels close to one of the parents but

significantly different (P,0.05) from the other parent.

(TIF)

Figure S4 Distribution of expression levels in F2 individuals and

RILs for ten genes with paramutation-like expression patterns. For

each gene shown along the x-axis, the two y-axes show the

expression level for the relative quantitation values in the F2

individuals by qRT-PCR and the RPKM value for the normalized

expression level by RNA-seq in the RILs. The blue triangle

represents B73, while the red diamond indicates Mo17. (A) Seven
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(GRMZM2G015818, GRMZM2G044132, GRMZM2G137696,

GRMZM2G453805, GRMZM2G066049, GRMZM2G089493 and

GRMZM2G349791) of the 10 paramutation-like genes (70%)

exhibited similar expression patterns in the F2 individuals as

observed in the RILs. (B) Three genes (GRMZM2G031331,

GRMZM2G084958 and GRMZM2G102356) did not exhibit

paramutation-like expression patterns in the F2 individuals.

(TIF)

Figure S5 Characteristics of cis-eQTL and trans-eQTL. (A)

Shows the R2 frequency distribution of cis-eQTL and trans-eQTL.

Green bars represent trans-eQTL, blue bars show cis-eQTL and

red area is the overlap in the graph between cis-eQTL and trans-

eQTL. The boxplot shows the R2 comparison among cis-eQTLs,

trans-eQTLs, and trans-eQTLs in trans-eQTL hotspots. In (B), (C)

and (D), the x-axis is the absolute value of log2 of expression-level

in B73 divided by the level in Mo17. (B) The relationship between

the proportion of e-trait distribution and the parental difference.

(C) The relationship between R2 variation of cis-eQTLs and the

parental difference. The y-axis in graph (B) shows the R2 value of

cis-eQTLs. (D) The relationship between R2 variation of trans-

eQTLs and the parental difference. The y-axis shows the R2 value

of trans-eQTLs.

(TIF)

Figure S6 RT-PCR validation of randomly-selected genes with

unexpected expression patterns. RT-PCR was conducted for a set

of genes with unexpected expression patterns using a subset (10) of

the same RILs used for RNA-seq but grown in an independent

experiment. All RT-PCR assays were conducted with Touch-

Down PCR programs of 35 PCR amplification cycles. Graphs (A),

(B), (C) and (D) show the validation of genes with Type I, Type II

and Type IIIA and Type IIIB patterns, respectively. The type I

pattern represents genes that were expressed in both parents but

were not detected (RPKM = 0) in over 10% of the RILs. The type

II pattern shows genes that were not detected (RPKM = 0) in the

parents but were detected in at least 10% of the RILs. The type III

patterns include genes that were expressed in one parent but not

the other and had expression in very few RILs (type IIIA) or the

majority of the RILs (type IIIB).

(TIF)

Figure S7 The genes with unexpected segregation for expression

are present in the genomic DNA of all samples. PCR was

performed on genomic DNA and RT-PCR was performed on

RNA for a subset of genotypes for eight genes with unexpected

expression patterns. All eight genes were detected in the genomic

DNA of all samples but exhibit segregation for gene expression. All

RT-PCR and genomic PCR assays were conducted using the

Touch-Down PCR program with 35 cycles.

(TIF)

Figure S8 The expression levels and standard deviations of

genes with unexpected expression patterns compared with those of

all other expressed genes. The genes with unexpected expression

patterns (UEP) exhibited the same expression levels and standard

deviations as all (All) other expressed genes in the RILs.

(TIF)

Figure S9 Examples of genes with unexpected expression

patterns controlled by two-locus interactions. The x-axis repre-

sents different types of genotypes of the RILs. A and B indicate two

independent loci, AABB represents the Mo17 genotype, while aabb

shows the B73 genotype. The y-axis indicates the normalized

expression levels of the RILs and their parents. The blue triangle

indicates the expression level in B73, while the red diamond

indicates the expression level in Mo17. (A) and (B) show that these

genes with expression in only ,25% of the RILs could be

explained by a two locus interaction, while (C) and (D) represent

genes that exhibit expression in ,75% of the RILs and could also

be controlled by a two locus interaction. (A), (B), (C) and (D)

represent multiple locus interactions for the expression patterns of

Type II, Type IIIA, Type I and Type IIIB, respectively. Taken

together, 91% of genes with expression in only ,25% or 75% of

the RILs were identified to be controlled by pair-wise locus

interactions.

(TIF)

Figure S10 Schematic diagram of the proportion of genes with

different transposons in the flanking genomic regions. The x-axis

represents different transposons, while the y-axis shows different

flanking genomic blocks (5 Kb/block), of which the minus (2) and

plus (+) indicate the upstream from the transcriptional start site of

the gene and the downstream region from the transcriptional

terminal site of the gene, respectively. ‘‘UEP’’ represents the genes

with unexpected expression patterns, whereas ‘‘Control’’ shows

the randomly-selected genes from the filtered-evidence gene set

[2].

