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Abstract

Fitting Susceptible-Infected-Recovered (SIR) models to incidence data is problematic when

not all infected individuals are reported. Assuming an underlying SIR model with general but

known distribution for the time to recovery, this paper derives the implied differential-integral

equations for observed incidence data when a fixed fraction of newly infected individuals are

not observed. The parameters of the resulting system of differential equations are identifi-

able. Using these differential equations, we develop a stochastic model for the conditional

distribution of current disease incidence given the entire past history of reported cases. We

estimate the model parameters using Bayesian Markov Chain Monte-Carlo sampling of the

posterior distribution. We use our model to estimate the transmission rate and fraction of

asymptomatic individuals for the current Coronavirus 2019 outbreak in eight American

Countries: the United States of America, Brazil, Mexico, Argentina, Chile, Colombia, Peru,

and Panama, from January 2020 to May 2021. Our analysis reveals that the fraction of

reported cases varies across all countries. For example, the reported incidence fraction for

the United States of America varies from 0.3 to 0.6, while for Brazil it varies from 0.2 to 0.4.

Introduction

Susceptible-Infected-Recovered (SIR) models, introduced by Kermack and McKendrick and

further developed by Wilson and Worcester [1, 2], have been extensively used to describe the

temporal dynamics of infectious disease outbreaks [3–5]. They have also been widely used to

estimate the disease transmission rate by fitting the models to observed incidence data [6–8],

such as time series of daily or weekly reported number of new cases provided by [9–12], for

example. Implicit in all these model fittings is the assumption that all the infected individuals

have been observed. Yet that assumption is problematic when disease incidences are under-

reported. Under-reporting of incidence is prevalent in health surveillance of emerging diseases

[13, 14], and also occurs when a disease presents a large fraction of asymptomatic carriers, e.g.,

Typhoid fever, Hepatitis B, Epstein-Barr virus [15] and Zika [16]. Lack of systematic testing
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and the presence of sub-clinical patients, which are prevalent in both Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease

(COVID-19) pandemic [17–20], and Influenza [21, 22], also leads to under-counting inci-

dence and death. Directly fitting an SIR model to raw under-reported incidence will underesti-

mate the transmission rate (see Under-estimation of the transmission rate section). Therefore,

failing to account for the under-reporting will under-estimate the severity of the outbreak, pos-

sibly leading decision makers to call the epidemic under control prematurely.

To account for under-reporting in an SIR-type model, Shutt et. al [ 23] propose to split the

infected individuals into two: an observed category and an unobserved category. This is a spe-

cial case of the Distributed Infection (DI) models introduced in [24]. However, fitting this

model to data is problematic since there are no data from the unobserved category. Further-

more, making inferences about DI model parameters is difficult as there are no adequate sto-

chastic model extensions for the DI models, which implies that there is no analytic expression

for the likelihood. A partial solution of this problem is to use Approximate Bayesian Computa-

tions as in [23] or rely on particle filtering [25]. Finally, we mention two recent approaches to

model asymptomatic individuals in SIR-type models: First Lopman et. al. in [26] model Noro-

virus outbreaks using an SEIR model, with E standing for “exposed”, where the infected would

progress from symptomatic to asymptomatic to immune. Once immune, individuals could

cycle between immune and asymptomatic infection. Second, Kalajdzievska et. al. in [15] pro-

pose an SIcIR model, with Ic standing for “infectious carrier”, where infected individuals are

separated into asymptomatic and symptomatic groups by a given probability as they progress

from the susceptible group.

The aim of this paper is to present a novel approach to estimate the under-reported from

reported incidence data and apply this methodology to COVID-19 incidences. The COVID-

19 pandemic is a particular example of an infectious disease that poses many challenges in

quantifying the under-reported incidence, and hence estimating its infectiousness [19, 27, 28],

as under-reporting arises from the presence of sub-clinical infections [20, 29], asymptomatic

individuals [30, 31], and lack of systematic testing [17, 18]. Accordingly, asymptomatic indi-

viduals account for 20–70% of all the infections [30]. Additionally, early in the China outbreak,

before traveling restrictions, 86% of all infections were not documented [19].

In the development of our methodology, we present two innovations: First, we introduce

an alternative to the DI models that directly describes the dynamics of the observed under-

reported incidences. Specifically, assuming that a constant fraction of the newly infected indi-

viduals is observed, we derive a set of integral-differential equations describing the local tem-

poral dynamics of the observed incidence. Second, we use the local dynamics of the observed

incidence to propose a model for the conditional expectation of new cases, given the observed

past history. Making additional distributional assumptions, we obtain a likelihood for the epi-

demic model parameters: the transmission rate β, and the fraction p of observed incidence.

We refer to Bettencourt and Ribeiro [32] for an interesting alternative framework that leads to

a likelihood for the basic reproduction number R0. We show that as the epidemic progresses,

both of these parameters become identifiable.

Materials and methods

Data source

The time series of the daily number of confirmed COVID-19 cases and total population, N, of

the eight analyzed countries, were obtained from World Health Organization (WHO) reports.

Both data sets can be freely downloaded online: https://covid19.who.int/WHO-COVID-

19-global-data.csv and https://worldhealthorg.shinyapps.io/covid/, respectively [12, 33]. We
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used all available incidence reports up to the present study, which corresponds to the reports

from January 03, 2020 to May 18, 2021.

Model development

Our epidemic model is developed in three steps. First, we extend a generalized SIR model to

describe the dynamics of the observed (under-counted) infections. Second, we introduce a

local version of that SIR model to describel the evolution of the epidemic in a series of observa-

tional time windows given the past time serie of observed incidences. This more flexible model

is used to compute the conditional expectation of current observed incidence given the past

history. Third, we develop a computationally tractable approximation for the conditional

expectation to speed up Monte-Carlo Markov Chain (MCMC) inferences of our model

parameters.

Generalized SIR model. Classical mass-action epidemic models, such as the SIR models,

are simple yet useful mathematical descriptions of the temporal dynamics of disease outbreak

[3–5]. These models describe the temporal evolution of the number of susceptible S(t), infected

I(t) and recovered R(t) individuals in a population of fixed size N = S(t) + I(t) + R(t). We

model their dynamics through the set of integral-differential equations [34]:

S0ðtÞ ¼ �
b

N
SðtÞIðtÞ ð1Þ

IðtÞ ¼
Z t

0

ð� S0ðuÞÞð1 � Fðt � uÞÞduþ Ið0Þð1 � FðtÞÞ ð2Þ

RðtÞ ¼
Z t

0

ð� S0ðuÞÞFðt � uÞduþ Rð0Þ þ Ið0ÞFðtÞ; ð3Þ

with initial conditions S(0), I(0), R(0). The parameter β measures the transmission rate (also

called infection rate [35, 36]) and the function F(t) is the cumulative distribution of the time

from infection to recovery. When F(t) = 1 − e−γt, the exponential distribution with mean γ−1,

our model reduces to the standard SIR model (see Murray [37] for example). For complete-

ness, the proof of existence and uniqueness of the solution of System (1)–(3) is provided in the

appendix. An alternative proof can be found in [34].

