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Acetylcholine has been implicated in both the pathophysiology and treatment of a number
of psychiatric disorders, with most of the data related to its role and therapeutic potential
focusing on schizophrenia. However, there is little thought given to the consequences
of the documented changes in the cholinergic system and how they may affect the
functioning of the brain. This review looks at the cholinergic system and its interactions
with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as
those with the projection neurotransmitters most implicated in the pathophysiologies
of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on
the role of factors normally associated with inflammation in the pathophysiologies of
psychiatric disorders, links between the cholinergic system and these factors will also be
examined. These interfaces are put into context, primarily for schizophrenia, by looking at
the changes in each of these systems in the disorder and exploring, theoretically, whether
the changes are interconnected with those seen in the cholinergic system. Thus, this
review will provide a comprehensive overview of the connectivity between the cholinergic
system and some of the major areas of research into the pathophysiologies of psychiatric
disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated
central cholinergic system.
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INTRODUCTION
The central cholinergic system has been implicated in the patho-
physiology of schizophrenia (Raedler et al., 2006; Scarr and Dean,
2008, 2009) as well as mood disorders (Dilsaver, 1986; Cannon
et al., 2006; Gibbons et al., 2009) and is a target for drug develop-
ment aimed at improving treatments for these disorders (Furey
and Drevets, 2006; Freedman et al., 2008; Scarr, 2012). Whilst
efforts have been made to fully understand the changes that occur
in the cholinergic system with these disorders, the impact of these
changes are rarely considered in the context of their effects on
other systems considered pertinent to the pathophysiologies of
the disorders, or conversely the influence of other systems on
cholinergic functionality. Thus, this review will briefly describe
the central cholinergic system and the changes reported for the
cholinergic system in schizophrenia and, to a lesser extent, mood
disorders. The changes in the cholinergic system will then be con-
sidered in the context of documented changes that occur in other
central neurotransmitter systems in people with schizophrenia
or mood disorders and how such changes may have influenced,
or been influenced by, the cholinergic system. Thus, this is not
a comprehensive review of either the human cholinergic system
(for this see Perry et al., 1999) or of all data relating to the patho-
physiologies of schizophrenia and mood disorders. Whilst the
contemplations on the interactions between the human cholin-
ergic system and other central systems are, by necessity, some-
what speculative they take as given the concept that the brain is

attempting to maintain a stable environment (homeostasis) using
various feedback mechanisms. Thus, this review will give a solid
theoretical framework for conceptualizing the pathophysiologies
of psychiatric disorders as a breakdown of complex systems rather
than a single self-contained gene or biological pathway.

THE CENTRAL CHOLINERGIC SYSTEM
In the human central nervous system, the cholinergic system
has evolved into a complex network with three principle com-
ponents,(i) projections from nuclei of the basal forebrain; these
include the medial septal nucleus, the nucleus basalis of Meynert,
the vertical nucleus of the diagonal band and the horizontal
limb of the diagonal band nucleus, which innervate the hip-
pocampus, most cortical regions and some subcortical nuclei,
(ii) the pedunculopontine-lateral dorsal tegmental projections
from the brainstem to the thalamus, midbrain and other brain-
stem regions and (iii) interneurons in the striatum (most abun-
dant) and the nucleus accumbens (Everitt and Robbins, 1997;
Perry et al., 1999) (see Figure 1). Given the complex nature of
the cholinergic system in the human central nervous system,
it is not surprising that it controls critical, diverse functions
such as sleep, cognition, motor control, and sensory processing.
Importantly, all functions of the cholinergic system are con-
trolled by the interaction of acetylcholine with two families of
receptors; the nicotinic and muscarinic receptors (Dale, 1914).
The nicotinic receptors are cation permeable ligand-gated ion
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FIGURE 1 | A schematic representation of the human central cholinergic system—striatal interneurons not shown. Adapted from (Felten and Shetty,
2010).

channels, in the central nervous system the receptors consist of
alpha (α1–7 and 9–10) and beta (β2–4) subunits which can be
combined to form either homomeric (α7–10) or heteromeric
(α2–6 and β2–4 or α7 with α9 or 10) pentameric receptors,
which are named after their component subunits and appear to
have distinct properties (Millar et al., 2011). By contrast, the
muscarinic receptors are metabotropic, consisting of the M1–M5
receptors. M1, 3 and 5 all couple canonically to Gq/11 proteins;
stimulating hydrolysis of inositol phosphate, whilst M2 and 4
couple to Gi/o proteins, decreasing cyclic adenosine monophos-
phate(cAMP) levels. All five receptors are found in the human
brain, with discreet distribution patterns, implying different
functions (Challiss and Tobin, 2009). Ultimately, the functional
outcome of central cholinergic stimulation depends on the bal-
ance between activation of both receptor families (Lucas-Meunier
et al., 2003).

THE CENTRAL CHOLINERGIC SYSTEM IN SCHIZOPHRENIA AND MOOD
DISORDERS
The cholinergic system has been proposed to contribute to
the pathophysiology of schizophrenia as a result of either
an imbalance between central cholinergic and dopaminer-
gic systems (Tandon and Greden, 1989) or an over activa-
tion of the pedunculopontine-lateral dorsal tegmental nuclei

(Yeomans, 1995). More recently, it has been shown that adjunctive
acetylcholinesterase inhibitors can be of use in treating visual hal-
lucinations (Patel et al., 2010; Abad et al., 2011), suggesting a
hypo-cholinergic milieu may underlie these symptoms. However,
a number of trials have failed to show that cholinesterases offer
any significant improvement in the symptoms of schizophrenia
(Buchanan et al., 2003, 2008; Friedman, 2004; Dyer et al., 2008;
Keefe et al., 2008), suggesting that the problems in the cholinergic
system in schizophrenia are not simply due to changes in levels of
acetylcholine.

The perturbations of the central cholinergic system have been
thoroughly reviewed previously (Raedler et al., 2006; Scarr and
Dean, 2008, 2009; Jones et al., 2012; Scarr, 2012) so the main
points will simply be summarized:

1. The most reproduced finding is a widespread decrease in
levels of muscarinic receptors in the brains of people with
schizophrenia, this has been replicated in four separate post-
mortem collections (Mancama et al., 2003; Zavitsanou et al.,
2004; Newell et al., 2007; Gibbons et al., 2013) and a neu-
roimaging study (Raedler et al., 2003).

2. Epibatidine binding, predominantly to the α4β2 nicotinic
receptor, has been reported to be increased in people with
schizophrenia (Martin-Ruiz et al., 2003).
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3. The most investigated nicotinic receptor is the α7 nicotinic
receptor which is associated with a sensory gating deficit
present in people with schizophrenia (Adler et al., 1992) and
other psychiatric disorders, although animal studies suggest
that a lack of α7 receptors does not affect sensory gating
(Paylor et al., 1998). In tissue from people with schizophrenia,
levels of hippocampal α7 receptors have been reported to be
decreased (Freedman et al., 1995) and unchanged (Thomsen
et al., 2011), using a-bungarotoxin [which binds predomi-
nantly to α7 (Couturier et al., 1990)]. However, α7 mRNA
expression is deceased in lymphocytes (Perl et al., 2003) and
the expression of a particular splice variant is decreased in the
brains from people with the disorder (Severance and Yolken,
2008), maintaining interest in this site as a potential drug
target.

The first indication that the cholinergic system was involved in
the pathophysiology of mood disorders came from the develop-
ment of depressive symptoms in people who had been exposed
to cholinesterase inhibitors (Rowntree et al., 1950; Gershon and
Shaw, 1961). More recently a number of studies have implicated
the muscarinic system, in particular the M2 receptor, in the mood
disorders (Cannon et al., 2006; Furey and Drevets, 2006; Gibbons
et al., 2009). One aspect of the pathophysiology of psychiatric
disorders that is often not explored is how these changes may
either arise from changes in other systems or affect the function-
ality of those systems. This review will explore these interactions
theoretically, using data available from the literature.

INTERACTIONS WITH INTRINSIC NEUROTRANSMITTERS
For the purpose of this review, the term intrinsic has been
used to describe neurotransmitters that predominantly act locally
throughout the central nervous system, although they may
have some neurons that project across different brain regions.
These neurotransmitters include the excitatory amino acid glu-
tamate and the inhibitory amino acid gamma-amino butyric acid
(GABA).

GLUTAMATE
Glutamate in the central nervous system
Glutamate is the most abundant excitatory neurotransmit-
ter in the human central nervous system, the effects of
which are mediated via two classes of receptors; ionotropic[N-
methyl-D-aspartate (NMDA), 2-amino-3-(3-hydroxy-5-methyl-
isoxazol-4-yl)propanoic acid (AMPA), and kainate receptors] and
metabotropic (mGluR1−8) receptors (Traynelis et al., 2010). Like
other ligand gated ion channels, the ionotropic glutamatergic
receptors consist of combinations of subunits, in this instance
creating tetramers, which give the receptors distinct properties.
NMDA receptors are also voltage dependant and consist of two
constitutive NR1 subunits, of which there are eight variants, and
two NR2 subunits, of which there are four variants. AMPA recep-
tors consist of combinations of the GluR1-4 subunits whilst the
kainate receptor exists as combinations of GluR5-7 and KA1-2.
Glutamate can also signal through metabotropic receptors; the
Group I (mGluR1 and mGLUR5) which couple to Gq protein;
stimulating inositol phosphate hydrolysis or Group II (mGluR2

and mGluR3) and Group III (mGluR4, mGluR6, mGluR7,and
mGluR8), both of which couple to Gi/Go protein and decrease
levels of cAMP (Niswender and Conn, 2010).

