
RESEARCH ARTICLE

NLLSS: Predicting Synergistic Drug
Combinations Based on Semi-supervised
Learning
Xing Chen1☯, Biao Ren2,3☯, Ming Chen2, QuanxinWang2,4, Lixin Zhang2,5*, Guiying Yan6*

1 School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou,
China, 2 Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology,
Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, 3 State Key Laboratory of Oral
Diseases, West China Hospital of Stomatology, Sichuan University, Sichuan, China, 4 University of Chinese
Academy of Sciences, Beijing, China, 5 South China Sea Institute of Oceanology, Chinese Academy of
Sciences, Guangzhou, China, 6 Academy of Mathematics and Systems Science, Chinese Academy of
Sciences, Beijing, China

☯ These authors contributed equally to this work.
* zhanglixin@im.ac.cn (LZ); yangy@amss.ac.cn (GY)

Abstract
Fungal infection has become one of the leading causes of hospital-acquired infections with

high mortality rates. Furthermore, drug resistance is common for fungus-causing diseases.

Synergistic drug combinations could provide an effective strategy to overcome drug resis-

tance. Meanwhile, synergistic drug combinations can increase treatment efficacy and

decrease drug dosage to avoid toxicity. Therefore, computational prediction of synergistic

drug combinations for fungus-causing diseases becomes attractive. In this study, we pro-

posed similar nature of drug combinations: principal drugs which obtain synergistic effect

with similar adjuvant drugs are often similar and vice versa. Furthermore, we developed a

novel algorithm termed Network-based Laplacian regularized Least Square Synergistic

drug combination prediction (NLLSS) to predict potential synergistic drug combinations by

integrating different kinds of information such as known synergistic drug combinations,

drug-target interactions, and drug chemical structures. We applied NLLSS to predict anti-

fungal synergistic drug combinations and showed that it achieved excellent performance

both in terms of cross validation and independent prediction. Finally, we performed biologi-

cal experiments for fungal pathogen Candida albicans to confirm 7 out of 13 predicted anti-

fungal synergistic drug combinations. NLLSS provides an efficient strategy to identify

potential synergistic antifungal combinations.

Author Summary

Drug combinations represent a promising strategy for overcoming fungal drug resistance
and treating complex diseases. There is an urgent need to establish powerful computa-
tional methods for systematic prediction of synergistic drug combination on a large scale.
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Based on the assumption that principal drugs which obtain synergistic effect with similar
adjuvant drugs are often similar and vice versa, NLLSS was developed to predict potential
synergistic drug combinations by integrating known synergistic drug combinations, unla-
beled drug combinations, drug-target interactions, and drug chemical structures. NLLSS
has obtained the reliable performance in the cross validation and experimental validations,
which indicated that NLLSS has an excellent performance of identifying potential syner-
gistic drug combinations. Out of 13 predicted antifungal synergistic drug combinations, 7
candidates were experimentally confirmed. It is anticipated that NLLSS would be an
important and useful resource by providing a new strategy to identify potential synergistic
antifungal combinations, explore new indications of existing drugs, and provide useful
insights into the underlying molecular mechanisms of synergistic drug combinations.

Introduction
In recent years, fungal infection has become one of the leading causes of hospital-acquired
infections with high mortality rates due to growing populations of patients with weakened
immune systems, for example due to cancer, organ transplant or Acquired Immune Deficiency
Syndrome (AIDS). In these patients, infections caused by Candida, Aspergillus and Cryptococ-
cus neoformans fungi strains may take the form of potentially lethal blood stream infections,
lung infections and other infections. For example, Candida causes candidiasis, which becomes
the fourth most common fungal blood stream infection among hospitalized patients in the
United States according to the Centers for Disease Control & Prevention. Unfortunately, fungal
infections that include Candida albicans have become resistant to current drug treatments.
Therefore, there is an urgent need to develop new therapies to overcome the drug resistance
and kill C. albicans.

Drug combinations have been widely used to overcome drug resistance and treat complex
disease such as cancer and infectious diseases [1–4]. Drug combinational treatment could
inhibit new multiple targets and thus provide the opportunity for overcoming drug resistances
of infectious fungi [5–7]. The potential molecular mechanism underlying this is that biological
systems are less able to compensate for the simultaneous activity of two or more drugs
[1,5,8,9]. Indeed, we have seen growing enthusiasm over the development of synergistic drug
combinations in academia, as well as the pharmaceutical industry. For example, CRx-102 is a
novel synergistic drug candidate combination comprised of dipyridamole and low-dose pred-
nisolone. This drug combination can be used for the treatment of osteoarthritis (OA) and has
already completed Phase II study in Knee OA [10]. Also, moduretic, a combination of Amilor-
ide and Hydrochlorothiazide, is used to treat patients with hypertension [11,12]. The use of
synergistic drug combinations can increase treatment efficacy and decrease drug dosage to
avoid toxicity. It also has been pointed out that off-target effects could be overcome by drug
combinations [13]. These advantages have increasingly driven researchers towards the search
for safe and effective combinatorial drugs [5–7,14].

Traditionally, effective drug combinations have been identified through experimentally
screening all possible combinations of a pre-defined set of drugs [5,15]. Given the large number
of drugs, experimental screens of pairwise combinations of drugs will be cost expensive, time
consuming and labor intensive. For example, given n drugs, there will be n(n−1)/2 pairwise
drug combinations and many more higher-order combinations. Furthermore, new drugs will
be produced every year, therefore, the number of possible drug combinations will exponentially
increase [15]. Since a comparatively small number of compounds will provide a very large
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number of combinations [6], experimentally testing all the possible drug combinations would
pose a formidable challenge in terms of cost and time. Even when high-throughput screens are
adopted, limited drug combination experiments would only sample a small fraction of so many
candidate drug combinations. Thus, it is not easy to identify optimal drug combinations using
the experimental screen approach [16]. To overcome this problem, we intend to develop a
method that computationally ‘screens’ synergistic drug combinations and identifies optimal
drug pairs for treating drug resistance of fungus-infected diseases. Our computational methods
can select the most promising drug combinations for rigorous validation through biological
experimentation, thus saving time and money. In this sense, this method could guide the drug
combinations experiments and also benefit the understanding of mechanisms underlying syn-
ergistic drug combinations.