The model parameters β and F(t) are epidemiologically relevant and provide insights into

the outbreak. For example, the basic reproductive number as defined by Lotka [38, 39]:

R0 ¼ b

Z 1

0

SðtÞ
N
ð1 � FðtÞÞdt �

b

g
: ð4Þ

The term S(t)/N in Eq (4) is the fraction of susceptible individuals in the population that can

be infected and g� 1 ¼
R1

0
ð1 � FðtÞÞdt is the average recovery time. R0 is arguably the most

widely used measure of the severity of an outbreak [40, 41], at least in the absence of interven-

tions to control it. It measures the expected number of secondary infections attributed to the

index case in a naïve population. Other quantities of interest, such as the maximum number of

infected individuals and the total number of infections, can be expressed in terms of the repro-

ductive number R0, e.g. Weiss [36].

For many diseases, it is reasonable to assume that the disease progression from infection to

recovery is known, either because the disease is well characterized, or because the date of onset

of symptoms, hospital admissions, and discharge data are available [42]. Thus we will assume
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throughout this paper that we know the distribution of the recovery period F(t) and we will

focus on estimating the transmission rate β.

Modeling the observed disease incidence. Let ~SðtÞ, ~IðtÞ and ~RðtÞ denote the observed

number of susceptible, infected and recovered individuals as a function of time. We make the

following modeling assumptions:

(A1) The true underlying dynamics follows the SIR dynamics described by Eqs (1)–(3) with

known fixed population size N and time-to-recovery distribution F(t).

(A2) A constant fraction p of newly infected individuals is observed, that is ~S 0ðtÞ ¼ pS0ðtÞ,
with 0< p< 1. The same fraction p of initial cases is observed, i.e., ~Ið0Þ ¼ pIð0Þ,
~Rð0Þ ¼ pRð0Þ, and ~Sð0Þ ¼ N � ~Ið0Þ � ~Rð0Þ.

(A3) The recovery distribution is the same for observed and unobserved infected individuals.

Under these assumptions, the observed number of infected individuals at time t is

~IðtÞ ¼
Z t

0

ð� ~S 0ðuÞÞð1 � Fðt � uÞÞduþ ~Ið0Þð1 � FðtÞÞ ¼ pIðtÞ; ð5Þ

and similarly, ~RðtÞ ¼ pRðtÞ. The number of observed susceptible individuals is

~SðtÞ ¼ ð1 � pÞN þ pSðtÞ: ð6Þ

Eq (6) follows by solving the differential equation ~S 0ðtÞ ¼ pS0ðtÞ and using the identity

~Sð0Þ ¼ Nð1 � pÞ þ pSð0Þ, which results from (A2) and N = S(0) + I(0) + R(0).

These equations capture the intuitive idea that under-reported incidence results in a

larger number of observed susceptible and fewer infected and recovered individuals through

the epidemic evolution. Consider the ratio, which yields from Assumption (A2) and Eqs (5)

and (6):

� ~S0ðtÞ
~SðtÞ~IðtÞ

¼
� pS0ðtÞ

pIðtÞ½ð1 � pÞN þ pSðtÞ�
¼
b

N
SðtÞ

ð1 � pÞN þ pSðtÞ
¼
b

N
vðtÞ: ð7Þ

For a standard SIR model with p = 1, the ratio v(t) is unity. However, for the observed process,

the ratio v(t) starts at one and then monotonically decreases over time. It follows that fitting an

SIR model to observed incidence data, neglecting the under-reporting, will produce a nearly

unbiased, but possibly noisy estimate for β early in the outbreak when v(t)� 1. As more data

becomes available and v(t) decreases, the estimated transmission rate β will under-estimate the

true value. As a consequence, one might at later times in an outbreak underestimate the sever-

ity of the outbreak and call the epidemic under control prematurely.

The following theorem describes the dynamics of the observed number of susceptible, infected

and recovered individuals when only a fraction p of the infected individuals are observed.

Theorem 1 Under assumptions (A1), (A2), and (A3), the process of the observed individuals
evolves according to the following set of integral-differential equations:

~S0ðtÞ ¼ �
b

Np
~SðtÞ~IðtÞ þ

bð1 � pÞ
p

~IðtÞ ð8Þ
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~IðtÞ ¼
Z t

0

ð� ~S 0ðuÞÞð1 � Fðt � uÞÞduþ ~Ið0Þð1 � FðtÞÞ ð9Þ

~RðtÞ ¼
Z t

0

ð� ~S0ðuÞÞFðt � uÞduþ ~Rð0Þ þ ~Ið0ÞFðtÞ: ð10Þ

The conclusion of the theorem follows from algebraic manipulations of Eqs (1) to (6). The

addition of the positive term ðð1 � pÞb=pÞ~IðtÞ to ~S 0ðtÞ implies a slower depletion rate of the

observed susceptible population than would be expected under the standard SIR model. Note

that this positive term must be small enough such that � ~S0ðtÞ � 0, for all t� 0 and all p> 0,

condition imposed from Assumption (A2). Assumption (A2) of observing the same fraction p
of initial infected and recovered individuals was established only for the technical mathemati-

cal proofs of Eq (5) and ~RðtÞ ¼ pRðtÞ. This mathematical assumption will be relaxed in the fol-

lowing local dynamics definition.

A stochastic model for the observed incidence. Observed incidences of disease are typi-

cally reported at regular time intervals. Precisely, let 0 = t0 < t1 < t2 < . . .< tn denote the

boundaries of the observation windows. For simplicity, we assume that tk = kΔ, and we denote

by Yk the number of new cases of the disease observed in the interval (tk−1, tk], k = 1, 2, . . ., n.

We also assume that the new cases Yk depend on the actual observed past history of incidences

Hk� 1 ¼ fY1;Y2; . . . ;Yk� 1g. As a result, our model takes into account the impact of fluctuations

in the reports. Indeed, imagine that the reported cases Yk are much larger than what is pre-

dicted by Model (8)–(10). That excess of cases will alter the observed dynamics of the outbreak,

making it progress faster. Similarly, smaller numbers of incidences will slow down the out-

break. The following model takes into account past fluctuations in the incidence to model

locally the dynamics of the process at each time interval given the past history.