Glutamate in schizophrenia
Magnetic resonance spectroscopy studies have reported elevated
glutamate levels in the hippocampus and prefrontal cortex of
patients with schizophrenia (van Elst et al., 2005), highlight-
ing these areas as major regions of glutamatergic dysfunction
in the disorder. The ability of NMDA receptor antagonists,
such as ketamine and phencyclidine, to induce psychotic symp-
toms in healthy individuals and exacerbate symptoms in people
with schizophrenia (Lahti et al., 2001) led to a focus on the
role of the ionotropic glutamate receptors in the pathophysiol-
ogy of schizophrenia. However, the data regarding NMDA and
AMPA receptor levels in schizophrenia is inconsistent (Gao et al.,
2000; Dean et al., 2001; Scarr et al., 2005; Beneyto et al., 2007;
McCullumsmith et al., 2007). For example, binding of [3H]MK-
801, which binds to open NMDA receptors, in hippocampal tissue
from individuals with schizophrenia has been reported to be both
decreased (Beneyto et al., 2007) and unaltered (Gao et al., 2000;
McCullumsmith et al., 2007). The lack of altered hippocampal
gene expression (Beneyto et al., 2007) also contrasts with the
report of decreased NR1 and increased NR2B subunit mRNA lev-
els in the absence of altered [3H]MK-801 binding (Gao et al.,
2000). NR1 protein levels are reportedly unaltered in the hip-
pocampus (Toro and Deakin, 2005), suggesting that overall levels
of the NR1 subunit are not altered. Increased expression of NR2C
mRNA and an increased proportion of NR2D mRNA relative to
other NR2 subunits have been reported in the prefrontal cortex
from people with schizophrenia (Akbarian et al., 1996), suggest-
ing that NDMA receptor subunit ratios may be altered in the
disorder, which would impact receptor function. This possibil-
ity gains some support from the finding of increased NR1 and
NR2A, but not NR2B, mRNA levels in the dorsolateral prefrontal
and occipital cortices from elderly subjects with schizophrenia
(Dracheva et al., 2001). However, the fact that different subunits
are over expressed could either suggest that changes in NMDA
receptor composition vary with age or may simply reflect the
heterogeneity of the disorder.

While small decreases in AMPA receptor radio ligand bind-
ing are reported in CA2 of the hippocampus (Gao et al., 2000),
other studies have failed to detect changes in hippocampal AMPA
receptors (Noga and Wang, 2002; Beneyto et al., 2007). Although
[3H]MK-801 and [3H]AMPA densities have generally not been
altered in the prefrontal cortex in schizophrenia (Healy et al.,1998;
Scarr et al., 2005), at least one study has reported increased AMPA
receptor levels (Noga et al., 2001). However, this group failed
to replicate their original finding in a larger cohort, reporting
decreases in striatal and accumbal AMPA receptors, highlighting
the heterogeneity of changes in the glutamatergic system in the
disorder.

With regards to the kainate receptor, a reduction in radioli-
gand binding density and a reduction in GluR5 mRNA expres-
sion have been reported in the prefrontal cortex from people
with schizophrenia (Scarr et al., 2005). Whilst hippocampal
kainate receptor levels are reportedly unchanged in schizophrenia
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(Noga and Wang, 2002; Beneyto et al., 2007), decreased GluR6
and KA2 mRNA expression has been reported in some (Porter
et al., 1997) but not all (Beneyto et al., 2007) studies, suggesting
that the composition of kainate receptors may also be altered in
some people with the disorder.

There is increasing awareness of the potential for target-
ing metabotropic glutamate receptors as modulators of gluta-
mate release, ionotropic receptor response, and glutamatergic
signal transduction, in the treatment of schizophrenia (Vinson
and Conn, 2012). Their prospective usefulness is supported
by the report of decreased mRNA levels of the mGluR1α iso-
form in the dorsolateral prefrontal cortex in schizophrenia
(Volk et al., 2010). Although the cortical binding density of
the mGluR2/mGluR3 selective ligand, [3H]LY354740, is reported
to be unaltered in schizophrenia (Frank et al., 2011), corti-
cal binding of [3H]LY341495, another mGluR2/mGluR3 selec-
tive ligand, and mGluR2 but not mGluR3 mRNA has been
reported to be decreased in subjects with schizophrenia, 84% of
whom died by suicide (Gonzalez-Maeso et al., 2008). LY341495
has recently been shown to be efficacious in the tail suspen-
sion test and novelty suppressed feeding test in mice (Koike
et al., 2013), suggesting mGluR2/mGluR3 may be involved in
mood state. Therefore, the contribution of suicide to these
findings needs to be further explored. Increased hippocam-
pal and amygdala levels of the endogenous mGluR3 agonist,
N-acetylaspartylglutamate, have been reported in people with
schizophrenia (Reynolds and Reynolds, 2011), suggesting that
both ionotropic and metabotropic arms of the glutamatergic
system may be affected by the disorder.

Cholinergic modulation of glutamatergic function
Acetylcholine has been shown to modulate glutamatergic exci-
tatory postsynaptic potentials in several brain regions (Li and
Pan, 2001; Zhang and Warren, 2002; Hamam et al., 2007), with
the effects being either inhibitory or stimulatory. For example,
acetylcholine has been found to increase excitatory postsynap-
tic potentials via nicotinic receptor signaling in the hippocam-
pus (Radcliffe et al., 1999), hypothalamus (Li and Pan, 2001),
and nucleus accumbens (Zhang and Warren, 2002). By contrast,
acetylcholine or carbachol administration produce long lasting
reductions of stimulus-evoked excitatory postsynaptic potential
amplitude in the bed nucleus of the stria terminalis and in basal
forebrain neurons (Allen et al., 2006; Guo et al., 2012), an effect
supporting the finding that endogenous application of acetyl-
choline to hippocampal synaptosomes reduced glutamate levels
(Marchi et al., 1989). The ability of the muscarinic antagonist
atropine, but not nicotinic antagonists, to ameliorate these effects,
combined with the ability of oxotremorine to inhibit glutamater-
gic currents in auditory cortical slices suggest that muscarinic
receptors mediate the inhibition of glutamate release (Marchi
et al., 1989; Atzori et al., 2005; Allen et al., 2006; Guo et al., 2012).
Furthermore, in the nucleus accumbens, the inhibitory effects of
atropine on excitatory postsynaptic potentials can be replicated
with pirenzepine (Zhang and Warren, 2002), suggesting that the
M1 and/or M4 are involved in regulating glutamate neurotrans-
mission in this region. Significantly, the effect of acetylcholine on
glutamatergic transmission appears to depend on the timing of

the acetylcholine release relative to activating the glutamatergic
neuron (Gu and Yakel, 2011). In the hippocampus, acetylcholine
release prior to glutamatergic activation results in nicotinic
α7 receptor-mediated long term potentiation or depression,
whilst glutamatergic activation followed by acetylcholine release
resulted in muscarinic receptor-mediated long term potentiation.

In the hippocampus, M1 and M3 have been shown to
potentiate kainate receptor currents, increasing mossy fiber
axon excitability. This modulation is subunit dependant, for
example; muscarinic receptor activation potentiates heteromeric
GluR6/KA1 and GluR6/KA2 receptors, but not homomeric
GluR6 receptors (Benueniste et al., 2010). Thus, in schizophre-
nia, with reports of decreased hippocampal GluR6 and KA2
mRNA levels (Porter et al., 1997), abnormal kainate subunit ratios
could affect receptor functionality. However, it is unclear whether
muscarinic receptors affect signaling through kainate receptors
composed of the GluR5 subunit, which is thought to underpin
the reduction in cortical[3H]kainate density in individuals with
schizophrenia (Scarr et al., 2005).

Glutamatergic regulation of cholinergic function
Glutamatergic signaling has been shown to modulate acetyl-
choline release, predominantly via the ionotropic receptors.
For instance, cortical microinjections of the NMDA recep-
tor antagonist 3-(2-Carboxypiperazin-4-yl)propyl-1-phosphonic
acid (CCP) increased acetylcholine release in the nucleus accum-
bens, an effect blocked by local perfusions of both CCP and
the AMPA receptor antagonist 6,7-Dinitroquinoxaline-2,3-dione
(DNQX) (Del Arco et al., 2008). By contrast, AMPA and NMDA
increase acetylcholine release in the basal forebrain (Fournier
et al., 2004), where AMPA is more effective, and striatum
(Anderson et al., 1994; Ishida et al., 2005), where the NMDA
antagonist MK-801, but not the AMPA/kainate antagonist 2,
3-dihydroxyl-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NQBX),
reduced acetylcholine efflux (Anderson et al., 1994); suggesting
NMDA receptors may be more potent at regulating striatal acetyl-
choline release. NMDA and AMPA receptors work in concert
to mediate glutamatergic signaling (Maeng et al., 2008), there-
fore, these differences may reflect the relative contributions of the
receptors in eliciting a response in different brain regions.

The respective modulation of glutamate and acetylcholine
release by cholinergic and glutamatergic pathways respectively
depend on the co-expression of appropriate receptors within neu-
rons and their synaptic connections. Microdialysis of AMPA into
rat cortex facilitated acetylcholine release in the parietal and pre-
frontal cortices, an effect attenuated by DNQX (Nelson et al.,
2005). Furthermore, DNQX partially attenuated the release of
acetylcholine in the parietal cortex caused by carbachol admin-
istration to prefrontal cortex. These data suggest that cholinergic
signaling in the parietal cortex is co-regulated by cholinergic and
glutamatergic input from the prefrontal cortex. However, pre-
frontal cortical cholinergic afferents were not regulated by AMPA
signaling from the parietal cortex, suggesting that the glutamater-
gic control is unidirectional. Further evidence for co-regulation
comes from Group1 mGluRs acting in conjunction with mus-
carinic receptors to produce long lasting increases in excitatory
postsynaptic potentials (Park and Spruston, 2012), possibly via
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protein kinase C (PKC)-mediated activation of Src tyrosine kinase
(Lu et al., 1999). This co-regulation is supported by reports
that co-administrating carbachol and rolipram, a phosphodi-
esterase inhibitor which prevents cAMP inhibition, produces long
lasting increases in hippocampal excitatory postsynaptic poten-
tials associated with brain derived neurotrophic factor-dependant
long term potentiation (Navakkode and Korte, 2012). Further
support for interactions between the two systems come from
studies demonstrating that M1 receptors suppress NMDA recep-
tor function in cornu ammonis (CA) 3 pyramidal cells (Grishin
et al., 2004, 2005), by inducing tyrosine phosphatase-mediated
suppression of NMDAR activity (Grishin et al., 2005) and that
activation of NMDA receptor can lead to the phosphorylation
and desensitization of muscarinic receptors. These data pro-
vide the basis for a proposed feedback regulatory mechanism
for glutamatergic/cholinergic signaling (Butcher et al., 2009) (see
Figure 2).

Studies have also shown that ventral tegmental presynaptic
metabotropic glutamate and muscarinic receptors preferentially
inhibit the NMDA mediated component of synaptic transmission

(Zheng and Johnson, 2003). In CA1 and CA3 pyramidal cells
muscarinic receptors and mGluRs can be simultaneously coupled
to inhibitory and stimulatory pathways to modulate NDMAR
activity in a calcium-dependent (Grishin et al., 2004), cell specific
manner. Thus, these systems appear to rely on cooperation to reg-
ulate ionotropic receptor function. Hippocampal M1 and M4 are
predominantly responsible for the direct cholinergic modulation
of the excitatory CA1-CA3 circuit (Dasari and Gulledge, 2011).
CA1 slices from mice lacking CA3 M1 have reduced mGluR medi-
ated long term depression compared to mice with normal CA3
M1 levels (Kamsler et al., 2010), this effect was reversed by acti-
vating PKC. Together, these data led to the proposal that normal
M1 levels are necessary to maintain baseline PKC activity and
that additional PKC stimulation by Group 1 mGluR’s facilitates
mGluR-mediated long term depression at CA3 presynaptic ter-
minals. Thus, it is possible that in schizophrenia, where deficits
in M1 have been reported (Scarr et al., 2009; Gibbons et al.,
2013), the PKC activity mediated by the combined signaling of
M1 and mGluRs may be insufficient to maintain normal synaptic
functionality.