Previous research was mostly focused on defining the concept of synergy, quantitatively
measuring dose-effect curves, and determining whether or not a given drug combination could
achieve synergistic effect according to the definitions of the synergy and experiment results [1].
Ever since Loewe proposed the Loewe additive model to describe synergy drug combination in
1928, numerous researchers have devoted to drug combination analysis [1,14,17–22]. Loewe
defined Loewe additive equation as follows to determine whether or not the given drug combi-
nation would result in a synergistic effect [17,18]:

ðDÞ1
ðDxÞ1

þ ðDÞ2
ðDxÞ2

¼ 1

Variables in the numerator are the dosage of each drug (drug ‘1’ and drug ‘2’) when these
two drugs are combined and x% is the inhibition rate with this concentration combination.
Variables in the denominator are the dosage of each drug that can inhibit the system by x%.
The left-hand side of this equation is less than 1 and more than 1 mean Loewe synergism and
Loewe antagonism, respectively. Then, Bliss defined the expected combination effect as IMult =
IX + IY − IXIY, where IX and IY are single drug inhibition at concentrations X and Y [19]. Beren-
baum proposed the highest single agent (HSA) model, which defined the expected response as
IHSA = max{IX, IY}, where IX and IY are defined in a manner similar to that of the Bliss model
[23]. Chou and Talalay proposed the median-effect equation [21,24,25], the Combination
Index (CI)-Isobologram equation [20,21], and the dose-reduction index equation [21,26] for
quantitative determination of drug combination interactions. In their scheme, CI<1, = 1, and
>1 indicate synergism, additive effect, and antagonism, respectively [1]. Greco also established
a new method, termed universal response surface approach (URSA), for the quantitative
assessment of drug interactions [27]. However, all aforementioned models only determine
whether or not a given drug combination could achieve synergistic effect and can’t be used to
predict potential synergistic drug combinations.

In recent years, some methods have been developed to decrease the number of drug combi-
nation experiments. Jansen et al. [14] used chemogenomic profiles to identify potential combi-
natorial drugs. Firstly, sensitivity-based chemogenomic profile data generated from the
literature and profiling experiments were analyzed. Then, any given compound pair that had
chemogenomic profiles similar to the known synergy pairs was considered as potential antifun-
gal synergy candidates. Chen et al. [28] combined fractional factorial design and stepwise
regression to dramatically reduce the time of experiments required to identify synergistic drug
combinations. However, these two methods both strongly rely on biological experimental
results. Li et al. [29] defined the parameters of topology score and agent score to evaluate the
synergistic relationship for given drug combinations and further established the algorithm
termed NIMS to uncover potential synergistic drug combinations on a large scale. Zhao et al.
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[30] represented drugs based on a set of their properties and further developed a novel compu-
tational method to prioritize candidate drug combinations by integrating molecular and phar-
macological data. Huang et al. [31] integrated clinical side-effect information and the drug
label to predict drug combination and demonstrated that three FDA black-box warned serious
side-effects contributed mostly to the prediction performance. Huang et al. [32] developed a
computational synergistic drug combination prioritization tool (DrugComboRanker) based on
drug functional network construction and partition. Yin et al. [33] shown drug synergy or
antagonism to be a property of target-related network topology and analyzed several basic syn-
ergistic and antagonistic motifs to indicate that designing novel synergistic drug combinations
based on network topology could be promising. Iwata et al [34] integrated known synergistic
drug combinations from the Orange Book and KEGG DRUG database, drug-target interac-
tions, and drug Anatomical Therapeutic Chemical Classification System codes to construct a
sparsity-induced classifier for the potential synergistic drug combination inference. Recently,
considering the important fact that synergistic drug combination may act on the same pathway
through different drug targets, Chen et al. [35] included the information of systematic path-
way-pathway interactions and further developed a novel network-based synergistic drug com-
bination prediction model. However, only computational models have been developed and no
experimental validation could be found in aforementioned seven studies.

Thus, in this study, we developed a novel algorithm, called Network-based Laplacian regu-
larized Least Square Synergistic drug combination prediction method (NLLSS), to conduct
computational ‘screens’ by integrating several types of information such as known synergistic
drug combinations, unlabeled combinations (all the drug combinations without known syner-
gistic evidences), drug-target interactions, and drug chemical structures. NLLSS obtained
excellent performance in both cross validation and independent antifungal drug combinations
prediction. Furthermore, we experimentally confirmed 7 out of 13 predicted antifungal syner-
gistic drug combinations for fungal pathogen Candida albicans. These combinations could
provide new treatments for overcoming fungal drug resistance. Finally, NLLSS provides an effi-
cient strategy to find potential synergistic antifungal combinations by exploring new indica-
tions of existing antifungal drugs. Further, NLLSS could also be used for predicting synergistic
drug combinations for treating other diseases.

Materials and Methods

Antifungal synergistic drug combinations
First, we investigated hundreds of studies on drug combinations and selected 69 compounds
involved in antifungal drug combination experiments (see S1 Table). Then we searched litera-
tures with the keywords ‘synergy’, ‘synergic’, ‘synergistic’, ‘synergism’, ‘interaction’ and ‘combi-
nation’ in the PubMed, Google Scholar and Web of Knowledge and collected 75
experimentally confirmed synergistic antifungal drug combinations (dataset 1, see S2 Table).
Therefore, all the antifungal compounds involved in antifungal drug combination experiments
are considered in this study. We do not require they must have known synergistic partners. We
also classified these compounds into principal drugs and adjuvant drugs according to the fol-
lowing rules. If one compound in the synergistic combination shows activity in the antifungal
assay, but the other does not, as reported before, then the former compound is considered as
the principal drug, and the latter is considered as the adjuvant drug. If both compounds in the
synergistic combination show activity in the antifungal assay, or neither one shows activity, as
reported before, then these two compounds are considered as both principal and adjuvant
drug. If one compound does not have antifungal synergistic effect with any other compound,
then this compound is classified according to its antifungal activity.
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To further confirm the predictive ability of NLLSS, we further obtained two other antifungal
drug combination datasets from the dataset 1: synergistic antifungal drug combinations against
Candida albicans (dataset 2, the drugs are the same as the ones in dataset 1 and the combina-
tions are the ones in dataset 1 against Candida albicans) and synergistic azole drug combina-
tions (dataset 3, the drugs are the ones in dataset 1 which are azole drug and the combinations
are the azole drug combinations in dataset 1). Related information on these two synergistic
drug combination datasets can be obtained from the supplementary materials (See S3–S6
Tables: drugs and synergistic drug combinations in dataset 2 and 3, respectively). Statistics of
three drug combination datasets were listed in Table 1, including the number of drugs, princi-
pal drugs, adjuvant drugs, known synergistic combinations (A), and drug pairs without known
synergistic relationship (B) and the ratio A/B.