Definition 1 Let Y1, Y2, . . ., Yk be the sequence of observed incidences and assume that the
cumulative probability distribution F for the time to recovery is continuous. We model the local
dynamics of the observed number of susceptible ~SkðtÞ and infected ~IkðtÞ individuals at time t in
the interval (tk−1, tk] through the set of differential-integral equations

~S 0kðtÞ ¼ �
b

Np
~SkðtÞ~I kðtÞ þ

bð1 � pÞ
p

~I kðtÞ ð11Þ

~I kðtÞ ¼
Z t

tk� 1

ð� ~S0kðuÞÞð1 � Fðt � uÞÞdu

þ
Xk� 1

j¼1

Yj

D

Z tj

tj� 1

ð1 � Fðt � uÞÞduþ ~Ið0Þ 1 � F tð Þð Þ;

ð12Þ

with initial conditions ~Skðtk� 1Þ ¼
~Sð0Þ �

Pk� 1

j¼1
Yj and with the convention that

P0

j¼1
Yj ¼ 0,

where both ~Skðtk� 1Þ > 0 and � ~S0kðtÞ � 0 for all t� 0 and p> 0. For this model, the conditional
expectation of incidence given the past history is

mk ¼ E½YkjY1;Y2; . . . ;Yk� 1� ¼

Z tk

tk� 1

b

Np
~SkðuÞ~IkðuÞ �

bð1 � pÞ
p

~IkðuÞdu; ð13Þ

for all k = 1, 2, . . ., n.
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Remark 1 Continuity of the cumulative distribution of the time to recovery F implies that
~IkðtkÞ is left continuous. Furthermore, if F has a probability density, then ~IkðtÞ admits a right-
hand derivative at tk−1.

The local model described in Definition 1 has the same infection dynamics, Eq (11), as the

global model. What differs is the evolution of the number of infected individuals, and how it

relates to the history of past incidences. The following heuristic serves to motivate Eq (12) in

Definition 1. Decompose the integral in Eq (9) for the number of infected individuals into a

sum over each observed window (tj−1, tj] to write

~IðtÞ ¼
Z t

tk� 1

ð� ~S 0ðuÞÞð1 � Fðt � uÞÞdu

þ
Xk� 1

j¼1

Z tj

tj� 1

ð� ~S0ðuÞÞð1 � Fðt � uÞÞduþ ~Ið0Þð1 � FðtÞÞ:

To get ~IkðtÞ, replace ~S0ðtÞ by its local instantiation ~S0kðtÞ on (tk−1, tk] and ~S 0ðtÞ by Yj/Δ, the

empirical rate of new infections, on the interval (tj−1, tj]. This is interpreted as assuming that

the Yj new infections in the interval (tj−1, tj] occur uniformly in that interval. This allows us to

take into account the actual number of observed incidence in each time interval instead of

using modeled derived quantities, which provides the needs flexibility for our local epidemic

model to better track more complex epidemic dynamics than is possible using a global general-

ized SIR model.

We use the expression for the conditional expectation of incidences in the interval (tk−1, tk]
given the time series of past observed incidences in Definition 1 to model the conditional dis-

tribution of Yk given Hk� 1 ¼ fY1;Y2; . . . ;Yk� 1g. Specifically, we assume that the conditional

distribution of YkjHk� 1 is negative binomial

YkjY1;Y2; . . . ;Yk� 1 � NegBinom
mk

mk þ r
; r

� �

: ð14Þ

A negative binomial counts the number of success in a sequence of identically and indepen-

dently Bernoulli with probability of success p = μk/(μk + r) before r failures (with probability 1-

p) occur, μk is the conditional expectation defined in Eq (13). With this parametrization, the

conditional expectation and variance are

E½YkjHk� 1� ¼ mk and V½YkjHk� 1� ¼ E½YkjHk� 1� þ
m2
k

r
; ð15Þ

respectively. The shape parameter r controls the amount of over dispersion when compared to

a Poisson distribution for which V½YkjHk� 1� ¼ E½YkjHk� 1�. In particular, as the shape parame-

ter r grows to infinity, the negative binomial model converges to a Poisson distribution with

rate μk. Thus, the negative binomial distribution allows us to account for the extra-Poisson var-

iability that arises in the data. Other distributions are possible, such as beta negative binomial

distribution [43] or the Conway-Maxwell-Poisson distribution [44].

With repeated application of the chain rule, we combine the set of conditional distributions

for Yk|Y1, Y2, . . ., Yk−1 into a joint likelihood for the model parameters

Lðb; p; rÞ ¼
Yn

k¼2

P½YkjY1;Y2; . . . ;Yk� 1� � P½Y1� ð16Þ

¼
Yn

k¼2

Gðyk þ rÞ
GðrÞGðyk þ 1Þ

�
mk

mk þ r

� �yk r
mk þ r

� �r

� P½Y1� ð17Þ
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where Γ denotes the gamma function and μk depends only on β and p. Since, in the model for-

mulation, the distribution of Y1 does not contain any information about the transmission rate

and the fraction of observed cases, the term P½Y1� is dropped from the likelihood.

Approximation of the conditional expectation. To reduce the computational burden

required to numerically solve the set of differential-integral Eqs (11) and (12), and the ensuing

integration in Eq (13) to evaluate the conditional expectation, we propose to approximate the

conditional expectation μk by linearizing both ~SkðuÞ and ~IkðuÞ around tk−1 in Eq (13), and inte-

grate the result explicitly. The following lemma encapsulates the resulting approximation.

Lemma 1 Assume that the cumulative probability distribution F for the time to recovery has
a probability density f. The conditional expectation μk can be approximated by

mk ¼ max � D~S0k� 1
1þ

D

2

~I 0k� 1

~Ik� 1

�
b

p
~Ik� 1

N

� �

�
bD

2

3p
~I 0k� 1

N

� �

; 0

� �

; ð18Þ

when ~I k� 1 6¼ 0 and ~Sk� 1=N � ð1 � pÞ, and μk = 0 otherwise. Here,

~Sk� 1 ¼
~Skðtk� 1Þ ¼

~Sð0Þ �
Xk� 1

j¼1

Yj ð19Þ

~I k� 1 ¼
~I kðtk� 1Þ ¼

Xk� 1

j¼1

Yj

D

Z tj

tj� 1

1 � F tk� 1 � uð Þð Þduþ ~Ið0Þ 1 � F tk� 1ð Þð Þ ð20Þ

~S 0k� 1
¼ ~S0kðtk� 1Þ ¼ �

b

p
~Sk� 1

N
� ð1 � pÞ

� �

~I k� 1
ð21Þ

~I 0k� 1
¼ ~I 0kðtk� 1Þ ¼ � ~S0k� 1

�
Xk� 1

j¼1

Yj

D
Fðtk� jÞ � Fðtk� j� 1Þ
� �

� ~Ið0Þf ðtk� 1Þ; ð22Þ

for all k = 1, 2, . . ., n.