FIGURE 2 | A schematic diagram of the regulation of NMDA receptor

activity by Gq protein-coupled muscarinic receptors in the

hippocampus. Muscarinic receptors inhibit NMDA receptor activity via the
activation of protein tyrosine phosphatase mediated by inositol
triphosphate receptor pathways in conjunction with AMPA receptor
induced calcium release from intracellular calcium stores. Muscarinic
receptors can stimulate NMDA receptor activity via the activation of Src
family tyrosine kinase in response to PKC signaling. Activation of the
NMDA receptor by glutamate or aspartate and the co-agonist glycine, in
turn inhibits muscarinic receptor activity via calmodulin inhibition of G

protein coupled receptor kinases. αq: Gqα subunit; β: Gβ subunit; γ: Gγ

subunit; ACh: Acetylcholine; AMPAR; AMPA receptor; Asp: Aspartate;
CaM: Calmodulin DAG: Diacyl glycerol; Glu: Glutamate; Gly: Glycine; GPRK:
G protein coupled receptor kinase; InsP3: Inositol 1,4,5-trisphosphate;
IP3R: Inositol triphosphate receptor; M1R: Muscarinic M1 receptor; M3R:
Muscarinic M3 receptor; MEK: Mitogen-activated protein kinase kinase;
NMDAR: NMDA receptor; PLCβ: Phospholipase C β; PIP2;
Phosphatidylinositol 4,5-bisphosphate; PKC: Phosphokinase C; PTK2B:
Protein tyrosine kinase 2β; PTP: Protein tyrosine phosphatase; RTK:
Tyrosine kinase receptor; SRC: Src family tyrosine kinase.
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Acetylcholine and glutamate in schizophrenia
The dual role of the cholinergic system, activating and inhibit-
ing glutamatergic signaling, presents challenges in predicting the
effects of (i) the M1 deficits associated with and (ii) the NMDA
receptor hypofunction predicted in schizophrenia. However, ani-
mal studies have shown that inhibitory avoidance memory con-
solidation can be repressed by co-administration of muscarinic
and NMDA antagonists to the ventral tegmentum, at doses that
were ineffective when used alone (Mahmoodi et al., 2010), indi-
cating a synergistic interaction. Thus, it is possible that the
disturbances in central function seen in schizophrenia could be
underpinned by a loss of synaptic plasticity due to suppression of
both glutamatergic and cholinergic signaling.

Importantly, the processes governing acetylcholine and glu-
tamate release in turn regulate and are regulated by additional
neurotransmitters. For example, stimulating nicotinic receptors
reduces AMPA -evoked synaptosomal dopamine overflow (Grilli
et al., 2012). In addition, the co-administration of dopamine
and muscarinic agonists to rat cortical slices inhibits the mus-
carinic receptor mediated reduction in excitatory postsynaptic
potentials (Atzori et al., 2005). Therefore, the alterations in
cholinergic signaling that occur in schizophrenia need to be
regarded as a component of a much broader breakdown of central
neurotransmission.

GAMMA-AMINO BUTYRIC ACID
Gamma-amino butyric acid in the central nervous system
GABA is the major central inhibitory neurotransmitter, in mam-
mals 25–50% of central synapses utilize GABA (Petroff and
Rothman, 1998), making it essential for the balance between
neuronal excitation and inhibition that underpins normal brain
function (Johnston, 2005). The central effects of GABA are medi-
ated by two receptor families, the GABAA and GABAB receptors
(Steiger and Russek, 2004). GABAA receptors are ionotropic, reg-
ulating chloride channels. The receptors are pentameric, although
there are 19 different subunits within the GABAA receptor family;
α1–6, β1–3, γ1–3, δ, ε, π, ρ1–3, and θ, the minimum requirement
for an active receptor are an α and β subunit (Whiting, 2003).
While a GABAC receptor was postulated, this receptor consists
exclusively of rho (ρ) subunits and, because of their similarity to
GABAA subunits, is now viewed as a GABAA variant (Barnard
et al., 1998). GABAB receptors are metabotropic, coupled to Gi/o

proteins, and consist of 2 subunits, GABAB1 and GABAB2, both of
which are necessary for functional receptors (Hyland and Cryan,
2010). As expected, given the diverse nature of the neurotrans-
mitter, GABAergic receptors are widely distributed throughout
the brain and highly expressed in cortical, hippocampal, thalamic,
basal ganglia, and cerebellar structures.

GABA in schizophrenia
There is strong evidence to support the theory that schizophre-
nia is associated with deficits in GABAergic neurotransmission
[see (Blum and Mann, 2002) for a detailed review]. Briefly,
postmortem studies suggest that GABAergic neurons are provid-
ing insufficient inhibitory modulation in corticolimbic regions
of people with schizophrenia (Benes et al., 1991, 1992, 1996b;
Heckers and Konradi, 2010). Similar abnormalities have also been

observed in the dorsolateral prefrontal cortex (Benes et al., 1991,
1996b) suggesting the effect could be widespread. This theory is
supported by reports of pervasive increased binding densities for
the GABAA ligand, [3H]muscimol, in tissue held in a number of
CNS repositories. The areas affected include the cingulate cor-
tex, dorsolateral prefrontal cortex (Benes et al., 1996b; Dean et al.,
1999a), caudate nucleus (Hanada et al., 1987), superior temporal
gyrus (Deng and Huang, 2006) and hippocampus (Benes et al.,
1996a) from people with schizophrenia. Further, more direct,
support for the theory comes from reports of increased GABAA

receptor proteins in the prefrontal cortex (Ishikawa et al., 2004)
of people with schizophrenia as well as increases in α1 and 5
(Impagnatiello et al., 1998) and α2 (Volk et al., 2002) subunits.
The increase in GABAA expression has been postulated to reflect
receptor upregulation, compensating for decreased GABAergic
release (Benes et al., 1996a). It is possible that the decreased
activity could contribute to working memory deficits, a core cog-
nitive problem in schizophrenia, since GABAA agonists have been
shown to improve performance on working memory and cogni-
tive control tasks in people with the disorder (Lewis et al., 2008).
In contrast to these increases in the GABAA receptor, there have
been reports of decreases in GABAB receptors (Mizukami et al.,
2000, 2002) and one of the subunits, GABAB1a, (Ishikawa et al.,
2005), further implicating the neurotransmitter in the patho-
physiology of the disorder and suggesting that the impact of the
neurochemical balance depends upon the location and function
of the GABAergic receptors.

Glutamic acid decarboxylase (GAD) 67 is essential for GABA
synthesis and is used as a marker for GABAergic cells. Cortical
expression of mRNA for both GAD67 and the GABA transporter,
GAT1, are reported to be decreased in tissue from people with
schizophrenia (Volk et al., 2000, 2001), as is cortical GAD67
protein (Curley et al., 2011). Decreased GAD67 expression has
also been reported in the anterior cingulate (Woo et al., 2004,
2007) and hippocampus (Benes et al., 2007). However, two stud-
ies have reported increased cortical GAD67 mRNA and protein in
people with schizophrenia (Hakak et al., 2001; Dracheva et al.,
2004), suggesting that cortical dysfunction in schizophrenia is
not consistently accompanied by altered expression of GAD67
mRNA. Furthermore, decreases in GAD67 occur in cortical tis-
sue (Guidotti et al., 2000; Thompson et al., 2009) from people
with bipolar disorder and cerebellum from people with mood
disorders (Fatemi et al., 2005) as well as that from people with
schizophrenia, raising the possibility that dysfunction of a subset
of GABAergic interneurons may underpin some of the patho-
physiology of major psychiatric disorders.

Cholinergic modulation of GABAergic function
The striatum is the major input structure of the basal ganglia
and has been implicated in the pathophysiology of schizophrenia
(Lester et al., 2010). GABAergic medium sized spiny projection
neurons comprise more than 74% of the striatal cell population
in humans (DiFiglia et al., 1976) and project almost equally to (i)
nuclei that interface between the basal ganglia and the rest of the
brain and (ii) other basal ganglia nuclei (Gerfen and Surmeier,
2011). These projection neurons represent the main target of
the cholinergic interneurons, the predominant source of striatal
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acetylcholine (Izzo and Bolam, 1988; Graybiel, 1990). Although
the cholinergic interneurons only constitute 1–2% of striatal cells
(Graveland et al., 1985), they are vital for modulating the activity
of both striatal projection neurons and GABAergic interneurons.
The GABAergic interneurons make up approximately 5% of the
striatal cells and are comprised of three populations, distinguish-
able by their expression of calcium binding proteins (Tepper
et al., 2010). A striatal microcircuit has been proposed, where
cholinergic interneurons communicate to one another through
GABAergic interneurons (Sullivan et al., 2008), thus interactions
between cholinergic and GABAergic systems would be funda-
mental for striatal functioning. Muscarinic receptors are thought
to be expressed pre-synaptically by striatal GABAergic neurons
(Grilli et al., 2009), directly inhibiting GABA release (Marchi
et al., 1990; Sugita et al., 1991; Koos and Tepper, 2002). In
particular, muscarine decreased GABA release (Nakamura and
Jang, 2012), possibly by activating pre-synaptic M4 receptors.
Investigations in the amygdala, nucleus accumbens and stria-
tum confirmed that acetylcholine and muscarine inhibit GABA
release, an effect attenuated by pirenzepine, an M1/M4 antagonist
(Sugita et al., 1991).

Nicotinic receptors, on the other hand, appear to facili-
tate GABA release (Lena et al., 1993; Wonnacott et al., 2006).
For example, nicotine increased the frequency, but not ampli-
tude of spontaneous inhibitory post-synaptic potentials of hip-
pocampal neurons (Fisher et al., 1998). It was also shown to
increase the amplitude of evoked inhibitory post-synaptic poten-
tials (Radcliffe et al., 1999). This effect may account for the
activation of choline acetyl transferase expressing neurons in
the nucleus accumbens increasing the frequency of GABAA –
mediated inhibitory post-synaptic potentials (Witten et al., 2010).
However, the nicotinic mediated release of GABA was prevented
by activation of M4 receptors (Grilli et al., 2009), suggesting
that both muscarinic and nicotinic receptors may coexist on
GABAergic terminals and that the impact of nicotinic receptors
on GABA release can be modulated by muscarinic receptors.
Finally, studies have reported that the nicotinic effect appears to
be indirect, involving either dopamine (Kayadjanian et al., 1994)
or serotonin (Bianchi et al., 1995) as the intermediary. Together,
these data indicate that the consequence of acetylcholine will
depend on the relative distribution of muscarinic and nicotinic
receptors and that the effects may be mediated by a second system.