In this study, NLLSS was developed based on the framework of Laplacian Regularized Least
Square (LapRLS), which required drugs in the same combination must be divided into princi-
pal drug and adjuvant drug. However, according to the classification rules mentioned before,
many drugs have been considered as both principal and adjuvant drugs. This fact ensure that
we still can obtain plenty of potential synergistic drug combinations composed of two principal
drugs or two adjuvant drugs.

Drug chemical structure similarity
Chemical structure similarities between compounds were calculated by SIMCOMP [36] based
on chemical structure information from the DRUG and COMPOUND Sections in the KEGG
LIGAND database [37]. The similarity calculated from SIMCOMP is a global score based on
the ratio between the size of the common substructures and the size of the union structures
[36]. Applying this operation to all compound pairs, chemical structure similarity scores
between principal (adjuvant) drugs can be obtained

Drug-target interactions
Target proteins of all the drugs in three drug combination datasets were obtained from the
Drug Bank database [38] and related literatures. The drug-protein interactions in three datasets
were shown in S7–S9 Tables, respectively.

Drugs for biological experiments
Ketoconazole, Fluconazole, Voriconazole, Posaconazole, Itraconazole, Terbinafine, Flucyto-
sine, Radicicol, Disulfiram, Lovastatin, Geldanamycin, Caspofungin and Micafungin were pur-
chased from a local pharmaceutical company. Amphotericin B, Beauvericin and FK506 were
purchased from Sigma.

Principles of NLLSS
NLLSS assumes that principal drugs which obtain synergistic effect with similar adjuvant drugs
are often similar and vice versa, which is referred to as the similar nature of drug combinations

Table 1. Statistics of three drug combination datasets were listed, including the number of drugs, principal drugs, adjuvant drugs, known syner-
gistic combinations (A), and drug pairs without known synergistic relationship (B) and the ratio A/B.

Drug Principal drug Adjuvant drug Known synergistic combination (A) Drug pairs without known synergistic relationship (B) A/B

1 69 62 67 75 4079 0.0184

2 69 62 67 71 4083 0.0174

3 55 49 52 73 2475 0.0295

doi:10.1371/journal.pcbi.1004975.t001
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(see the examples in Fig 1 and S1 Fig). Based on this assumption, the following conclusion can
be deduced: principal drugs which obtain synergistic effect with the same adjuvant drug are
often similar and vice versa. In this paper, similarity between two drugs is established on the
basis of drug chemical structure, drug-target interactions, and known synergistic drug combi-
nations. The similar nature of drug combination was further formulated into two classifiers
based on the framework of LapRLS in the principal and adjuvant drug space, respectively. The
classifiers in the principal drug space and adjuvant drug space both considered all possible
drug pairs. They both used the information of known synergistic drug combinations and unla-
beled drug combinations. The difference between these two classifiers was that they adopted
the different drug similarity. Classifier in the principal drug space only used principal drug sim-
ilarity. Correspondingly, classifier in the adjuvant drug space only used the information of
adjuvant drug similarity. Finally, two classifiers were combined into a single classifier to give a
final predictive result. Based on the model, a score to assess how likely two drugs will obtain
synergistic effect can be obtained. Drug combination pairs with high scores can be expected to
have a high probability of obtaining synergistic effect when combined, thus having priority in
subsequent biological experiments and, in turn, reducing the cost of identifying potential syn-
ergistic drug combinations. The flow chart of NLLSS is shown in Fig 2.

Drug similarity calculation
NLLSS first calculates the similarity between drugs. In this model, the similarity between two
drugs depends on three factors: drug chemical structure similarity, drug target similarity, and
drug synergistic similarity.

Fig 1. Schematic illustrating the similar nature of synergistic drug combinations. Blue nodes represent
principal drugs, and yellow nodes represent adjuvant drugs. The arc from the principal drug to the adjuvant
drug means that two drugs have synergistic effect when combined in the antifungal assays. The edge
between two principal (adjuvant) drugs represents the similarity between two drugs. Thickness of edges
linking drugs indicates degree of similarity between them. This figure shows adjuvant drugs which obtain
synergistic effect with similar principal drugs are often similar. Similar principal drugs, Cyclosporine A and FK
506 gain synergistic effect with seven adjuvant drugs, including Fenpropimorph, Fluconazole, Itraconazole,
Ketoconazole, Tunicamycin, Voriconazole, and Terbinafine. It can be observed that those seven adjuvant
drugs are similar. Also the adjuvant drugs which obtain synergistic effect with Ketoconazole are similar and
form a module. On the contrary, most of the adjuvant drugs which obtain synergistic effect with dissimilar
principal drugs (Cyclosporine A and Ketoconazole, FK506 and Ketoconazole) are dissimilar.

doi:10.1371/journal.pcbi.1004975.g001
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Drug chemical structure similarity can be obtained by SIMCOMP as noted before. We
defined principal (adjuvant) drug chemical structure similarity matrix as SPCðSACÞ. Next we want
to extract the information from drug-target interactions for the measurement of drug similar-
ity. The underlying assumption made here was that two drugs are similar if they share more
common target proteins (see Fig 3). Based on this assumption, the principal (adjuvant) drug
target similarity matrix SPTðSATÞ was defined. The entity of the matrix was the number of target
proteins shared by two drugs. Third, we extracted the information from known drug synergis-
tic combinations, assuming that if two principal (adjuvant) drugs obtain synergistic effect with
more common adjuvant (principal) drugs, they will have greater similarity (see S2 Fig). The
principal (adjuvant) drug synergistic similarity matrix was defined as SPS ðSAS Þ. The entity of the
matrix was the number of common adjuvant (principal) drugs which have synergistic effect
with two principal (adjuvant) drugs.