Proof of Lemma 1. Eqs (19)–(22) follow directly from the definition of ~Sðtk� 1Þ and the

evaluation of Eqs (11) and (12) at tk−1. To prove Eq (22), we first take the derivative of ~IkðtÞ, Eq

(12), with respect to t and simplify it as follows:

~I 0kðtÞ ¼ � ~S0kðtÞ �
Xk� 1

j¼1

Yj

D

Z tj

tj� 1

f ðt � uÞduþ
Z t

tk� 1

~S0kðuÞf ðt � uÞdu � ~Ið0Þf ðtÞ

¼ � ~S 0kðtÞ �
Xk� 1

j¼1

Yj

D
ðFðt � tj� 1Þ � Fðt � tjÞÞ þ

Z t

tk� 1

~S 0kðuÞf ðt � uÞdu � ~Ið0Þf ðtÞ:

Then, we evaluate at tk−1 and simplify the resulting equation, using the definition of each tk =

Δk:

~I 0kðtk� 1Þ ¼ � ~S0kðtk� 1Þ �
Xk� 1

j¼1

Yj

D
ðFðtk� 1 � tj� 1Þ � Fðtk� 1 � tjÞÞ � ~Ið0Þf ðtk� 1Þ

¼ � ~S0kðtk� 1Þ �
Xk� 1

j¼1

Yj

D
ðFðtk� jÞ � Fðtk� j� 1ÞÞ �

~Ið0Þf ðtk� 1Þ:

From the definition, both ~Sk� 1 and ~I k� 1 are non-negative quantities, and the hypothesis
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~Sk� 1=N � ð1 � pÞ implies that � ~S0k� 1
� 0, for all p> 0. Therefore, all these equations are well

defined. In the proof of Eq (18), the linear approximation of both ~SkðuÞ and ~IkðuÞ around tk−1

are:

~SkðuÞ � ~Skðtk� 1Þ þ ðu � tk� 1Þ
~S 0kðtk� 1Þ ð23Þ

~IkðuÞ � ~Ikðtk� 1Þ þ ðu � tk� 1Þ
~I 0kðtk� 1Þ: ð24Þ

Substituting these equations in the integrand of Eq (13) and solving it yields:

mk �
b

Np
D~Sk� 1

~I k� 1 þ
D

2

2
ð~S 0k� 1

~Ik� 1 þ
~I 0k� 1

~Sk� 1Þ þ
D

3

3
~I 0k� 1

~S0k� 1

� �

�
bð1 � pÞ

p
D~Ik� 1 þ

D
2

2
~I 0k� 1

� �

¼ D
b

Np
~Sk� 1

~I k� 1 �
bð1 � pÞ

p
~Ik� 1

� �

þ
bD

3

3Np
~S0k� 1

~I 0k� 1

þ
D

2

2
~I 0k� 1

b

Np
~Sk� 1 �

bð1 � pÞ
p

� �

þ
b

Np
~S0k� 1

~I k� 1

� �

:

When ~I k� 1 ¼ 0, from Eqs (20) and (22), ~S0k� 1
¼ 0 and ~I 0k� 1

¼ 0. Then μk� 0. When ~Ik� 1 6¼ 0,

using the definition of ~S0k� 1
in the previous equation and simplifying it yields:

mk � � D~S0k� 1
þ
bD

3

3Np
~S0k� 1

~I 0k� 1
�
D

2

2

~I 0k� 1

~I k� 1

~S0k� 1
�
b

Np
~S0k� 1

~I k� 1

� �

;

where the conclusion of Eq (18) follows.

Remark 2 Better approximations for μk can be obtained using higher order Taylor expansions
for ~SkðuÞ and ~I kðuÞ. This requires the distribution F of time to recovery to have higher order
derivatives.

Identifiability. It is known that the measured growth rates in early SIR outbreaks are

insensitive to under-reporting. Indeed, in early outbreaks, S(t)� N and hence I0(t)� (β − γ)I
(t). Under Assumption (A2), we have that ~IðtÞ ¼ pIðtÞ and ~I 0ðtÞ ¼ pI0ðtÞ, which imply that

d
dt

log IðtÞ ¼
d
dt

log ~IðtÞ ¼ b � g:

It follows that the disease incidence grows exponentially with rate β − γ, irrespective on the

fraction p of observed incidence. Hence the transmission rate β can be estimated if the recov-

ery rate γ is known, but the fraction p cannot be estimated at that early stage of the outbreak.

As the outbreak matures and moves away from its early exponential growth phase, it

becomes possible to estimate both the transmission rate β and the fraction p of observed cases.

The following theorem provides verifiable conditions for both these parameters to be

identifiable.

Theorem 2 Set

Uk ¼

Z tk

tk� 1

~SkðuÞ
N

~I kðuÞdu ð25Þ

Vk ¼

Z tk

tk� 1

~IkðuÞdu: ð26Þ
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If the vector (U1, U2, . . ., Um) and (V1, V2, . . ., Vm) are linearly independent, then β and p are
identifiable.

The proof of Theorem 2 is found in the appendix.

Remark 3 As we note earlier, β and and p are not identifiable in the early stages of an out-
break. This is also evident in Theorem 2: In the early stages, we have that ~SkðuÞ � N, so that the
vectors (U1, . . ., Uk) and (V1, . . ., Vk) are essentially co-linear. Later in the outbreak, as Sk(u) is
no longer close to N, both parameters become identifiable.

Bayesian parameter estimation

We use the Metropolis-Hastings algorithm to draw Monte-Carlo Markov chain (MCMC) [45]

samples from the posterior distribution of the model parameters given the epidemic outbreak

data. Our implementation transforms the original parameters Θ = (β, p, r) into

~Y ¼ ðx; Z; rÞ 2 R3
, where ξ = log(β), η = log(p/(1−p)) and ρ = log(r), and selects proposals

from a multivariate Gaussian distribution N ð�j ~YmÞ ¼ Nð ~Ym;SÞ; with mean ~Ym and diagonal

covariance matrix S with entries 0.001, 0.01, and 0.01. The results presented in the next section

are from 40,000 MCMC samples gathered after 40,000 burn-in iterations when starting from

Θ0 = (0.5, 0.5, 25). Our implementation used the approximation for μk presented in Lemma 1.

Following [46, 47], we model the distribution of time to recovery from COVID-19 as the

convolution of a lognormal distribution (with mean = 5.2 and sdlog = 0.662) with a Weibull

distribution (with mean = 5 and sd = 1.9). The mean and standard error of the resulting recov-

ery time distribution are 10.27 and 4.32, respectively. We refer the interested reader to [30] for

a detailed description of additional disease progression parameters of SARS-CoV-2 infection.