GABAergic regulation of cholinergic function
To obtain insight into GABA-acetylcholine interactions, a num-
ber of studies investigated the effects of GABA agonists, such
as; muscimol, progabide, SL75102, δ-aminovaleric acid, and
2-pyrrolidone, on acetylcholine levels. In a number of brain
regions, low doses of GABA agonists increased acetylcholine lev-
els (Scatton and Bartholini, 1982), probably via stimulation of
GABAAreceptors located on cholinergic cells. Earlier studies had
suggested that the action of GABA was indirect, with dopamine
suggested as an intermediary (Ladinsky et al., 1976; Javoy et al.,
1977). However, lesions of the dopaminergic and serotoner-
gic pathways did not affect GABA mediated responses (Scatton
and Bartholini, 1982), indicating that they could play a minor
role. The same study found that lesions of the glutamatergic

cortico-striatal projections ablated the GABAergic inhibition of
cholinergic transmission (Scatton and Bartholini, 1982), indicat-
ing that GABA may indirectly modulate acetylcholine release by
inhibiting the excitatory input to the cholinergic interneurons.
Together, these studies illustrate the complexity of interactions
between the cholinergic and GABAergic systems, which could
affect a diverse set of central functions, including cognitive pro-
cesses which may be relevant to schizophrenia (Lewis et al.,
2008).

Acetylcholine and GABA in schizophrenia
The number of striatal cholinergic interneurons has been shown
to be decreased in people with schizophrenia (Holt et al., 1999),
this could disrupt the normal function of GABAergic projection
neurons thereby contributing to the prefrontal cortical dysfunc-
tion associated with schizophrenia. With respect to the neu-
rochemical changes associated with schizophrenia, the widely
replicated increase in binding to the GABAA receptors (Benes
et al., 1996b; Dean et al., 1999a; Deng and Huang, 2006) would
be expected to result in a reduced cholinergic activity. This, in
turn, should lead to increased levels of post-synaptic cholin-
ergic receptors in an attempt to compensate for transmission
deficit as well as potentially causing a decrease in pre-synaptic
receptors to reduce the feedback regulation of the cholinergic
system. These outcomes are not in keeping with the alterations
in the cholinergic system commonly reported in schizophre-
nia [see “The Central Cholinergic System in Schizophrenia and
Mood Disorders” and (Scarr and Dean, 2009)]. However, given
the modulation of the GABAergic system by nicotinic receptors,
the decreased expression of some nicotinic α7 receptor vari-
ants (Severance and Yolken, 2008), may reduce GABA release
(Lena et al., 1993; Wonnacott et al., 2006), resulting in increased
levels of postsynaptic GABAergic receptors, an effect widely
reported in schizophrenia (Benes et al., 1996b; Dean et al., 1999a;
Deng and Huang, 2006). Whilst this concept appears to have
face validity, it will depend on whether the α7 receptor does
indeed modulate GABA and should also result in changes in
GABAB receptors, which have been reported to be decreased
in the hippocampus (Mizukami et al., 2000) and the entorhi-
nal cortex (Mizukami et al., 2002) as have cortical GABAB1a

subunits (Ishikawa et al., 2005). Since GABAB receptors have
been shown to be both pre- and post-synaptic (Bettler et al.,
2012), it is possible these decreases reflect an attempt to reduce
the feedback on the pre-synaptic neuron. However, until the
localization of the reduced GABABreceptors is known, this associ-
ation between nicotinic and GABAergic systems in schizophrenia
remains speculative.

INTERACTIONS WITH OTHER PROJECTION SYSTEMS
The systems considered in this section are neurotransmitter
systems whose neurons arise from discreet brain structures
and project to distal regions of the brain, affecting the activ-
ity of the intrinsic neurotransmitters in those regions. The
choice of projection systems to be included in this review was
driven, in part, by the known pathophysiologies of schizophre-
nia, and therefore focuses on the dopaminergic and serotonergic
systems.
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DOPAMINE
Central dopaminergic systems
Dopaminergic cells are found almost exclusively in the substan-
tia nigra (SN) and ventral tegmental area (VTA), forming four
major dopaminergic pathways in the mammalian brain, these
are the (i) mesolimbic, (ii) mesocortical, (iii) nigrostriatal, and
(iv) tuberoinfundibular pathways (Albanese et al., 1986) (see
Figure 3). In brief, the mesolimbic pathway consists of dopamine-
containing cell bodies in the VTA, which project to limbic struc-
tures such as the nucleus acumbens, hippocampus, and amygdale
as well as the medial prefrontal cortex (Albanese and Minciacchi,
1983). This pathway is thought to be important for the acqui-
sition of behaviors reinforceable by the inappropriate stimuli of
addictive drugs (Le Moal and Simon, 1991; Lester et al., 2010).
The mesocortical system is closely associated with the mesolim-
bic system, connecting the VTA to the cerebral cortex, particularly
the frontal cortex. It is considered essential for cognitive func-
tions involving the dorsolateral prefrontal cortex and is thought to
play a major role in memory, motivation, and emotional response
(Noback et al., 2005). Dopamine-containing cell bodies originat-
ing in substantia nigra pars compacta (SNpc) of the midbrain and
projecting predominantly to the caudate-putamen constitute the
nigrostriatal pathway (Albanese et al., 1986), which is thought to

play a major role in motor coordination and has been implicated
in Parkinson’s disease and chorea. Finally, the tuberoinfundibu-
lar pathway originates in the arcuate and periventricular nuclei
of the hypothalamus and projects to the median eminence, the
infundibular and the pituitary (Albanese et al., 1986); where it
inhibits prolactin secretion.

There are two types of G-protein coupled dopamine receptors,
which are widely distributed centrally; D1-like receptors (D1 and
D5), which couple to Gs proteins and stimulate cAMP produc-
tion and D2-like receptors (D2,3, and 4), which couple to Gi/o

proteins and either have no effect on or inhibit cAMP (Schetz,
2009). D1and D2 receptors are widespread throughout the cen-
tral nervous system and are generally present at higher levels than
the D3, 4, and 5 receptors; such a distribution is in keeping with
the diverse functions these receptors are implicated in mediating
(Mansour and Watson, 1995).

In both Lewy Body dementia and Alzheimer’s disease, where
there is a loss of cholinergic neurons, patients have a loss of
cognitive function and neuropsychiatric symptoms. Although
both groups have similar levels of delusions, anxiety, and depres-
sion, patients with mild Lewy Body dementia have more visual
and auditory hallucinations than patients with Alzheimer’s dis-
ease (Auning et al., 2011; Bjoerke-Bertheussen et al., 2012). This

FIGURE 3 | Schematic representation of the human central dopaminergic systems. Adapted from (Felten and Shetty, 2010).
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difference in clinical presentation may be due to the increased
severity in cholinergic degeneration seen in Lewy Body demen-
tia (Francis and Perry, 2007) or to the dopaminergic degeneration
that also occurs in this disorder (Klein et al., 2010). Thus, the ben-
efits of understanding the interactions between the cholinergic
and dopaminergic systems will be beneficial for disorders other
than schizophrenia and mood disorders.

Dopamine in schizophrenia
The dopaminergic system has long been considered a major com-
ponent of schizophrenia pathophysiology (Carlsson, 1988). The
dopamine hypothesis of schizophrenia is based on the observa-
tion that stimulation of the dopaminergic system with drugs such
as amphetamine often leads to transient psychotic symptoms, and
that a large number of antipsychotics used to treat the disorder
block the activity of dopamine receptors (see Carlsson et al., 1997;
Emilien et al., 1999). Although it has long been accepted that glu-
tamate and GABA modulate activity of dopamine neurons, the
discovery that acetylcholine may be as important in controlling
dopamine release was made more recently. It is now postulated
that an imbalance between dopaminergic and cholinergic systems
contribute to disorders of the central nervous system (Tandon and
Greden, 1989). Therefore, restoring the balance between the two
systems is considered a practical treatment strategy (Knable and
Weinberger, 1997).

The classic hypothesis for schizophrenia proposed that hyper-
activity of dopaminergic transmission was responsible for the
positive symptoms, however, the awareness of enduring nega-
tive symptoms and cognitive deficits, with their resistance to D2
antagonism, led to a reformulation of this hypothesis. Functional
imaging studies suggested that altered functionality of the pre-
frontal cortex [PFC; see (Knable and Weinberger, 1997)] may
contribute to the symptomatology of schizophrenia. Numerous
pre-clinical studies have demonstrated the importance of pre-
frontal activation of D1 receptors for optimal PFC performance,
[see (Goldman-Rakic et al., 2000) for example]. These findings
led to the current view that an imbalance between subcortical and
cortical dopaminergic systems is responsible for the symptoms
of schizophrenia; a hyperactivity of the dopaminergic system
in the subcortical regions (resulting in hyperstimulation of D2
receptors) causes the positive symptoms while hypoactivity of
the mesocortical dopamine projections (resulting in hypostimu-
lation of D1 receptors) is responsible for both negative symptoms
and cognitive impairment (Guillin et al., 2007). In support of
this hypothesis, imaging studies have consistently demonstrated
that schizophrenia is associated with increased presynaptic activ-
ity of dopaminergic neurons projecting to the striatum, and a
decrease in D1 receptor-like binding, as measured with positron
emission tomography, was reported in the PFC of patients with
schizophrenia, correlating with cognitive dysfunction and nega-
tive symptoms (Okubo et al., 1997). This correlation with symp-
toms has consistently been reported, even though the decrease in
binding was not always replicated, with reports of increased (Abi-
Dargham et al., 2002) and unchanged (Karlsson et al., 2002) levels
of D1 receptors.

Blocking the D2 receptor reduces positive symptoms in people
with schizophrenia (Carlsson, 1974; Creese et al., 1976; Seeman

et al., 1976; Kapur and Remington, 2001). However, the data
from studies on the levels of D2-like receptors are highly variable,
with reports of increases (Lee et al., 1978; Mackay et al., 1982),
decreases (Dean et al., 2004) and no change (Reynolds et al.,
1981). To further complicate matters, the changes appear to be
region specific (Dean et al., 2004) and it is possible that antipsy-
chotic drugs may affect the outcomes (Mackay et al., 1980),
although there is debate about this point (Mita et al., 1986). D4
receptors have consistently been reported to be increased (Seeman
et al., 1993; Sumiyoshi et al., 1995; Marzella et al., 1997), whilst
there is little data available for D3 receptors many ligands see
D2/D3 receptors, hence the reporting of D2-like receptors.