Fig 2. The basic idea of NLLSS is shown. First, the principal and adjuvant drug similarity are calculated
based on drug chemical structure, drug-target interactions, and known synergistic drug combinations. Next,
we construct the synergistic drug combination classifiers in the principal and adjuvant spaces, respectively.
Finally, two classifiers are combined into the final classifier to select potential synergistic drug combinations
for experimental validation.

doi:10.1371/journal.pcbi.1004975.g002

Fig 3. In order to calculate the similarity between two drugs, we extract the information from drug-
target interactions. The underlying assumption made here is that two drugs that share more common target
proteins are more similar.

doi:10.1371/journal.pcbi.1004975.g003

Predicting Synergistic Drug Combinations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004975 July 14, 2016 7 / 23



Drug-target similarity matrix and drug synergistic similarity matrix must be normalized. For

SPT , we defined a diagonal matrixDP
T such thatD

P
Tði; iÞ was the sum of row i of SPT . We set SPT ¼

ðDP
TÞ�1=2SPTðDP

TÞ�1=2 which yielded a symmetric matrix where SPTði; jÞ ¼ SPTði; jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DP

Tði; iÞDP
Tðj; jÞ

p
.

A similar operation was applied to another three matrices. Now, the principal drug similarity
matrix SP can be obtained by linear combination as follows:

SP ¼ aPSPC þ bPSPT þ gPSPS
aP þ bP þ gP

where combinatorial coefficient means the weight of various similarity measures for the final inte-
grated principal drug similarity. Similarly, the adjuvant drug similarity matrix SA can be obtained
by the following form.

SA ¼ aASAC þ bASAT þ gASAS
aA þ bA þ gA

Here, we have adopted the method of weighted averaging for the drug similarity integration,
which means all the drug similar measures have equal weight (i.e. αP = βP = γP = 1/3, αA = βA = γA

= 1/3) for the final drug similarity matrix.

Construction of the classifier
For the employment of the LapRLS, Laplacian operation must be applied to the similarity matrix.
The diagonal matrices DP andDA were defined such that DP(i,i) and DA(i,i) were the sum of row
i of SP and SASA, respectively. The normalized Laplacian matrices were defined as follows:

LP ¼ ðDPÞ�1=2ðDP � SPÞðDPÞ�1=2

LA ¼ ðDAÞ�1=2ðDA � SAÞðDAÞ�1=2

Let matrix Y represents prior synergistic drug combination information. If principal drug i
and adjuvant drug j were known to produce synergistic effect, then Y(i,j) = 1; otherwise Y(i,j) =
0. The aim was to obtain a continuous classification function, which reflected the probability
that two drugs could obtain synergistic effect when combined. Intuitively, it is anticipated that
when similar principal (adjuvant) drugs are combined with the same adjuvant (principal)
drug, these combinations can obtain similar synergistic probability scores. Also this classifica-
tion function should comply with prior synergistic information. LapRLS defines a cost function
and wants to minimize this cost function in order to obtain an optimal classification function.
The classification function was composed of optimal functions in the principal drug space and
adjuvant drug space.

We first address how to obtain optimal classification function in the principal drug space.
Cost function was defined as follows:

F�
p ¼ arg min

FP

½kY � FPk2F þ ZPkFT
p L

PFPk2F�

Where k.kF is Frobenius norm and ηP is the trade-off parameter in the principal drug space.
Then, we can get the optimal classification function [39,40] as follows:

F�
P ¼ SPðSP þ ZPL

PSPÞ�1Y
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We also can get the optimal classification function in adjuvant drug space in a similar man-
ner:

F�
A ¼ SAðSA þ ZAL

ASAÞ�1YT

where ηA is the trade-off parameter in the adjuvant drug space. We set these two trade-off
parameters as 0.3 in this study according to previous literatures [40–43]. Hence, the classifica-
tion function can be obtained by combining the prediction results in both principal and adju-
vant drug space, as follows:

F� ¼ F�
P þ ðF�

AÞT
2

We converted the probability of candidate drug combinations to the Rank Probability (RP).
The probabilities of combinations were ranked in ascending order, and each candidate combi-
nation obtained Rank (R). Rank Probability (RP) of a drug combination was calculated by
Rank (R) divided by the total number of candidate drug combinations (N). In this case, the
most probable synergistic drug combination will get the RP of 1.

Synergistic antifungal bioassay
Candida albicans SC5314 was used as a test strain for antifungal and synergistic antifungal bio-
assay. All procedures were described previously [16]. The experiments were carried out in flat
bottom, 96-well microtiter plates (Greiner), using a broth microdilution protocol modified
from Clinical and Laboratory Standards Institute M-27A methods [44]. Overnight cultures
were selected to prepare the strain suspension with RPMI 1640 medium (Gibco) at the concen-
tration of 1×104 cells/mL counted by hemocytometer. To the test wells in 96-well plates, 2 μL
of the samples were added, followed by an additional 80 μL of the strain suspension. The test
plates were incubated at 35°C. The antifungal MICs were determined by measuring and com-
paring the optical densities of the positive control and test wells at different time points. For
the synergistic antifungal assay, checkerboard assay was used, and beauvericin combined with
ketoconazole served as positive control [16]. The MICs were determined by measuring and
comparing the optical densities of the positive control and test wells at different time points.

Results

Cross validation
We evaluated the predictive performance of NLLSS using leave-one-out cross validation
(LOOCV). To do so, each known synergistic drug combination was treated as a test dataset in
turn, while the remaining known synergistic drug combinations were used as the training data-
set. First, we calculated the enrichment score to measure the performance of NLLSS. When
LOOCV is implemented, if there are n candidate drug combinations without known synergistic
evidences, the enrichment score is calculated by dividing n/2 by the rank of the left-out drug
combination among candidate drug combinations. For example, if NLLSS gives the left-out
known synergistic drug combination the highest ranking (ranked 1st in the candidate drug
combinations), there would be an enrichment score of n/2. Furthermore, if the left-out known
synergistic drug combination is ranked by random, it would have the rank of n/2 and therefore
have an enrichment score of 1. Therefore, enrichment score could represent the difference
between prediction accuracy obtained by NLLSS and random. Here, the average of enrichment
scores for all the left-out known combinations is calculated for the final evaluation. Next,
receiver-operating characteristic (ROC) curve was used as another evaluative measure. The
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ROC curve plots the true-positive rate (TPR) versus the false-positive rate (FPR). The area
under the ROC curve (AUC) was calculated to reflect predictive accuracy. Here, the ROC
curves of NLLSS based on the combination of two classifiers and only based on a single classi-
fier in three drug combination datasets were compared (Fig 4, S3 Fig, S4 Fig). The AUCs for
the combination of two classifiers in three dataset were 0.9054, 0.8963, and 0.8819, respectively,
which shows reliable ability to predict potential synergistic drug combinations. The AUCs for
the classifier in the principal and adjuvant drug space were significantly inferior to the com-
bined classifier, which shows the reasonableness of combining the classifiers in the principal
and adjuvant drug space. Also, the comparisons of combined and single classifiers in terms of
fold enrichment score in the three drug combination datasets were shown in Fig 5, still illus-
trating the prefect performance of NLLSS.