Separate chains were run for the time series of incidence data from each country, using all

the data from the date of the first confirmed COVID-19 cases to May 18th, 2021 (see Table 1).

The assumption of a constant transmission rate does not hold, as each country implemented

various mitigation and control strategies, from national lockdown orders to closing of public

meeting places (see Table 1 which shows the date on first implementation of mitigation as

reported in [48]). To avoid having to model the change in the transmission rate resulting from

the implementation of mitigations, our parameter estimation starts on the first day of interven-

tion as reported in Table 1. We still use the whole time series from the time of first confirmed

incidence to estimate the number of infected individuals as defined by Eq (12).

To reduce the impact of weekly reporting patterns (e.g. fewer cases are reported over the

weekend) we apply a moving average of seven days to the raw incidence counts before execut-

ing the MCMC algorithm. Finally, the initial conditions ~S0 ¼ N � pIð0Þ � pRð0Þ, R(0) = 0,

~I0 ¼ pIð0Þ are set using the reported national population counts and number of initial cases as

reported in Table 1.

Table 1. Metadata of analyzed data sets.

Country Initial reports Intervention Population n I(0)

USA January 20 March 22 331,002,651 485 5

Brazil February 26 March 24 212,559,417 448 5

Mexico February 28 March 23 128,932,753 446 6

Argentina March 03 March 19 45,195,774 442 5

Chile March 03 March 24 19,116,201 442 5

Colombia March 06 March 25 50,882,891 439 5

Peru March 07 March 16 32,971,854 438 9

Panama March 10 March 24 4, 314,767 435 5

https://doi.org/10.1371/journal.pone.0263047.t001
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Results and discussion

Analysis of COVID-19 incidence data

We performed separate Bayesian inferences for eight American Countries: the United States of

America (USA), Brazil, Mexico, Argentina, Chile, Colombia, Peru, and Panama. Fig 1 shows

histograms of the marginal posterior distribution of the transmission rate β after the start of

mitigation, the fraction observed p, and the negative binomial shape parameter r for each

country. The median and 95% credible intervals of these posterior distributions are presented

in Table 2.

Even though each country used different mitigation strategies, with various level of enforce-

ment, the credible intervals for the transmission parameter of each of the eight countries over-

lap, with the exception of Peru. There are several hypothesis for why this may be the case: the

effectiveness of the various mitigation strategies is compromised by having a small fraction of

non-compliant individuals, or most of the benefits of the mitigation strategy are achieved by

wearing face masks and moderate social distancing. A third hypothesis is that the estimated

transmission rate in our model is a time average of the instantaneous transmission rates, and

that averaging lessens the differences in transmission rates.

Similarly, the posterior distributions for the fraction of observed incidence are similar

across most of the analyzed countries. The two exceptions are Peru and Mexico, with the

under-reporting in Mexico being particularly acute. This is consistent with the observation

that Mexico has one of lowest numbers of tests performed per reported case [49]. While an

under-reporting factor of about 15 is very large, we believe this effect is real because of how

well the model fits the data (see the appendix) and narrowness of the posterior distribution.

Related analyses of COVID-19 data in Mexico have used values for the fraction of reported

cases of p = 0.2 or p = 0.4 to analyze and forecast the evolution of the COVID-19 pandemic

and hospital demands [50, 51]. These values are closer to the values that we found for the other

Latin American countries. However, these values were not derived from the data. It would be

interesting to use our model to investigate the under-reporting in Mexico at a county level to

see how the results would differ from local to national levels.

Excess deaths [52] provide an alternative measure of the true impact of COVID-19. Using

that measure, [53] reports that COVID-19 deaths in Mexico are under-reported by a factor of

3, whereas we show a factor of 15 for under-reported incidence. This difference may be due

differential testing rates of deceased and infected individuals which may arise from the stan-

dard of care of severely ill patients admitted to intensive care units that requires COVID-19

testing [50, 54].

Our analysis flags Peru as being different from the other countries both in term of having a

higher transmission rate, and a lower reported fraction. Our analysis does not reveal why this

is the case, and further analysis incorporating country level explanatory variables to predict

transmission rates and under-reporting is needed to uncover the reasons why Peru is different

from the other countries in America we studied.

Finally, the estimate of the shape parameter r of the negative binomial distribution shows

that the relative inflation of the Poisson variance ranges from 2%-5%. That effect is statistically

significant. Again, the distributions across the eight countries are commensurate, with the

United States and Peru exhibiting more extra Poisson variability than the other countries.

Under-estimation of the transmission rate

In light of Eq (7), we suggested in the introduction that failing to account for under-reporting

leads to underestimating the transmission rate β. Here, we numerically demonstrate this effect
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Fig 1. Histograms of the marginal posterior distribution of the transmission rate β (left), fraction of reported cases p
(middle) and the negative binomial shape parameter r (right) for each country. The x-axis corresponds to the estimated values,

and the y-axis is the bin’s relative frequency.

https://doi.org/10.1371/journal.pone.0263047.g001
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by fitting an SIR-type model directly to raw incidence data, deliberately neglecting to model

under-reporting. The median and 95% credible intervals of the posterior distribution for the

transmission rate when modeling under-reporting, and when not are displayed in Table 3.

The parameter βp coincides with the values from Table 2, while β1 refers to estimates when

the fraction observed is p = 1. The posterior distribution for shape parameter r were similar for

p unknown and p fixed.

Observe that in all cases, the 95% credible intervals for the transmission rate do not overlap.

This shows that knowledge of the fraction of reported incidence is statistically important.

Variation on the fraction of reported cases

In this section, we consider modeling and estimating a time dependent fraction p(t) of

reported incidence, which can arise from uneven availability of COVID-19 tests [31, 50, 55].

To this end, we model the reported fraction p(t) with a piece-wise constant function:

pðtÞ ¼
XM

k¼1

pkI½xk� 1 ;xkÞ
ðtÞ; ð27Þ

for all 0< t� tn� ξM, where I½xk� 1 ;xkÞ
denotes the indicator function for each interval [ξk−1, ξk).

We regularize the sequence of reported fractions p1, p2, . . ., pM by adding the penalty

M � 1

2
lnðlÞ �

l

2

XM

k¼2

ðpk � pk� 1Þ
2
�

M � 1

2
lnð2pÞ ð28Þ

to the loglikelihood. We assume that the variation between reported fraction, pk − pk−1, are

identically and independently normally distributed with mean zero and variance 1/λ.

Table 2. Parameter median values and credible interval estimations.