(TIF)

Table S1 Summary of RNA-seq data derived from shoot apices

of 105 IBM RILs and B73 and Mo17. The preliminary RNA-seq

analyses (RNA-seq mapping and population SNP calling) were

conducted by Data2Bio (http://www.data2bio.com/) by mapping

trimmed reads to the B73 reference genome AGPv2 (www.

maizesequence.org).

(XLS)

Table S2 Paramutation-like genes detected in the maize IBM

RIL population. a represents the number of standard deviations of

difference between B73 and the RIL population, b represents the

number of standard deviations between Mo17 and the population

mean. The expression levels in the RILs and their parents were

normalized by RPKM. c shows the standard deviation of

expression levels in the RIL population.

(XLS)

Table S3 eQTL mapping of the maize shoot apex. a, b indicate

the chromosome and genetic position of e-traits, respectively; c

shows the physical chromosomal location on the B73 reference

genome (AGPv2) of e-traits; d shows the middle physical position

(equals the sum of the position of the transcription start site and

the termination site divided by 2) of e-traits; e indicates the genetic

position of the peak of the eQTL; f is the genetic position of the

inferior support interval left bound of the eQTL; g is the genetic

position of the inferior support interval right bound of the eQTL; h

represents the physical position of the peak of the eQTL on the

B73 reference genome (AGPv2); i is the Logarithm of Odds (LOD)

score of the eQTL; j is the additive effect, the positive value

indicates that the allele from Mo17 increases the phenotypic value;
k indicates the amount of expression variation of the e-trait

explained by the eQTL; Type shows the relationship between e-

traits and the eQTLs.

(XLS)

Table S4 Summary of trans-eQTL hotspots. a, b show the

number of cis- and trans-eQTLs in each eQTL hotspot,

respectively; c indicates the number of eQTLs, where the B73

allele increased the expression level; d indicates the number of

eQTLs, where the Mo17 allele increased the transcript-level in the

RIL population. eshows the significant level deviating from the

random distribution between B73 and Mo17.

(XLS)
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Table S5 GO annotation of regulated genes at each trans-eQTL

hotspot. The GO enrichment analysis of the regulated genes at

each trans-eQTL hotspot was conducted using BiNGO plugin in

Cytoscape based on the annotation information from AgriGO.

(XLS)

Table S6 MaizeCyc enrichment of regulated genes at each trans-

eQTL hotspot with at least 200 targets. The pathway enrichment

of the regulated genes by hotspots was conducted using BiNGO

plugin in Cytoscape based on the annotation information from

MaizeCyc database.

(XLS)

Table S7 The number of expressed genes intersecting with

CNV/PAV. Mo17.B73_CNV shows segments that are predicted

to occur in more copies in Mo17 than in B73. B.M_CNV

indicates segments containing significantly more copies in B73

than in Mo17, while B.M_int represents segments having

intermediate more copies in B73 than in Mo17. B.M_PAV

shows segments present in B73 but absent in Mo17.

(XLS)

Table S8 Expression of genes entirely within CNV/PAV

regions. a indicates the number of genes with expression level of

B73 significantly higher than Mo17; b represents the number of

genes with expression level of B73 significantly lower than Mo17; c

shows the number of genes with no expression changes between

B73 and Mo17. Mo17.B73_CNV shows segments that are

predicted to occur in more copies in Mo17 than in B73.

B.M_CNV indicates segments containing significantly more

copies in B73 than in Mo17, while B.M_int represents segments

having intermediate more copies in B73 than in Mo17.

B.M_PAV shows segments present in B73 but absent in Mo17.

(XLS)

Table S9 Genes with unexpected expression patterns. a shows

the number of RILs in which no read of the target gene was

detected. b the number of RILs in which the target gene was

expressed. c segregation rate was tested by using Chi-square test. d

Genetic model was inferred according to the segregation rate. e I,

U and S in column ‘‘Syntenic Code’’ represent the syntenic

relationships among grass species: inserted, unknown and syntenic,

respectively. f the classification of whole genome duplication.

(XLS)

Table S10 Expression correlation between genes with unex-

pected patterns and their homologous genes. a shows the middle

physical position (equals the sum of the position of the

transcriptional start site and the terminal site divided by 2) of

the gene; b is the genetic position in the IBM population; c

indicates the coefficient of correlation; d is the action type, cis

indicates the two duplicate genes are located in the same genomic

region, while trans shows the two duplicate genes are not in the

same genomic region. In the column of ‘‘Syntenic Classification’’,

S, I, and U represent Syntenic, Inserted and Unknown,

respectively.

(XLS)

Table S11 Co-regulated genes at hotspots and genes with cis-

eQTL near trans-eQTL hotspots. a refers to trans-eQTL hotspts. b

is the gene with cis-eQTL underneath the hotspot; c indicates the

number of regulated genes by hotspot; d is the number of shared

genes co-expressed with a cis-regulated gene and also found within

a hotspot.

(XLS)

Table S12 Primer information used for validation. The

‘‘partial’’ in Validation Status column means the expression in a

few RILs (less than 2 RILs out of 10 tested RILs) of the other

independent replication did not match with RNA-seq but the gene

still showed an unexpected expression pattern.

(XLS)
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