Performance comparison between NLLSS with current state-of-the-art computational mod-
els can’t be reasonably implemented. Different synergistic drug combination benchmark data-
sets and drug data sources for drug similarity calculation have been used in the different

Fig 4. LOOCVwas implemented in the antifungal synergistic drug combinations dataset 1. AUC was calculated to evaluate the performance of
the method. Here known synergistic drug combinations were used as a test dataset. The ROC curves of NLLSS based on the combination of two
classifiers and based only on a single classifier were compared. The results confirmed the performance advantage of combining the classifiers in the
principal and adjuvant drug space into a single classifier.

doi:10.1371/journal.pcbi.1004975.g004
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studies. For example, we only paid attention to antifungal synergistic drug combinations and
integrated drug chemical structure, drug-target interactions, and known synergistic drug com-
binations to calculate drug similarity. In order to compare different computational models
based on the same benchmark dataset, we must obtain different data sources of all the drugs in
the benchmark dataset, such as drug-target interactions, drug side-effect information, and drug
chemical structure. It is difficult to obtain all the datasets. Furthermore, some studies didn’t use
known synergistic drug combinations to predict potential ones. It is unreasonable to directly
compare them with NLLSS. The AUCs of NLLSS was 0.9054, which has been better than
AUCs reported in the previous studies.

Furthermore, in order to confirm NLLSS is robust to the training sample selection, we
implemented 10-fold, 5-fold, and 3-fold cross validation (CV) in all the three datasets, respec-
tively (See Table 2). Here, all the known synergistic combinations were randomly divided into
10-fold, 5-fold, and 3-fold, which means 90%, 80%, and 66.67% of the known synergistic com-
binations were regarded as the training samples for model learning and the other 10%, 20%,
and 33.3% were used as test samples for performance validation, respectively. Considering the
potential influence caused by sample division, we implemented 100 different random divisions

Fig 5. LOOCVwas implemented in three antifungal synergistic drug combinations datasets. Fold enrichment score was calculated to evaluate the
performance of the method. Here known synergistic drug combinations were used as a test dataset. The fold enrichment score of NLLSS based on the
combination of two classifiers and based only on a single classifier were compared. The results confirmed the performance advantage of combining the
classifiers in the principal and adjuvant drug space into a single classifier.

doi:10.1371/journal.pcbi.1004975.g005
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and calculated the mean and the standard deviation of all the obtained AUCs. As the results
listed in Table 2, NLLSS has a reliable and robust performance in all the validation schemas.

Predict potential synergistic antifungal drug combinations using NLLSS. NLLSS was
applied to identify potential antifungal synergistic drug combinations. Known synergistic anti-
fungal combinations in datasets 1, 2, and 3 were used as the training set, respectively. Complete
predictive results for three datasets were listed in S10–S12 Tables, respectively.

Experimental validation of the antifungal drug combinations in fungal
pathogen Candida albicans
To experimentally validate the predicted combinations which have potential synergistic anti-
fungal activities, we tested all combinations in vitro on the leading human pathogen Candida
albicans. Here, we implemented experiments for the top 10 potential drug combinations in all
the three datasets (See Table 3). The synergis tic activities were judged by fractional inhibitory
concentration index (FICI) values, which were calculated by comparing MICs in combinations
with MICs of the each drug used alone (See S13 Table) at different time points. Biological
experimental results indicated that 6, 5, and 6 out of the top 10 potential combinations in three
datasets did indeed obtain antifungal synergistic effect (See Table 3). After the removal of
duplicate combinations, we found 7 synergistic combinations (Fig 6) and proved that 6 groups
were nonsynergistic combinations (S5 Fig) in total. Considering the validated 7 synergistic
combinations are totally new combinations, which have not been reported in any publicly pub-
lished literatures, this prediction accuracy could be considered high. To identify 7 synergistic
combinations, we only need implement experiments for 13 candidate combinations, which

Table 2. Performance of NLLSS under the validation framework of LOOCV, 10-fold CV, 5-fold CV, and 3-fold CV, which have demonstrated the
NLLSS has a reliable and robust performance.

Dataset LOOCV 10-fold CV 5-fold CV 3-fold CV

Dataset 1 0.9054 0.8965+/-0.0066 0.8832+/-0.0095 0.8692+/-0.0119

Dataset 2 0.8963 0.8832+/-0.0077 0.8750+/-0.0110 0.8545+/-0.0131

Dataset 3 0.8819 0.8718+/-0.0066 0.8574+/-0.0112 0.8380+/-0.0139

doi:10.1371/journal.pcbi.1004975.t002

Table 3. Biological experimental results for potential top 10 antifungal drug combinations in three drug combination datasets, and the targets for
the drugs are shown here. In total, 13 drug combinations have been predicted to be the top 10 potential combinations. Seven combinations have been con-
firmed to be synergistic by antifungal biological experiments.