Country β 95% CI (β) p 95% CI (p) r 95% CI (r)
USA 0.113 [0.110, 0.116] 0.418 [0.359, 0.502] 25.990 [22.728, 29.629]

Brazil 0.117 [0.114, 0.120] 0.307 [0.264, 0.365] 37.133 [32.372, 42.646]

Mexico 0.117 [0.115, 0.120] 0.067 [0.061, 0.076] 44.260 [37.896, 51.527]

Argentina 0.115 [0.112, 0.117] 0.390 [0.324, 0.509] 41.259 [35.451, 47.574]

Chile 0.112 [0.110, 0.115] 0.335 [0.278, 0.431] 41.222 [35.459, 47.478]

Colombia 0.114 [0.111, 0.117] 0.336 [0.277, 0.440] 37.920 [32.705, 43.725]

Peru 0.122 [0.118, 0.126] 0.190 [0.164, 0.226] 21.229 [18.304, 24.525]

Panama 0.110 [0.108, 0.113] 0.443 [0.379, 0.537] 44.003 [37.691, 51.221]

https://doi.org/10.1371/journal.pone.0263047.t002

Table 3. Parameter median values and credible interval estimations for the observed βp and true underlying β1

rates.

Country βp 95% CI (βp) β1 95% CI (β1)

USA 0.113 [0.110, 0.116] 0.107 [0.105, 0.109]

Brazil 0.117 [0.114, 0.120] 0.110 [0.108, 0.111]

Mexico 0.117 [0.115, 0.120] 0.105 [0.103, 0.106]

Argentina 0.115 [0.112, 0.117] 0.110 [0.108, 0.112]

Chile 0.112 [0.110, 0.115] 0.107 [0.105, 0.108]

Colombia 0.114 [0.111, 0.117] 0.109 [0.107, 0.110]

Peru 0.122 [0.118, 0.126] 0.109 [0.107, 0.112]

Panama 0.110 [0.108, 0.113] 0.105 [0.103, 0.106]

https://doi.org/10.1371/journal.pone.0263047.t003
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Similarly as in the previous section, we performed separate Bayesian inferences to estimate

the posterior distributions of β, p1, p2, . . ., pM, r and λ for each analyzed country: the United

States of America, Brazil, Mexico, Argentina, Chile, Colombia, Peru, and Panama. We trans-

form pk and λ into ηk = log(pk/(1 − pk)) and l = log(λ) and use uniform improper priors on the

transformed parameters. We defined p(t) with constant pieces of length modulo 90 days and

we use the equations from Lemma 2 to compute the expected incidence μk. These equations

generalize the equations from Lemma 1 when p = pk for all k = 1, 2, . . ., M, see the appendix

for further details. The median and 95% credible intervals of the posterior distributions of β, r,
and λ are presented in Table 4. For clarity in the presented results for λ values, we decided to

round them to the nearest integer values. The analogous results for the posterior distributions

for each reported fraction, p1, p2, p3, p4 and p5, are plotted in the second panel of Figs 2–4 for

the United States of America, Brazil, and Peru. The corresponding results for Mexico, Argen-

tina, Chile, Colombia, and Panama are shown in the second panel of S1–S5 Figs. In all cases,

the 95% credible intervals for each pk values are displayed in the blue-shadow areas, while their

median values are plotted in blue-dashed-dotted lines.

Additionally, in the first panel of Figs 2–4 and S1–S5 Figs we show the credibility of the

model estimates for the daily COVID-19 incidence for each country, where the expected

median of reported cases, μk, are plotted in red lines, the upper and lower credible intervals are

plotted in blue lines, while the expected incidences lie in the blue-shadow area with probability

of 95%. The negative binomial distribution function, Eq (14), was used to build the credible

intervals. To estimate the expected cases, the parameter values for β and r were set equal to the

values provided in Table 4 and the pk values were set to the estimated median values of p(t) as

shown in the second panel of each figure and for each country, respectively.

From Table 4, the marginal posterior distributions for the parameter λ overlap for all ana-

lyzed country. All these marginal posterior distributions skewed to the right with large values.

For most countries, the credible intervals for p(t) include a constant function. That is, statisti-

cally, we do not have enough evidence to reject the hypothesis that the reported fraction p(t)
for each country is not a constant function during the entire analyzed data set. And for coun-

tries that have a small variance λ−1 for the increment pk − pk−1, we have further evidence that p
(t) is nearly constant. The one country for which a constant p(t) is not retained is Mexico (see

S1 Fig).

The second panels of Figs 2–4 shows that there are some variations across all pk credible

intervals for the United States of America, Brazil, and Peru. Interestingly, the credible intervals

of pk for each country are all contained in a wider credible interval than those obtained when

assuming a constant fraction p of observed cases as reported in Table 2. Comparing Tables 2

and 4, we see that there are not significant changes on the posterior distributions for β and r

Table 4. Parameter median values and credible interval estimations varying the p values.

Country β 95% CI (β) r 95% CI (r) λ 95% CI (λ)

USA 0.114 [0.111, 0.117] 26.259 [22.833, 29.993] 231 [25, 1843]

Brazil 0.118 [0.115, 0.120] 37.876 [32.864, 43.406] 230 [19, 1905]

Mexico 0.119 [0.116, 0.121] 51.400 [44.576, 59.145] 722 [51, 2798]

Argentina 0.114 [0.111, 0.116] 41.818 [35.933, 48.632] 642 [79, 2056]

Chile 0.113 [0.110, 0.116] 41.232 [35.137, 48.253] 786 [86, 2870]

Colombia 0.114 [0.112, 0.117] 38.553 [33.022, 44.653] 364 [18, 2561]

Peru 0.122 [0.118, 0.125] 22.189 [19.138, 25.786] 416 [32, 1262]

Panama 0.110 [0.108, 0.113] 46.731 [39.783, 54.376] 152 [30, 812]

https://doi.org/10.1371/journal.pone.0263047.t004
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when we assume p constant and p variable. In general, we observe more variation for the

observed proportion p across the countries than within a country. The latter result is not sur-

prising, as countries implemented different testing policies which may affect the way the inci-

dence data were reported [49, 50, 55].

Strengths and weaknesses of the proposed local SIR model

Our model locally exploits the SIR dynamics, using past observations to set the initial condi-

tions. This results in a flexible model that can fit complex patterns, such as multiple waves that

typically require a time varying transmission rate, with a single parameter. This flexibility

comes at a cost: our single estimated transmission rate is a time average of the true time vary-

ing one. And while we show that our model empirically fits the data well within the credible

intervals, we over-estimate the expected incidence in the valleys and under-estimate near the

peaks. It follows that the derived estimates for the reproductive number near a local bottom of

an outbreak will have a positive bias, leading to a more conservative view of the effect of

mitigation.