The apparent inconsistencies between dopaminergic systems
has been resolved by studies showing reciprocal and opposite
regulation between the cortical and subcortical systems (Pycock
et al., 1980) [for review see (Tzschentke, 2001)], with prefrontal
dopaminergic activity exerting an inhibitory influence on sub-
cortical dopaminergic activity (Deutch et al., 1990; Kolachana
et al., 1995; Karreman and Moghaddam, 1996; Wilkinson, 1997).
Significantly, chronic blockade of D2 receptors leads to a decrease
in D1 receptors in the PFC region, along with impairments in
working memory in non-human primates (Castner et al., 2000).
Thus, there is evidence that a dopaminergic imbalance may
be involved in schizophrenia, contributing to some of the key
symptom domains associated with the disorder.

Cholinergic regulation of dopaminergic function
The striatum is densely innervated by tonically active choliner-
gic interneurons (Butcher and Woolf, 1984; Woolf, 1991; Aosaki
et al., 1995; Bennett and Wilson, 1999), which interact closely
with dopaminergic neurons to modulate their activity. Given
the heterogeneity of muscarinic receptors and their signaling
cascades, it is not surprising that activating muscarinic recep-
tors results in both excitation and inhibition of dopaminergic
activity in the basal ganglia. There is considerable evidence that
interactions between cholinergic and dopaminergic systems are
critical for the proper regulation of motor control, a function
strongly attributed to the striatum. For example, an imbalance
between striatal muscarinic and dopaminergic tone is thought
to contribute to the severe motor deficits experienced by people
with Parkinson’s disease and other extrapyramidal motor dis-
orders (Hornykiewicz, 1981; Brown and Taylor, 1996). Indeed,
dopamine agonists and muscarinic antagonists are useful in the
treatment of Parkinson’s disease (Hornykiewicz, 1981; Fahn et al.,
1990; Brown and Taylor, 1996), where degeneration of dopamin-
ergic neurons in the SNpc causes reduced striatal dopaminergic
function (Hornykiewicz, 1981; Graybiel, 1990).

All muscarinic receptors are expressed in the striatum, sug-
gesting all have the potential to modulate dopamine release
(Weiner et al., 1990; Bernard et al., 1992; Yasuda et al., 1993;
Hersch et al., 1994). Almost all D1 receptor-expressing striato-
nigral neurons also express both M1 (Weiner et al., 1990; Bernard
et al., 1992) and M4, whereas the D2 receptor expressing striatal-
palladial neurons express M1 but less than half express M4.
Pharmacological determinations of which muscarinic receptors
modulated cholinergic and dopaminergic interactions were hin-
dered by a lack of specific ligands, resulting in disparate findings
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(Raiteri et al., 1984; Schoffelmeer et al., 1986; De Klippel et al.,
1993; Smolders et al., 1997). The development of more spe-
cific ligands revealed that stimulating M1/M4 receptors causes
potent dopamine release in the striatum and cortex (Bymaster
et al., 1994; Ichikawa et al., 2002; Goldman-Rakic et al., 2004).
Furthermore, the cognitive deficits produced by scopolamine,
a muscarinic antagonist, could be reversed by D1 blockade
(McGurk et al., 1988).

A more direct approach to delineating the muscarinic-
dopaminergic interactions, came from studies on M1-5 receptor
deficient mice (Hamilton et al., 1997; Gomeza et al., 1999a,b;
Matsui et al., 2000; Miyakawa et al., 2001; Yamada et al., 2001a,b;
Fisahn et al., 2002). In striatal slices, a lack of M1 or M2
receptors did not affect oxotremorine-mediated dopamine release
(Zhang et al., 2002). However, in vivo microdialysis showed that
M1-deficient mice had elevated striatal extracellular dopamine
(Gerber et al., 2001), possibly due to extrastriatal receptors exert-
ing an inhibitory striato-nigral feedback. Further studies found
that M2 were required for muscarinic regulation of dopamine
release in dorsal but not limbic striatal regions (Threlfell et al.,
2010) and that oxotremorine-mediated dopamine release was
enhanced in M3 KO mice and abolished in M4 KO mice (Zhang
et al., 2002), suggesting that M3 receptors inhibit and M4 recep-
tors promote striatal dopamine output. Furthermore, blockade
of M3 receptors increased striatal but not nucleus accum-
bens dopamine efflux, suggesting that muscarinic modulation of
dopaminergic transmission is region specific (Miller and Blaha,
2005). In addition, M4 receptors appear to inhibit dopamine D1
receptor-stimulated adenylyl cyclase activity (Olianas and Onali,
1996; Olianas et al., 1996), which would account for the hypersen-
sitivity of mice lacking M4 receptors to the stimulatory locomotor
effects of D1 receptor activation (Gomeza et al., 1999b), possi-
bly due to a lack of striatal inhibition. Finally, M5 are the only
muscarinic receptors expressed on dopaminergic neurons in the
substantia nigra pars compacta (Weiner et al., 1990), where they
regulate dopamine release (Forster et al., 2002; Yamada et al.,
2003; Bendor et al., 2010; Steidl et al., 2011). Deletion of theM5
results in impaired dopamine release (Yamada et al., 2001a),
improved latent inhibition (Wang et al., 2004) and increased D2
expression in the striatum, hypothalamus, hindbrain, and tectum
(Zhang et al., 2002), possibly reflecting a compensatory mecha-
nism. This is of interest because striatal D2 receptors have been
shown to be upregulated in schizophrenia (Laruelle et al., 1996;
Abi-Dargham et al., 1998) and unmedicated patients with acute
schizophrenia display poor latent inhibition (Gray et al., 1995),
thus M5 dysfunction might occur in schizophrenia.

The initial association between nicotine addiction and
dopaminergic striatal signaling suggested the existence of a
nicotinic-dopaminergic interaction (see Corrigall, 1999, for a
review). Studies showed that dopaminergic antagonists, lesions
of dopaminergic neurons or of the nucleus accumbens (Corrigall
et al., 1992) could reduce nicotine self-administration. Nicotinic
receptors are commonly expressed pre-synaptically, with acti-
vation resulting in rapid increases in neurotransmission. This,
coupled with the overlap of the striatal cholinergic and dopamin-
ergic systems, suggests that frequent, rapid regulation occurs
between the two (Zhou et al., 2001).

Systemic nicotine has been shown to increase dopamine
release in the mesolimbic (Imperato et al., 1986; Damsma et al.,
1989; Benwell and Balfour, 1994; Nisell et al., 1994a; Pontieri
et al., 1996), nigrostriatal (Benwell and Balfour, 1994; Imperato
et al., 1986; Toth et al., 1992), and mesocortical (Toth et al., 1992;
Nisell et al., 1994a) systems. Microdialysis experiments showed
nicotine, applied to cortical terminal regions, evokes an increase
in extracellular dopamine levels, albeit to a lesser extent than
in the striatum and accumbens (Mifsud et al., 1989; Nakamura
et al., 1992; Toth et al., 1992; Nisell et al., 1994b; Marshall
et al., 1997), possibly due to fewer nicotinic receptors on cor-
tical dopaminergic terminals. Blockade of nicotinic receptors in
the VTA abolished the nicotine-induced increase in dopamine
and its metabolites, however blockade in the nucleus acumbens
had no effect (Nisell et al., 1994b), suggesting nicotine was act-
ing via somatodendritic receptors on dopamine neurons, i.e.,
pre-synaptic.

Subsequent experiments demonstrated that striatal nicotinic
control of dopamine release is mediated predominantly by recep-
tors containing the β2 subunit (Zhou et al., 2001), a finding
supported by a report that α4β2 agonists stimulate dopamine
and acetylcholine release in the hippocampus and frontal cor-
tex in rats (Bontempi et al., 2001). There is also evidence that
the roles of α7 and α4β2 receptors in the cognitive impair-
ments associated with schizophrenia are mediated through the
dopaminergic system. For example, haloperidol potentiated the
memory deficits induced by a nicotinic antagonist. The deficit
was potentiated by the D2 antagonist raclopride, but not the
D1 antagonist SCH 23390 (McGurk et al., 1989), and reversed
by D2 but not D1 agonists (Levin et al., 1989), suggesting this
effect is due to D2 blockade. Furthermore, a combination of
an acetylcholinesterase inhibitor and risperidone produced syn-
ergistic improvements of cognitive impairment and increased
extracellular dopamine in the mouse prefrontal cortex. These
effects were blocked by D1 and nicotinic antagonists but not a
muscarinic antagonist (Wang et al., 2007), indicating the effect is
independent of the muscarinic system, and that a combination
of nicotinic and D1 agonism may improve cognition in people
with schizophrenia, possibly via activation-dependent effects on
the D1 receptor in the prefrontal cortex. Nicotine can improve
attention and some aspects of positive symptoms in schizophre-
nia (Nisell et al., 1995), thus, it has been postulated that the
higher rate of smoking observed in patients with schizophrenia
may be a form of self-medication; enhancing cortical dopamine
release.

Whilst it is apparent that nicotine can stimulate dopamine
release (Marshall et al., 1997), the mechanism is complex,
with glutamatergic transmission involved in nicotine-induced
dopamine release from the striatum (Toth et al., 1992; Marshall
et al., 1997). Local applications of NMDA antagonists signifi-
cantly reduced the effect of nicotine (Toth et al., 1992). It was also
demonstrated that nicotine elevated striatal glutamate, an effect
blocked by a nicotinic antagonist (Toth et al., 1992). Together,
these data suggest that presynaptic nicotinic receptors, on glu-
tamatergic terminals, stimulate glutamate release which in turn
acts on NMDA receptors on dopaminergic terminals to increase
dopamine release (Toth et al., 1992; Marshall et al., 1997).
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Dopaminergic regulation of cholinergic function
Early studies proposed that dopamine inhibits acetylcholine
transmission, with the development of more specific ligands
and newer techniques, it is now apparent that blockade of D1
receptors reduces acetylcholine release whilst activation stimu-
lates release (Bertorelli and Consolo, 1990; Damsma et al., 1990;
Consolo et al., 1992; Di Chiara et al., 1993). Conversely, activa-
tion of D2 receptors reduces acetylcholine release while inhibition
of these receptors stimulates the release (Damsma et al., 1991).
Studies have revealed a polymorphism in the untranslated region
of the D1 receptor to be associated with nicotine dependence
(Huang et al., 2008), alcohol dependence (Batel et al., 2008) and
autism spectrum disorder (Hettinger et al., 2008). Interestingly,
differential expression of the alleles was affected by a microRNA,
miR-504 (Huang and Li, 2009), suggesting that as we discover
more about the processes involved in the regulation of gene
product expression our understanding of the mechanisms con-
tributing to the pathophysiology of psychiatric disorders will also
be expanded.