Group Drug 1 Target Drug 2 Target Synergy

1 Ketoconazole ERG11, ergosterol biosynthesis FK506 FKBP12 Y

2 Fluconazole ERG11, ergosterol biosynthesis Amphotericin B Binding to Ergosterol to disrupt the cell membrane N

3 Ketoconazole ERG11, ergosterol biosynthesis Terbinafine ERG1, ergosterol biosynthesis N

4 Ketoconazole ERG11, ergosterol biosynthesis Flucytosine DNA or RNA N

5 Fluconazole ERG11, ergosterol biosynthesis Radicicol Hsp90 Y

6 Fluconazole ERG11, ergosterol biosynthesis Disulfiram ABC transporters N

7 Fluconazole ERG11, ergosterol biosynthesis Beauvericin ABC transporters Y

8 Voriconazole ERG11, ergosterol biosynthesis Caspofungin 1,3-β glucan synthase Y

9 Ketoconazole ERG11, ergosterol biosynthesis Caspofungin 1,3-β glucan synthase N

10 Posaconazole ERG11, ergosterol biosynthesis Terbinafine ERG1, ergosterol biosynthesis Y

11 Ketoconazole ERG11, ergosterol biosynthesis Micafungin 1,3-β glucan synthase N

12 Itraconazole ERG11, ergosterol biosynthesis Lovastatin HMG-Co-A reductase Y

13 Fluconazole ERG11, ergosterol biosynthesis Geldanamycin Hsp90 Y

doi:10.1371/journal.pcbi.1004975.t003
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have greatly reduced the cost and time of pure experimental research. Most of previous compu-
tational studies for synergistic drug combination prediction didn’t implement any experimen-
tal validation. Only Jansen et al (2009) implemented biological experiments for predicted
synergistic combination. However, training samples and criterion of selecting potential combi-
nations for experimental validation were totally different between their studies and NLLSS.
Therefore, it is also difficult to compare these two models based on the accuracy of indepen-
dent prediction.

Fig 6. Synergistic antifungal combinations: The x and y axis indicated the concentrations of the combination drugs used in the
synergistic screening. The dots were the active concentrations for inhibiting the growth of C. albicans in the combinations. All experiments were
performed on 96-well plates and incubated at 35 oC for 48 h. The data from three independent experiments were measured at different time points
(16 h, 24 h and 48 h).

doi:10.1371/journal.pcbi.1004975.g006
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Synergistic drug combinations
Among the predictions, 7 pairs showed synergistic effects. For the Group 1 in Fig 6, FK506 is a
novel immunosuppressant isolated from Streptomyces [45] and has been demonstrated to
bind to FKBP12 to inhibit calcineurin [46], which is the key pathway for the cells responding
to different stresses [47–50]. Radicicol and geldeanamycin from Groups 5 and 13, respectively,
can bind to Hsp90 and alter its function. Also, Hsp90 can act as the molecular chaperone to
calcineurin [51,52]. Synergistic activity between FK506 and ketoconazole occurred at 16 h (Fig
6 and S14 Table), but only at 48 h for radicicol with fluconazole and geldeanamycin with flu-
conazole (Fig 6, S15 and S16 Tables).

Synergism between beauvericin and ketoconazole from Group 7 was identified based on our
high-throughput synergistic screening platform [16]. Beauvericin can inhibit drug efflux
pumps to reduce the accumulation of azoles and present synergistic activity [53], and the syn-
ergistic activity was observed at 48 h (Fig 6 and S17 Table).

In Group 8, caspofungin is a lipopeptide antifungal drug that inhibits the enzyme β(1,3)-
D-Glucan synthase, thus interfering with the integrity of the fungal cell wall [54]. Our results
proved that it could synergize with voriconazole and that synergistic activity started at 24 h
(Fig 6 and S18 Table).

In Group 10, posaconazole is a triazole antifungal drug that inhibits lanosterol 14α-
demethylase (ERG11) to block ergosterol biosynthesis [55,56]. Terbinifine also inhibits ergos-
terol biosynthesis by inhibiting squa lene epoxidase (ERG1) [57]. These two drugs, which have
the same pathway, showed synergistic activity that occurred at 24 h (Fig 6 and S19 Table).

Lovastatin from Group 12 is a member of the drug class of statins, used for lowering choles-
terol by inhibiting the 3-hydroxy-3methylglutaryl-coenzyme A reductase (HMG-CoA reduc-
tase), an enzyme that catalyzes the conversion of HMG-CoA to mevalonate [58]. Lovastatin
could synergize with itraconazole in this study, and the synergistic activity started at 16 h (Fig 6
and S20 Table).

Non-synergistic drug combinations
We found that 6 pairs of the predictions showed non-synergistic synergistic effects. Amphoter-
icin B in Group 2 is a kind of polyene antifungal drug by binding to ergosterol to destroy the
cell membrane [59,60]. Some researchers observed that a combination of azoles (such as posa-
conazole and itraconazole) can decrease the fungal infection burden [61–63]. However, others
have observed no difference using a combination of ketoconazole or fluconazole and ampho-
tericin B [64–66]. Ayse et al. reported that some isolates even showed antagonistic activities
between amphotericin B and fluconazole [67]. Our results proved the absence of synergistic
activity, even after 48 h (S5 Fig and S21 Table).

In Group 3, no synergistic activity was observed between terbinafine and ketoconnazole on
C. albicans, which is in agreement with a previous report [68]. However, it does show syner-
gism with itraconazole [16,69,70], fluconazole, voriconazole [71] and posaconazole (S5 Fig and
S22 Table).

Flucytosine from Group 4 is a fluorinated pyrimidine analogue, and it inhibits fungal RNA and
DNA synthesis [72]. The combination of ketoconazole and flucytosine can increase the antifungal
effect, but no synergistic activity was observed [73]. Our result demonstrated that this combination
only had “additive effect” (0.5<FICI<1), but no synergistic activity (S5 Fig and S23 Table).

Disulfiram in Group 6 is an antifungal and can inhibit the drug efflux pump from C. albi-
cans [74]. Ann et al. found antagonistic activities in clinical isolates when combining disulfiram
with fluconazole [75]. Our results show that the combination of fluconazole and disulfiram
had no synergistic activity during two days of incubation (S5 Fig and S24 Table).
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Micafungin, the second available agent in the echinocandins class, is a potent inhibitor of
1,3-β-D-glucan synthase. It is used against fungal pathogens, such as Candida spp. and Asper-
gillus spp [76]. Our result showed that the combination of voriconazole and caspofungin had
synergistic activity (Group 8), but micafungin did not show synergy with ketoconazole (Group
11, S5 Fig and S25 Table) during two days of incubation, indicating that the interactions
between echinocandins and triazoles may be related to the chemical structures of individual
agents.