Our formulation can be generalized to build epidemic models having non-parametric

transmission rates. Such models will alleviate the weakness discussed above, and can be used

to identify model-based uncertainties in models. These extensions will be presented in a forth-

coming paper. We are also planning to extend the model by incorporating the exposed class,

which will provide a more realistic model to study COVID-19 pandemic. As COVID-19 dis-

ease progression depends on both the length of time an individual remains in the exposed and

infectious classes [30]. This model extension would help us to analyze the effect of different

Fig 2. Daily COVID-19 incidence and fraction of reported cases for the United States of America from January 20, 2020 to May 18, 2021.

https://doi.org/10.1371/journal.pone.0263047.g002
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infectious period distributions that could change at the early outbreak due to interventions

such as testing, isolation or contact tracing.

Finally, our model has a limited ability to estimate time-varying under-count fractions.

Numerical experiments have shown that adding more flexibility to how the latter varies over

time degrades our ability to estimate the transmission rate.

Conclusion

We present a new extension of the standard SIR epidemiological models to study the under-

reported incidence of infectious diseases. The new model reveals that fitting a SIR model type

directly to raw incidence data will under-estimate the true infectious rate when neglecting

under-reported cases. Using the epidemic model we also present a Bayesian methodology to

estimate the transmission rate and fraction of under-reported incidence with credible intervals

that result directly from incidence data. We also argue that our statistical model can properly

track and estimate complex incidence reports, where the resulted estimates update as more

data are incorporated.

Using our methodology on the COVID-19 example, we found that the credible intervals for

the transmission rates overlap across the eighth analyzed American countries: the United

States of America, Brazil, Argentina, Chile, Colombia, Peru, and Panama. In all the cases, the

median transmission rates are above 0.105 and below 0.122 (see Tables 2–4). And, for most

countries, the credible intervals for the time dependent fraction of reported cases p(t) include a

constant function, and they also provide a range values for the fraction of reported cases per

each country. In average, from January 03, 2020 to May 18, 2021: the reported incidence frac-

tion for the United States of America and Panama varies from 0.3 to 0.6; the reported

Fig 3. Daily COVID-19 incidence and fraction of reported cases for Brazil from February 26, 2020 to May 18, 2021.

https://doi.org/10.1371/journal.pone.0263047.g003
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incidence fraction for Brazil, Chile, Colombia, and Argentina varies from 0.2 to 0.5; the

reported incidence fraction for Peru varies from 0.15 to 0.35 while for Mexico varies from 0.05

to 0.1 (see Figs 2–4 and S1–S5 Figs).

Appendix

Proof of existence and uniqueness of solutions of the generalized SIR

model

To prove existence and uniqueness of solutions of System (1)–(3), it is further assumed that

the fraction of recovered individuals is defined through a probability distribution function, F:

[0,1)! [0, 1], with the following properties.

Property 1 There exists an integrable function f: [0,1)! [0,1) such that

FðtÞ ¼
Z t

0

f ðuÞdu and
Z 1

0

f ðuÞdu ¼ 1;

for all t 2 [0,1).

Property 2 The average recovery time is finite, i.e.,

1

g
¼

Z 1

0

ð1 � FðtÞÞdt <1:

Theorem 3 Let U be an open set of [0, N] × [0, N] × [0, N] × [0,1) and K a compact subset
of U containing (S(0), I(0), R(0), t0), the initial condition of System (1)–(3), with f(t) continu-
ously differentiable with respect to t, t� 0 in U. Then there exists a unique solution of System

Fig 4. Daily COVID-19 incidence and fraction of reported cases for Peru from March 07, 2020 to May 18, 2021.

https://doi.org/10.1371/journal.pone.0263047.g004
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(1)–(3) through the point (S(0), I(0), R(0)) at t = 0, denoted X(S(t), I(t), R(t), t), with X(S(0), I
(0), R(0), (0)) = (S(0), I(0), R(0)), for all t such that X(S(t), I(t), R(t), t) 2 K.

Proof of Theorem 3 From Property 2, System (1)–(3) is well defined and it is equivalent to

S0ðtÞ ¼ �
b

N
SðtÞIðtÞ ð29Þ

I0ðtÞ ¼
Z t

0

f ðt � uÞS0ðuÞdu � S0ðtÞ � Ið0Þf ðtÞ ð30Þ

R0ðtÞ ¼ �

Z t

0

f ðt � uÞS0ðuÞduþ Ið0Þf ðtÞ; ð31Þ

which is obtained by taking the derivative with respect to t of Eqs (2) and (3) and using

Property 1. Therefore, it is enough to prove existence and uniqueness of solutions of System

(29)–(31). It follows that the function G: U! R3 defined by

GðS; I;R; tÞ ¼ ðS0ðtÞ; I0ðtÞ;R0ðtÞÞ ð32Þ

is continuously differentiable in U, see for example [56, pp. 32]. Since @G
@S,

@G
@I ,

@G
@R, and @G

@t exist and

are continuous in U, then G is continuously differentiable in U. Therefore, the solution of Sys-

tem (29)–(31) exists for the initial condition S(0), I(0), R(0) and is unique in K.

Proof of Theorem 2 Set α1 = β/p and α2 = β(1 − p)/p. Since

p ¼ 1 �
a2

a1

and b ¼ a1 � a2;

identifiability of α1 and α2 implies identifiability of β and p. We can estimate α1 and α2 by min-

imizing the sum of squares

Xm

k¼1

ðYk � a1Uk � a2VkÞ
2
: ð33Þ

The two parameters are identifiable if and only if the vectors (U1, . . ., Um) and (V1, . . ., Vm) are

not co-linear.

Modeling the time dependence fraction of reported incidence

The following definition describes the dynamics of the observed susceptible and infected indi-

viduals when constant fractions pk of infected individuals are observed at each interval (tk−1,

tk], i.e., ~S0kðtÞ ¼ pkS0ðtÞ for all t in that interval of time. This hypothesis allows us to study the

case when the parameter p is a piece-wise time dependent function, as it is defined in Eq (27).

Definition 2 Let Y1, Y2, . . ., Yk be the sequence of observed incidences and assume that the
cumulative probability distribution F for the time to recovery is continuous. We model the local
dynamics of the observed number of susceptible ~SkðtÞ and infected ~IkðtÞ individuals at time t in
the interval (tk−1, tk] through the set of differential-integral equations:

~S0kðtÞ ¼ �
b

Npk
~SkðtÞ~I kðtÞ þ b~IkðtÞ

1 � pk
pk
þ
Xk� 1

j¼1

Yjðpk � pjÞ
Npk pj

þ
Ið0Þðpk � p1Þ

Npk

 !