Acetylcholine and dopamine in schizophrenia
The lack of consensus regarding the status of dopaminergic recep-
tors in schizophrenia makes it difficult to speculate as to whether
they may impact on cholinergic function. Conversely, there is
strong evidence to suggest that nicotine stimulates dopamine
release, with receptors containing a β2 subunit playing a signif-
icant role (Zhou et al., 2001). Thus, given the reported increase

of such receptors in schizophrenia (Martin-Ruiz et al., 2003), it
is possible that one consequence is a facilitation of dopamine
release, either directly or indirectly (Toth et al., 1992; Marshall
et al., 1997). With respect to the muscarinic system, M1 recep-
tors are consistently reported to be decreased in the brains from
people with schizophrenia. Since M1 null mice have increased lev-
els of striatal dopamine, it is possible that the low levels of M1
also contribute to an increased dopamine release. Finally, there is
a single report of hippocampal M4 receptors being decreased in
tissue from people with schizophrenia (Scarr et al., 2007), mice
that lack M4 receptors appear to be hypersensitive to D1 stim-
ulation. Unfortunately, given the disparity of data related to D1
receptors in schizophrenia, it is not clear whether the decrease
in M4 receptors contributes to the imbalance of dopaminergic
systems postulated to exist in schizophrenia. Therefore, it is pos-
sible, at this stage, to suggest that the changes in nicotinic and
M1 receptors may play a role in the dopaminergic dysregulation.
However, given the possibility that the glutamatergic system acts
as an intermediary for some, if not all of the cholinergic regula-
tion of dopamine function, we need to consider schizophrenia as
a disorder of central neurotransmission, rather than focusing on
particular combinations of neurotransmitters.

CHOLINERGIC INTERACTIONS WITH SEROTONIN
Central serotonergic systems
The central serotonergic system is widespread, innervating nearly
all brain regions [see (Hornung, 2003) for review; Figure 4]

FIGURE 4 | Schematic representation of the human central serotonergic systems. Adapted from (Felten and Shetty, 2010).
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and exerting its actions via 11 functional serotonergic receptors
(Sharman et al., 2011). The majority of projections arise from
the dorsal and median raphe nuclei, in the brainstem (Olszewski
and Baxter, 1954), which innervate the amygdala, basal forebrain,
hypothalamus, thalamus, caudate-putamen, cerebral cortex, and
part of the hippocampus (Azmitia and Segal, 1978; Steinbusch,
1981). Axons of the dorsal raphe innervate all of the cerebral cor-
tex with more dense innervation in the primary sensory areas
(Wilson and Molliver, 1991) and, due to the lack of classic
synapses, are thought to be involved in diffuse volume transmis-
sion rather than the targeted transmission associated with the
axons from the median raphe, terminals of which are most abun-
dant in the frontal cortex and hippocampus (Hornung, 2003).
Whilst many structures are innervated by both dorsal and median
raphe nuclei, the hippocampus receives predominantly median
inputs whilst the thalamus, caudate, and putamen are heavily
innervated by the dorsal raphe (Geyer et al., 1976).

The large family of serotonergic receptors gives the neuro-
transmitter an even greater functional capacity than is conferred
by the diffuse serotonergic projections. In this review 5-ht5a, and
5-ht1e receptors are not considered because of their lack of a
robust signal in native tissue. Of the remaining 11 receptors, most
are metabotropic; 5-HT4,6&7 receptors canonically couple to Gs,
increasing levels of cAMP; the 5-HT1 receptors canonically couple
with Gi/o and reduce levels of cAMP whilst the 5-HT2 recep-
tors canonically couple to Gq/11 and increase inositol phosphate
hydrolysis. The 5-HT3 receptor is a pentameric ligand-gated
cation channel; 5-HT3A subunits can form functional homomeric
receptors whilst the 5-HT3B,C,D&E subunits form functional het-
eromeric receptors with 5-HT3A subunits (Barnes et al., 2012).
The diversity of the central serotonergic system means it regu-
lates a range of processes including cognition and emotion (Buhot
et al., 2000), as well as being implicated in the pathophysiologies
of central nervous system disorders, particularly schizophrenia
[see (Maris, 2002; Ohtsuki et al., 2002; Tanaka et al., 2003) for
example].

Serotonin and schizophrenia
The first suggestion that serotonin might play a role in the
pathophysiology of schizophrenia arose from the observation that
lysergic acid diethylamide (LSD), a serotonergic agonist, caused
psychoses which were proposed to have similarities to the posi-
tive symptoms of schizophrenia (Wooley and Shaw, 1954). After
initial interest, the role of serotonin was largely unexplored until
the advent of the second generation of antipsychotic drugs, with
their high affinities for various serotonergic receptors, in par-
ticular as antagonists at the 5-HT2A receptor (Meltzer, 1995).
Although M-100907, a selective 5-HT2A antagonist, failed to
show an antipsychotic effect in phase III clinical trials (de Paulis,
2001) interest in the role of central serotonin in schizophrenia
continues.

A number of studies looked at the major serotonin metabolite,
5-hydroxyindoleacetic acid, in cerebrospinal fluid from people
with schizophrenia; the results are inconclusive, with reports of
increases, decreases, and no change (see Abi-Dargham et al.,
1997). Due to the rapid degradation of neurotransmitters and
their metabolites, most studies have focused on markers of the

serotonergic system as indirect indices of serotonergic function.
In brief, the strongest indication that serotonin plays a role in
the pathophysiology of schizophrenia is the widespread decreases
reported in the 5-HT2A receptor by multiple studies [see (Dean,
2003) for a comprehensive review]. Although a recent study
reported increased cortical levels of 5-HT2A receptors in the cor-
tex of people with schizophrenia (Gonzalez-Maeso et al., 2008), a
confound that was not adequately discussed was that 21 of the
25 subjects with schizophrenia had died by suicide compared
to a 0% suicide rate in the control subjects. This is important
because a number of studies have reported increased levels of cen-
tral 5-HT2A receptors in people who died as a result of suicide
(see Stanley and Mann, 1983; Hrdina and Du, 2001; Pandey et al.,
2002; Garbett et al., 2008; Klempan et al., 2009; for example).
Therefore, it is not possible to determine whether the findings
in this study relate to mode of death or the pathophysiology of
schizophrenia. Given that the cholinergic and serotonergic sys-
tems are both implicated in the pathophysiology of schizophrenia
and the considerable overlap between the two systems, it remains
to be determined whether the changes in these systems are linked
or whether they occur independently of each other.

Cholinergic regulation of serotonin
Projections from the medial septal nucleus and the diagonal band
of Broca innervate the raphe nuclei (Kalén and Wiklund, 1989)
in the rat, suggesting that the cholinergic system exerts a regu-
latory influence over the serotonergic network. However, a lack
of [3H]choline in the basal forebrain nuclei following loading of
the raphe nuclei and a lack of colocalization of the retrograde
tracer with acetylcholinesterase immune reactivity in the basal
forebrain lead the authors to suggest that few of the neurons
projecting to the raphe were cholinergic. Later studies mapping
afferents of the raphe nuclei did not identify the phenotypes
of cells in the basal forebrain (Peyron et al., 1997). Conversely,
a study mapping the projections of the pedunculopontine and
laterodorsal tegmental nuclei of the brainstem found that cells
positive for choline acetyltransferase projected to all of the raphe
nuclei (Woolf and Butcher, 1989). These projections, coupled
with the presence of nicotinic receptors on serotonergic neurons
in the dorsal raphe (Cucchiaro et al., 2005; Galindo-Charles et al.,
2008), suggest acetylcholine modulates the serotonergic system.
Particularly since nicotine has been shown to increase serotonin
release (Ma et al., 2005) and the firing rate of some serotonergic
neurons in the dorsal raphe (Chang et al., 2011). However, it was
previously shown that acetylcholine inhibits dorsal raphe neu-
rons (Koyama and Kayama, 1993), suggesting that there may be
a muscarinic component to the cholinergic modulation. An auto-
radiographic study, using a pan-muscarinic ligand, reported the
presence of muscarinic receptors in the raphe (Cortes et al., 1984),
supporting the concept that the cholinergic system may exert
opposing effects on the serotoninergic system. Further complexity
is added by the finding that approximately 90% of choliner-
gic neurons in the pedunculopontine and laterodorsal tegmental
nuclei express 5-HT2A receptors (Morilak and Ciaranello, 1993)
and that serotonin has been shown to inhibit laterodorsal tegmen-
tal neurons (Koyama and Kayama, 1993); suggesting a feedback
exists between the two systems.
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Acetylcholine has been reported to stimulate serotonin release
in the caudate via nicotinic (Becquet et al., 1988; Reuben and
Clarke, 2000) but not muscarinic (Becquet et al., 1988) recep-
tors. This effect was blocked by a GABA antagonist, indi-
cating this might be an indirect effect, modulated by the
GABAergic interneurons (File et al., 2000). Nicotine was shown
to stimulate serotonin release in the hippocampus (Kenny
et al., 2000) and frontal cortex (Ribeiro et al., 1993), an
effect that was inhibited by methyllycaconitine in the hip-
pocampus (Tucci et al., 2003), implicating the α7 nicotinic
receptors. Interestingly, the muscarinic antagonist pirenzepine
also stimulated hippocampal serotonin release (Kenny et al.,
2000), suggesting that M1 or M4 may tonically inhibit hip-
pocampal serotonin release. Together these data support the
concept that the cholinergic system can enhance serotonergic
activity via nicotinic receptors. Although there are indications
that muscarinic receptors have an inhibitory role in seroton-
ergic regulation, more research is required to address this
hypothesis.

Serotonergic regulation of acetylcholine
The basal forebrain receives afferents from numerous systems,
including serotonergic fibers from the dorsal raphe (Semba et al.,
1988). An autoradiographic study revealed the presence of pre-
dominantly 5-HT1 with fewer 5-HT2 receptors in the basal fore-
brain (Zilles et al., 1991), an immunohistochemical study later
identified 5-HT1A receptors on the cholinergic neurons (Kia et al.,
1996). Serotonin and 5-HT1A agonists have been shown to cause
hyperpolarisation of cholinergic cells (Khateb et al., 1993), sug-
gesting that serotonin can regulate basal forebrain cholinergic
neurons.