For the same reason, in this study, we confirmed that caspofungin has synergistic activity
with voricanazole (Group 8). However, the combination of ketoconazole and caspofungin had
no synergistic activity (Group 9, S5 Fig and S26 Table), just like the nonsynergistic combina-
tion of ketoconazole and micafungin (Group 11, S5 Fig and S25 Table), suggesting that the syn-
ergistic activity may be related to chemical structures.

Discussion
Drug combinations represent a promising strategy for overcoming fungal drug resistance and
treating complex diseases. In this work, NLLSS was developed to predict potential synergistic
drug combinations by integrating known synergistic drug combinations, unlabeled drug combi-
nations, drug-target interactions, and drug chemical structures on a large scale. NLLSS was moti-
vated based on the observation that principal drugs which obtain synergistic effect with similar
adjuvant drugs are often similar and vice versa. Both cross validations and experimental valida-
tions indicated that NLLSS has an excellent performance of identifying potential synergistic drug
combinations. Out of 13 predicted antifungal synergistic drug combinations, 7 candidates were
experimentally confirmed. NLLSS could provide a new strategy to identify potential synergistic
antifungal combinations, explore new indications of existing drugs, and provide useful insights
into the underlying molecular mechanisms of synergistic drug combinations.

Previous research about synergistic drug combinations could be divided into the following
three categories: only give the definition of synergy to determine whether or not a given drug
combination is synergistic, only implemented experiments to screen synergistic combinations,
and only implemented computational predictions to provide potential synergistic combina-
tions. For example, methods such as combination index equation, Loewe additive model, HAS
model, and universal response surface approach, only defined the concept of synergy, mea-
sured dose-effect curves, and determined whether or not a given drug combination is synergis-
tic. Further, plenty of previous research has been devoted to implementing drug combination
screening to search synergistic combinations and certain previous methods [14,28,77] strongly
rely on experimental results, our method predicts synergistic drug combinations based only on
the information from databases and the scientific literatures. Finally, although some computa-
tional methods has been developed, such as the model developed by Li et al. [29], Zhao et al.
[30], Yin et al. [33], Huang et al. [31], Huang et al. [32], Iwata et al [34], and Chen et al. [35],
no experimental validation could be seen in their studies. Therefore, NLLSS differs significantly
from previous methods based on the following four aspects, which also constitute the success
factors of NLLSS. First, chemical structure information, drug-target interactions, and known
synergistic drug combinations were integrated to capture potential synergistic associations.
Second, known experimentally verified synergistic drug combinations were used as a seed data-
set for predicting potential candidate combinations. Furthermore, a semi-supervised technique
was adopted, whose advantage over supervised methods has been shown in many previous
studies. More importantly, we not only developed computational models to quantitatively
identify potential synergistic drug combination candidates, but also implemented experimental
validations. These features highlight that NLLSS is essentially different from most of previous
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methods for drug combination predictions. Furthermore, the drug combination exploration
space of NLLSS could include any drugs even if they do not have any known synergetic part-
ners. Based on the procedure of NLLSS and drug combination similar nature proposed in this
study, one drug could have predicted synergistic drug partners so long as it has at least one sim-
ilar drug and this similar drug has been involved in known synergistic drug combinations. As
mentioned, we implemented 10-fold, 5-fold, and 3-fold CV in all the three datasets, respec-
tively. In this case, many drugs would do not have any known synergistic partners in the train-
ing samples. As the results listed in Table 2, NLLSS has a reliable and robust performance in all
the validation schemas, which could indicated NLLSS could be effectively applied to the drugs
without any known synergistic drug combination partners.

However, some limitations of NLLSS should be mentioned. First, the performance of
NLLSS could be further improved by more available known synergistic drug combinations and
drug-target interactions. Second, a more reliable measure of drug similarity would improve
NLLSS. To do this, more biological information should be integrated to measure drug similar-
ity. We also plan to develop new similarity integration methods to integrate different similarity
measures for the further performance improvement. Furthermore, drugs must be classified
into principal drug and adjuvant drug before predicting potential combinations in our method.
Currently, there is still no acknowledged dividing standard for principal drugs and adjuvant
drugs. Furthermore, when two drugs in the combination were classified as both principal drug
and adjuvant drug, the same drug combination will obtain two different synergistic probability
scores based on NLLSS. In this paper, we only chose the greater score as the final synergistic
probability score of such drug combinations. In this study, NLLSS was developed based on the
framework of LapRLS, which used different drug similarity matrix to construct different classi-
fiers. Therefore, we can’t directly obtain a single classifier from the start. If we introduced the
information of principal drug similarity matrix and adjuvant drug similarity matrix into the
same cost function, we can’t obtain the analytical solution of the corresponding optimization
problem. In the future, we would develop new computational tool, which could construct a sin-
gle classifier in the beginning. Finally, some drug combinations are composed of more than 2
drugs. The current version of NLLSS only can predict drug combinations consisting of 2 drugs.
In future work, we will develop new tools and methods to overcome the limitations of NLLSS.

Finally, predictions based on NLLSS benefits the understanding of the mechanisms underly-
ing synergistic drug combinations. For example, we predicted that the inhibitors from the calci-
neurin pathway and ergosterol biosynthesis pathway are the most popular synergistic
combinations (Groups 1, 5 and 13, Fig 6). Calcineurin is a Ca 2+ / calmodulin-dependent ser-
ine/threonine phosphatase, and its structure and activation pathways are highly conserved
from yeast to high eukaryotes [78]. In C. albicans, some reports revealed the involvement of
calcineurin in antifungal tolerance, cell morphogenesis and virulence. The deletion of genes
from the calcineurin pathway resulted in loss of tolerance to several antifungal agents, such as
fluconazole, terbinafine, inhibitors for ergosterol biosynthesis, and caspofungin, an inhibitor of
cell wall biosynthesis, and other growth-inhibiting agents (e.g., fluphenazine, caffeine) [78].
When fungal cells are treated by triazole drugs, it is possible that cells incur membrane damage,
as well as the accumulation of toxic sterols, and, at this time, the calcineurin pathway is acti-
vated to respond to these stresses [47–50,79]. The use of calcineurin pathway inhibitors makes
fungal cells vulnerable to triazole drugs (Fig 6). These results indicate that many more synergis-
tic antifungal combinations can be discovered from these two pathways.