ð34Þ

~I kðtÞ ¼
Z t

tk� 1

� ~S0kðuÞ
� �

1 � F t � uð Þð Þduþ pk
Xk� 1

j¼1

Yj

Dpj

Z tj

tj� 1

1 � F t � uð Þð Þdu

þ pkIð0Þð1 � FðtÞÞ;

ð35Þ
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with initial conditions for the observed susceptible individuals

~Skðtk� 1Þ ¼ N � p1Ið0Þ �
Xk� 1

j¼1

Yj ð36Þ

and under the hypothesis 1� pk> 0, ~Skðtk� 1Þ > 0, and � ~S 0kðtÞ � 0 for all t and k = 1, 2, . . ., n.

For this model, the conditional expectation of incidence given the past history is

mk ¼ E½YkjY1;Y2; . . . ;Yk� 1� ¼

Z tk

tk� 1

ð� ~S0kðuÞÞdu; ð37Þ

for all k = 1, 2, . . ., n.

Note that Definition 1 and Definition 2 are the same when p = pk for all k = 1, . . ., n. In the

following, we provide the mathematical motivation of Definition 2, using similar ideas as from

the derivation of Definition 1.

First, from the definition of I(t), we re-write Eq (2) as follows:

IðtÞ ¼ Ið0Þ 1 � F tð Þð Þ þ
Xk� 1

j¼1

1

pj

Z tj

tj� 1

ð� pjS
0ðuÞÞ 1 � F t � uð Þð Þdu

þ
1

pk

Z t

tk� 1

� pkS
0ðuÞð Þ 1 � F t � uð Þð Þdu:

Similarly for S(t),

SðtÞ ¼ Sð0Þ �
Z t

0

ð� S0ðuÞÞdu

¼ N � Ið0Þ �
Xk� 1

j¼1

1

pj

Z tj

tj� 1

ð� pjS
0ðuÞÞdu �

1

pk

Z t

tk� 1

� pkS
0ðuÞð Þdu;

where in the second equation we used the hypothesis N = S(0) + I(0). Then, from the above

two equations, we estimate I(t) and S(t) with the equations:

ÎðtÞ ¼ Ið0Þ 1 � F tð Þð Þ þ
Xk� 1

j¼1

Yj

Dpj

Z tj

tj� 1

1 � F t � uð Þð Þdu

þ
1

pk

Z t

tk� 1

� ~S0kðuÞ
� �

1 � F t � uð Þð Þdu

ð38Þ

ŜðtÞ ¼ N � Ið0Þ �
Xk� 1

j¼1

Yj

pj
�

1

pk

Z t

tk� 1

� ~S0kðuÞ
� �

du; ð39Þ

which follow by estimating pj S0(u) with ~SjðuÞ and then setting ~SjðuÞ ¼ Yj=D for all u 2 (tj−1, tj]
and all j = 1, 2, . . ., k−1. The last equality follows by assuming that the total cases Yj occur uni-

formly in the observed interval. Now, solving the integral of Eq (39), with the initial conditions
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~Skðtk� 1Þ defined by Eq (36) and simplifying it, yields:

ŜðtÞ ¼ N � Ið0Þ �
Xk� 1

j¼1

Yj

pj
�

1

pk

~Skðtk� 1Þ �
~SkðtÞ

� �

¼
1

pk

~SkðtÞ þ N 1 �
1

pk

� �

�
Xk� 1

j¼1

Yj
1

pj
�

1

pk

 !

� Ið0Þ 1 �
p1

pk

� �

:

The above equation implies that ~S0kðtÞ ¼ pkŜ0ðtÞ. Therefore, from the estimates ÎðtÞ and ŜðtÞ,
Eqs (38) and (39), and the true transmission dynamics process, Eq (1), we have:

~S0kðtÞ ¼ pkŜ0ðtÞ � � pk
b

N
ŜðtÞÎðtÞ

¼ �
b

N
1

pk

~SkðtÞ þ N 1 �
1

pk

� �

�
Xk� 1

j¼1

Yj
1

pj
�

1

pk

 !

� Ið0Þ 1 �
p1

pk

� � !

~I kðtÞ

where ~I kðtÞ ¼ pkÎðtÞ. Therefore, ~SkðtÞ and ~I kðtÞ satisfy Definition 2.

The next lemma provides a recursive formula to approximate the conditional expectation

μk defined by Eq (37). The equation results directly from solving the integral of Eq (37) with

the linear approximation of both ~SkðuÞ and ~I kðuÞ around tk−1. Its proof is similar to the proof

of Lemma 1.

Lemma 2 Assume that the cumulative probability distribution F for the time to recovery has
a probability density f. The conditional expectation μk can be approximated by

mk ¼ max � D~S0k� 1
1þ

D

2

~I 0k� 1

~Ik� 1

�
b

pk

~I k� 1

N

� �

�
bD

2

3pk

~I 0k� 1

N

� �

; 0

� �

; ð40Þ

when ~I k� 1 6¼ 0 and � ~S0k� 1
> 0, and μk = 0 otherwise. Here,

~Sk� 1 ¼ N � p1Ið0Þ �
Xk� 1

j¼1

Yj ð41Þ

~Ik� 1 ¼
pk

D

Xk� 1

j¼1

Yj

pj

Z tj

tj� 1

1 � F tk� 1 � uð Þð Þduþ pkIð0Þ 1 � F tk� 1ð Þð Þ ð42Þ

~S0k� 1
¼ �

b

pk

~Sk� 1

N
� ð1 � pkÞ �

Xk� 1

j¼1

Yjðpk � pjÞ
Npj

�
Ið0Þðpk � p1Þ

N

 !

~I k� 1 ð43Þ

~I 0k� 1
¼ � ~S0k� 1

�
pk
D

Xk� 1

j¼1

Yj

pj
Fðtk� jÞ � Fðtk� j� 1Þ
� �

� pkIð0Þf ðtk� 1Þ; ð44Þ

for all k = 1, 2, . . ., n.

Supporting information

S1 Fig. Daily COVID-19 incidence and fraction of reported cases for Mexico from Febru-

ary 28, 2020 to May 18, 2021.

(TIF)
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S2 Fig. Daily COVID-19 incidence and fraction of reported cases for Argentina from

March 03, 2020 to May 18, 2021.

(TIF)

S3 Fig. Daily COVID-19 incidence and fraction of reported cases for Chile from March 03,

2020 to May 18, 2021.

(TIF)

S4 Fig. Daily COVID-19 incidence and fraction of reported cases for Colombia from

March 06, 2020 to May 18, 2021.

(TIF)

S5 Fig. Daily COVID-19 incidence and fraction of reported cases for Panama from March

10, 2020 to May 18, 2021.

(TIF)
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