5-HT1A agonists were also shown to facilitate acetylcholine
release in the cortex (Bianchi et al., 1990; Katsu, 2001; Millan
et al., 2004) and hippocampus (Lazaris et al., 2003; Millan
et al., 2004). However, a similar effect is also seen with 5-HT1A

antagonists in both cortex (Kehr et al., 2010) and hippocam-
pus (Schechter et al., 2005; Kehr et al., 2010), suggesting that the
opposing actions may be mediated by direct and indirect mech-
anisms, possibly involving interneurons. In addition to the com-
plexity of the 5-HT1A receptor, the autoreceptor, the 5-HT1B,1D

in guinea pigs and humans (Hoyer and Middlemiss, 1989),
is proposed to tonically inhibit cholinergic neurons (Maura
et al., 1989; Rutz et al., 2006) and stimulation of the 5-HT3

receptors decreased acetylcholine release (Bianchi et al., 1990).
Furthermore, activation of the 5-HT2A (Nair and Gudelsky, 2004)
and 5-HT4 (Johnson et al., 2012) receptors increase cortical
acetylcholine release, whilst stimulation of 5-HT2C and 5-HT7

receptors were shown to activate striatal cholinergic interneu-
rons (Bonsi et al., 2007). Blockade of the 5-HT6 receptors causes
increases in acetylcholine release (West et al., 2009), suggesting
they may be involved in the tonic inhibition of the cholinergic sys-
tem. Since cholinergic neurons do not appear to express 5-HT6

receptors (Marcos et al., 2006), the mechanism is probably an
indirect one, possibly involving glutamatergic neurons. Although
serotonin does appear to be capable of modulating the choliner-
gic system, the effect depends both upon the receptor stimulated
and its localization, making the regulation extremely complex.

Acetylcholine and serotonin in schizophrenia
The most reproduced finding for the cholinergic system in
schizophrenia is a decrease in central muscarinic receptors, in par-
ticular the M1, in people with the disorder [see (Scarr and Dean,
2008) for a comprehensive review]. There are indications that M1
and/or M4 may tonically inhibit serotonin release (Cortes et al.,
1984; Kenny et al., 2000), thus it is possible the decreases in mus-
carinic receptors seen in schizophrenia reduce the tonic inhibition
of serotonin, resulting in an over activation of the system with the
potential to cause decreases in post-synaptic receptors, such as the
5-HT2A, which have been reported in schizophrenia (see Dean,
2003) and increases in the pre-synaptic receptors, for example the
5-HT1D, which have not been reported (Scarr et al., 2004; Dean
et al., 2006).

Another reproducible finding in schizophrenia is decreased
expression of nicotinic receptors (Martin-Ruiz et al., 2003;
Severance and Yolken, 2008), since these receptors regulate sero-
tonin release in the hippocampus and possibly cortex, a loss
of these receptors may result in decreased serotonergic func-
tion, resulting in increased post-synaptic receptors and decreased
pre-synaptic receptors. Thus, it is possible that the small overall
increases reported in cortical 5-HT1A receptors (Tauscher et al.,
2002; Gray et al., 2006) are part of the serotonergic response to
decreased nicotinic receptors.

The most widely reproduced finding for the serotonergic sys-
tem in schizophrenia is the decrease in cortical 5-HT2A receptors
(see Dean, 2003). Since 5-HT2A receptors modulate acetylcholine
release in the cortex, it is possible that a loss would result in
decreased cholinergic efflux. Such an event would be expected
to cause an increase in postsynaptic receptors such as the mus-
carinic M1,3,4 and the α7 nicotinic receptors, which is not in
keeping with the data on the pathophysiology of schizophre-
nia (see Scarr and Dean, 2008, 2009). Of the other serotonergic
receptors implicated in the regulation of the cholinergic system,
the 5-HT1A receptor has been reported to be either increased
(Hashimoto et al., 1991; Joyce et al., 1993; Burnet et al., 1997)
or unchanged (Dean et al., 1999b; Cruz et al., 2004; Scarr et al.,
2004), making it difficult to interpret the data. However, two
studies have reported small global increases in cortical 5-HT1A

receptors (Tauscher et al., 2002; Gray et al., 2006), which may
result in increased acetylcholine efflux and the subsequent down-
regulation of postsynaptic receptors—an outcome consistent
with the pathophysiology of schizophrenia (see Scarr and Dean,
2008, 2009). Cortical 5-HT7 receptors have been reported to be
decreased in schizophrenia (Dean et al., 2006), if their role in the
cortex is similar to that in the striatum, this would be expected to
result in a similar pattern to that described for decreased 5-HT2A

receptors, increased post-synaptic and decreased pre-synaptic
cholinergic receptors, which does not fit with the pathophysiology
of schizophrenia.

In summary, although the data that best fits with the current
knowledge regarding the pathophysiology of schizophrenia is that
reduced levels of muscarinic receptors contribute to a reduced
inhibition of the serotonergic system and a subsequent decrease
in post-synaptic serotonergic receptors, as seen with 5-HT2A and
5-HT7 receptors, this is overly simplistic given that these are not
the only post-synaptic serotonergic receptors; the data regarding
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5-HT1A receptors in schizophrenia is inconclusive but there are
no reports of decreased levels in schizophrenia. Studies that look
at all components of both systems in a single cohort are required
to reach definitive conclusions about the interactions of the two
systems in schizophrenia.

Historically, the focus of the pathophysiology of psychiatric
disorders has been on markers of neurotransmission. There is,
however, growing data suggesting that molecules traditionally
associated with a response to inflammation or infection are
abnormally expressed in people with psychiatric disorders (see
Potvin et al., 2008, for example). Thus, we finish the exploration
of the interactions of the central cholinergic system and their
relevance to biological psychiatry with a consideration of these
pathways.

INTERACTIONS OF THE CHOLINERGIC SYSTEM WITH
INFLAMMATORY AND IMMUNE PATHWAYS
A significant body of literature suggests there are physiologically
relevant interactions between the cholinergic system (neuronal
and non-neuronal) and inflammatory/immune pathways in the
periphery (Bencherif et al., 2011; Pena et al., 2011; Verbout and
Jacoby, 2012). Thus, it seems reasonable to hypothesize that
similar interactions may be important in modulating central
inflammatory-pathways. This portion of this review therefore
focuses on the evidence to support such a hypothesis. However,
in considering this data it is important to acknowledge there is
a growing body of evidence to suggest that proteins involved in
peripheral inflammatory/or immune processes may have more
diverse roles in the central nervous system (Dean, 2011). This
means that changes in individual proteins, linked to inflamma-
tory or immune processes in the periphery, may not be indicative
of a derangement of the same processes centrally.

CHOLINERGIC MODULATION OF CENTRAL INFLAMMATORY/IMMUNE
SYSTEM
The hypothesis that the cholinergic system is involved in mod-
ulating central inflammatory and/or immune system is perhaps
best tested at the systems level. With this regard, it is signifi-
cant that microglial cells, which are widely viewed as resident
macrophages in the central nervous system, express α7 nicotinic
receptors, activation of which attenuates the pro-inflammatory
responses in cultured microglial cells (Carnevale et al., 2007).
These data appear to be relevant centrally because it has been
shown that an α7 agonist, 3-(2,4-dimethoxybenzylidene) anaba-
seine, reduces tumor necrosis factor (TNF)-α release in vivo
(Giebelen et al., 2007). Moreover, the relationship between the
cholinergic system and, at least cytokines, seems to be a “whole
of body” association since the same outcome has been observed
in blood after treatment with an α7 agonist (Li et al., 2011).
Interestingly, the activity of the α7 nicotinic receptor is reduced
by kynurenic acid (Hilmas et al., 2001) via an as yet unknown
mechanism. This is significant because kynurenines are com-
ponents of pro-inflammatory pathways which have been sug-
gested to be involved in the pathophysiology of a number of
psychiatric disorders (Schwarcz et al., 2012). Thus, it is possi-
ble that α7 nicotinic receptors may be a convergence point for
interactions between disparate inflammatory related pathways,

providing a common route to inducing some of the symp-
toms of a number of psychiatric disorders. Whether or not
this is proven to be the case, current evidence clearly sup-
ports a potential interaction between the central cholinergic
system and an inflammatory/immune response as a mechanism
involved in maintaining homeostasis within the central nervous
system.

Additional evidence suggests that the ability of the cholinergic
system to modulate the activity of microglia may be multifaceted;
donepezil, a reversible, non-competitive cholinesterase inhibitor,
has been shown to attenuate microglial production of nitric oxide
and TNF, possibly by inhibiting the canonical inflammatory NF-
κB signaling (Hwang et al., 2010). Whilst these data are difficult
to interpret because the doses of donepezil used are higher than
the therapeutic dose, they do reinforce a functional interaction
between acetylcholine and the inflammatory and/or immune
system. This interaction appears to be functional because rivastig-
mine, another cholinesterase inhibitor, has been shown to ame-
liorate the inflammation induced in experimental autoimmune
encephalomyelitis (EAE) (Kawamata and Shimohama, 2011). In
this study, it was shown that rivastigmine reduced demyelination,
microglia activation, and axonal damage as well as the produc-
tion of pro-inflammatory cytokines TNF, interferon γ (IFN) and
interleukin (IL) −17. A third cholinesterase inhibitor, neostig-
mine, has similar effects on inflammatory/immune pathways
(Tyagi et al., 2010), suggesting that this outcome is a drug class
effect. Moreover, two studies showed these effects were abolished
by an α7 antagonist (Kawamata and Shimohama, 2011; Tyagi
et al., 2010) reinforcing the concept that the primary interac-
tion between the central cholinergic system and microglia revolve
around this receptor.

INFLAMMATORY/IMMUNE SYSTEM CONTROL OF CENTRAL
CHOLINERGIC SYSTEM
As with all biological systems, there seems to be the potential for
a two-way interaction between the inflammatory/immune sys-
tems and the nicotinic system. For example, it has been shown
that IL-1β and TNF can alter nicotinic receptor sub-unit assem-
bly (Gahring et al., 2005). In particular, these cytokines affect the
way in which α4, β2, and β4 sub-units are incorporated into func-
tional receptors; IL-1β enhancing α4/β2 and decreasing α4/β4
containing receptors, whereas TNF promotes α4/β2/β4 sub-unit
containing receptors. It has long been known that changes in
nicotinic receptor sub-unit assembly has functional consequences
(Dingledine et al., 1999), therefore the effects of these cytokines
would be expected to have an impact on central cholinergic neu-
rotransmission. This hypothesis has some support as it has been
shown in pre-clinical models that targeting nicotinic receptors
with drugs that favor receptors of specific sub-unit composition
have different therapeutic outcomes (Nirogi et al., 2011).