It is not clear that how lovastatin affects C. albicans, but it was reported that fluvastatin, the
analog of lovastatin, has synergistic effect with itraconazole [51,80,81]. We proved that lova-
statin can also synergize with itraconazole (Group 12, Fig 6 and S20 Table) and that lovastatin
may act in a similar manner with fluvastatin. It is interesting that two inhibitors (Group 10:
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posaconazole and terbinafine) from the ergosterol biosynthesis pathway have synergistic anti-
fungal activity (Fig 6 and S19 Table). Terbinafine targets ERG1, which is the upstream gene for
ERG11, the target for posaconazole. Based on our predictions, it is the only synergistic combi-
nation that targets the same pathway. However, ketoconazole does not show synergistic effect
with terbinafine (Group 3, S5 Fig and S22 Table), indicating either that the synergistic activity
results from the different chemical structure of triazoles or that triazoles have some other
effects on fungal cells, such as mitochondria [82].

Synergistic antifungal activities from groups 1 and 12 can be observed at 16 h, and they
maintain their activity, even after 48 h, but group 8 showed synergistic activity after 24 h incu-
bation. The synergistic activities of groups 5, 7 and 13 can only be observed at 48h. The syner-
gistic activity from group 8 only can be observed at 24 h (Fig 6). These time-course studies
provide important information for the application of these synergistic combinations.

Supporting Information
S1 Fig. Schematic illustrating the similar nature of synergistic drug combinations. Blue
nodes represent principal drugs, and yellow nodes represent adjuvant drugs. The arc from the
principal drug to the adjuvant drug means that two drugs have synergistic effect when com-
bined in the antifungal assays. The edge between two principal (adjuvant) drugs represents the
similarity between two drugs. Thickness of edges linking drugs indicates degree of similarity
between them. This figure shows that principal drugs which obtain synergistic effect with simi-
lar adjuvant drugs are often similar. Similar adjuvant drugs, Amphotericin and Retigeric acid B
(RAB), obtain synergistic effect with eight principal drugs, including Caspofungin, Disulfiram,
Flucytosine, Itraconazole, Ketoconazole, Micafungin, Terbinafine, and Fluconazole. It can be
observed that those eight principal drugs are similar. Also the principal drugs which obtain
synergistic effect with Tamoxifen are similar and form a module. On the contrary, most of the
principal drugs which obtain the synergistic effect with dissimilar adjuvant drugs (Amphoteri-
cin and Tamoxifen, Retigeric acid B and Tamoxifen) are dissimilar.
(TIF)

S2 Fig. In order to calculate the similarity between two drugs, we extract the information
from known drug synergistic combinations. The underlying assumption is that if two princi-
pal (adjuvant) drugs obtain synergistic effect with more common adjuvant (principal) drugs,
they have greater similarity.
(TIF)

S3 Fig. LOOCV was implemented in the antifungal synergistic drug combinations in data-
set 2. AUC was calculated to evaluate the performance of the method. Here known synergistic
drug combinations were used as the test dataset. The ROC curves of NLLSS based on the com-
bination of two classifiers and based only on a single classifier were compared. The results con-
firmed the performance advantage of combining the classifiers in the principal and adjuvant
drug space into a single classifier.
(TIF)

S4 Fig. LOOCV was implemented in the antifungal synergistic drug combinations in data-
set 3. AUC was calculated to evaluate the performance of the method. Here known synergistic
drug combinations were used as the test dataset. The ROC curves of NLLSS based on the com-
bination of two classifiers and based only on a single classifier were compared. The results con-
firmed the performance advantage of combining the classifiers in the principal and adjuvant
drug space into a single classifier.
(TIF)
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S5 Fig. Nonsynergistic antifungal combinations: The x and y axis indicated the concentra-
tions of the combination drugs used in the synergistic screening. The dots were the active
concentrations for inhibiting the growth of C. albicans in the combinations. All experiments
were performed on 96-well plates and incubated at 35 oC for 48 h. The data from three inde-
pendent experiments were measured at different time points (16 h, 24 h and 48 h).
(JPG)

S1 Table. All drugs or compounds used in antifungal drug combination experiments are
listed with their antifungal activity and related references.
(XLS)

S2 Table. All synergistic antifungal drug combinations from the literature are listed with
related references.
(XLS)

S3 Table. All compounds or drugs used in the antifungal drug combination experiments
against Candida albicans are listed with their antifungal activity and related references.
(XLS)

S4 Table. All the synergistic antifungal drug combinations against Candida albicans from
the literature are listed with related references.
(XLS)

S5 Table. All compounds or drugs used in the antifungal azole drug combination experi-
ments in all fungi are listed with their antifungal activity and related references.
(XLS)

S6 Table. All the synergistic antifungal azole drug combinations in all fungi from the litera-
ture are listed with related references.
(XLS)

S7 Table. Target proteins of all drugs in drug combination dataset 1.
(XLS)

S8 Table. Target proteins of all drugs in drug combination dataset 2.
(XLS)

S9 Table. Target proteins of all drugs in drug combination dataset 3.
(XLS)

S10 Table. Complete predictive results for potential antifungal synergistic drug combina-
tion in dataset 1 are listed.
(XLS)

S11 Table. Complete predictive results for potential antifungal synergistic drug combina-
tion in dataset 2 are listed.
(XLS)

S12 Table. Complete predictive results for potential antifungal synergistic drug combina-
tion in dataset 3 are listed.
(XLS)

S13 Table. The MICs of all the test drugs when used alone.
(DOCX)
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S14 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points. The data were the active concentrations for inhibiting the growth of C.
albicans in the combinations. All experiments were performed on 96-well plates and incubated
at 35 oC for 48 h. Data from three independent experiments were measured at different time
points (16 h, 24 h and 48 h). The FIC index was calculated by using the active concentrations
in the two drug combinations compared with the active concentrations of each drug when
used alone (these data for each group were listed in S13 Table).
(DOC)

S15 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S16 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S17 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S18 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S19 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S20 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S21 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S22 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S23 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S24 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

S25 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)

Predicting Synergistic Drug Combinations

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004975 July 14, 2016 19 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s019
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s020
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s021
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s022
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s023
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s024
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s025
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s026
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s027
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s028
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s029
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004975.s030


S26 Table. MICs data for the synergistic antifungal combinations and their FIC index at
different time points.
(DOC)
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