The physiological outcomes of the cholinergic system are usu-
ally determined by the balance between nicotinic and muscarinic
receptors (Decker and McGaugh, 1991). At present there seems
to be little evidence from central studies that such interactions
are required in the regulation of inflammatory/immune systems
but some data implicates muscarinic receptors as modulators of
peripheral interactions (Sales, 2010). Focusing on the muscarinic
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receptors, the M2 receptor seems to be an important modulator
of inflammation/immune pathways in the lung (Costello et al.,
1998; Fryer et al., 1999). This proposal is reinforced by the
observation that mice which lack M2 receptors have prob-
lems with controlling infections and abnormal inflammatory
responses (Turner et al., 2010). Significantly, similar to the data
for nicotinic receptors, it seems that interactions between M2
and TNF are involved in the cross-talk between cholinergic and
inflammatory/immune pathways in the lung (Nie et al., 2011).
However, interactions between components of the inflamma-
tion/immune pathway and muscarinic receptors appear complex
(see Figure 5). For instance, it has been shown that a syner-
gistic action involving TNF and IL-1β reduces M2 expression
(Haddad et al., 1996). The interactions between cytokines and
muscarinic receptors seem to be quite extensive given the demon-
stration that IL-6 can reduce the amnesic effects of the mus-
carinic receptor antagonist, scopolamine (Bianchi et al., 1997).
A recent study suggests that interactions between the cholin-
ergic and inflammation/immune system may also involve the
M3 receptor (Xu et al., 2012). However, mice lacking M3 have
been reported to not have changes in inflammatory/immune
responses (Matsui et al., 2000), suggesting a more tenuous link
for the receptor in modulating inflammation/immune path-
ways. Moreover, some of these studies suggest that nicotinic
and muscarinic receptors have opposing modulatory roles on
the inflammation/immune systems (Razani-Boroujerdi et al.,
2008).

INTERACTIONS BETWEEN THE TWO SYSTEMS IN PSYCHIATRIC
DISORDERS
Somewhat surprisingly, it has been shown that activating cen-
tral, but not peripheral, M2 receptors modulates levels of TNF
in serum (Pavlov et al., 2006), suggesting that these molecules
could regulate the interactions between central cholinergic and
inflammation/immune systems. This is significant because our
laboratory has reported cortical decreases in M2 (Gibbons et al.,
2009) and increases in TNF-regulated pathways (Dean et al., 2010,
2012) in people with mood disorders. It is therefore intriguing
as to whether these changes are independent of each other or
reflect changes in the central cholinergic/inflammation/immune
systems. Pursuing this hypothesis would be worthwhile given
data showing that muscarinic agonists can reduce TNF levels
in rodents (Pavlov and Tracey, 2006) and act as antidepressants
(Drevets and Furey, 2010).

Given the clear relationship between the cholinergic and the
inflammation/immune systems it remains to conceptualize a
mechanism by which this can occur centrally. There are a num-
ber of options, one of which is that these changes are the result
of interactions between the M2 and α7 receptors and inflam-
mation/immune pathways within microglia. Significantly, it has
been shown that carbachol, a pan-muscarinic receptor ago-
nist, caused a rapid influx of calcium into microglia (Zhang
et al., 1998), suggesting that they do express functional mus-
carinic receptors. Although a recent microarray study suggests
microglia express both M2 and M3 receptors, it is not known

FIGURE 5 | Schematic showing the complex interactions between

cholinergic receptors (α7 nicotinic receptor (α7 CHRN), muscarinic M2

receptor (CHRM2), α4 β2 nicotinic receptor (α4 β2 CHRN) and the α4 β4

nicotinic receptor (α4 β4 CHRN) and the cytokines; tumor necrosis factor

α (TNFα), interleukin 1β (IL1β) and interleukin 6 (IL6). Current data
suggests some of these interactions may involve cholinesterase inhibitors
(AChE) and their ability to regulate acetylcholine (Ach) and the interactions of
the muscarinic receptor antagonist scopolamine with CHRM2.
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if this is the totality of their muscarinic component (Myers
et al., 2009). It has also been reported that microglia, at least
in culture, express α7 receptors (Shytle et al., 2004), providing
further support for this hypothesis. Given that microglia also
produce cytokines (Hanisch, 2002), it is not unreasonable to
suggest that the cholinergic/inflammation/immune interactions
occur within these cells. However, as cholinesterase inhibitors
can also mediate the interaction between the cholinergic and
inflammation/immune system (Hwang et al., 2010; Kawamata
and Shimohama, 2011) this process appears to be activated by
acetylcholine which, in the brain, is likely to be of neuronal ori-
gin. Furthermore, M2 and α7 receptors are expressed by neurons
(Baghdoyan et al., 1998; Zarei et al., 1999), specifically GABAergic
neurons (Azam et al., 2003) and astrocytes (Duffy et al., 2011;
Roda et al., 2008). Thus, it is presumptive to assume microglia
are the only cells modulating central cholinergic and inflamma-
tion/immune interactions. Given the growing recognition that
the interactions between these systems may be important in the
pathophysiologies of mood disorders, obtaining a better under-
standing of the mechanisms by which these interactions occur
should be a priority.

CONCLUSION
To briefly summarise the potential interactions that might occur
in psychiatric disorders, in schizophrenia where decreases in
M1 are widely reported, these could result in reduced kainate
function, which in turn could contribute to a glutamatergic hypo-
function. The reduced α7 nicotinic capacity reported to exist in
schizophrenia would result in reduced GABA efflux, with the
potential to cause increased levels of postsynaptic GABAergic,
such as GABAA receptors. An expected consequence of the
increased levels of β2 containing nicotinic receptors and the
decreased levels of M1 and/or M4 receptors is an increase in
dopamine release, potentially contributing to the imbalance in
dopaminergic systems proposed to exist in schizophrenia. With
regards to the serotonergic system, the decreases in M1/M4 recep-
tors seen in schizophrenia could cause an increase in serotonin
release, which would cause the downregulation of postsynap-
tic receptors, including 5-HT2A. Conversely, if the small global
increase in the 5-HT1A receptors is substantiated, this could affect
the cholinergic system causing increased cholinergic release, a
consequence of which might be the downregulation of postsy-
naptic cholinergic receptors, including the M1 and M4. Finally,
it is possible that the dysregulation of molecules traditionally
associated with inflammation/immune responses in psychiatric
disorders centers around disrupted interactions between the cen-
tral cholinergic system, mediated by M2 and α7 receptors and
microglia.

It is evident from these brief overviews that a dysfunctional
central cholinergic system can have far reaching consequences.
A common theme in considering these interactions is that the
regulatory mechanisms are two-way systems, often with a third
implicated as an intermediary. Thus, even considering the inter-
actions between two systems is overly simplistic, suggesting that
a whole systems approach is necessary to fully understand the
relationships between central systems that become unstable in
psychiatric disorders.

FUTURE DIRECTIONS
In this review, we identified the most commonly replicated
changes in neurochemical markers associated with psychiatric
disorders and interpreted them in the light of basic research elu-
cidating interactions between the cholinergic and other central
neurotransmitter systems. Acetylcholine was chosen as the piv-
otal transmitter system because of the extent of its innervations
and because it is a target of choice for many drug development
strategies aimed at novel therapies for psychiatric disorders. For
example, acetylcholinesterase inhibitor use has expanded from
their initial role of improving cognitive impairment in demen-
tias (Hollander et al., 1986) to their specific use as adjuncts for
the treatment of visual hallucinations (Patel et al., 2010; Abad
et al., 2011). Efforts to target specific cholinergic receptors to pro-
voke therapeutic outcomes are ongoing, with particular emphasis
on the α7 nicotinic (Lieberman et al., 2013) and M1 muscarinic
(Patel et al., 2010) receptors to improve cognitive performance.
Meanwhile, attempts to develop new antipsychotic agents are
focusing on the M4 muscarinic receptor (Leach et al., 2010). In
mood disorders, the ability of scopolamine to ameliorate depres-
sive symptoms, in people with major depressive and bipolar
disorders (Drevets et al., 2012) has rejuvenated research into new
targets for anti-depressant drugs. These developments, combined
with the cholinergic regulation of the inflammation/immune sys-
tem, which appears to play a role in the pathophysiology of
psychiatric disorders, made the cholinergic system an obvious
choice for the central factor in our review. Increasing our under-
standing of the interactions between the central neurotransmitter
systems will provide alternative means of modulating systems
rather than trying to target specific components of the system of
interest—which may prove to be undruggable for various reasons.
Such an approach has already been used in Parkinson’s disease,
where anti-cholinergic drugs were employed to ameliorate the
tremor associated with the disorder.

One caveat of this review is that most of the data related to the
neurochemical changes in psychiatric disorders has arisen from
postmortem studies. Therefore, we cannot ascertain which of the
chemical changes occurred first, hindering our attempts to con-
struct a theory around these changes. Even if we could look at all
of the markers detailed in this review in the same cohort of living
people, whilst we would be able to confirm or disprove some of
the proposed interactions, we still would not be able to determine
the cause and effect relationship.

Furthermore, given the emphasis on the neurodevelopmental
aspect of many of these disorders (Sigurdsson et al., 1999; Piper
et al., 2012), we do not know at which stage in development such
changes occurred. In order to gain a better understanding of the
impact disruptions one neurochemical has on others, it would be
necessary to model such changes in animals. Ideally, this approach
would involve the sophisticated gene knockout techniques that
are capable of targeting specific genes in a select group of neurons
or tissue (Wess, 2012). Such a course would enable the dysregula-
tion of individual components of neurotransmitter systems at any
selected time point during development and allow researchers to
assess the effects of disrupting specific interactions at these times.
This, in turn would enable the identification of the specific com-
ponents involved in the interactions between central systems and
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provide an insight into the long term consequences of specific
neurotransmitter system dysfunctions during development.

The development of new technologies and our increasing
understanding of the processes involved in the translation from
gene sequence to active product also offer a number of new
approaches that can be utilized to improve our knowledge regard-
ing the interactions between central transmitter systems. For
example, the relatively new field of optogenetics—where light
can be used to activate specific neurons—offers great scope to
activate specific receptors in tissue of interest and identify the con-
sequences of that activation. This approach will be of particular
use in determining which receptors are involved in the cross-talk
between transmitter systems, thereby circumventing the problems
associated with using drugs that, although they have a high affin-
ity for a particular receptor often have the capacity to stimulate or
inhibit the actions of other receptors.

What was once a “simple” process of a gene being transcribed
into RNA which was then translated into the corresponding pro-
tein is gradually being unraveled to reveal a far more complex
series of events than previously imagined. We now know that
factors such as gene methylation and histone modification (epi-
genetics) can determine whether or not a gene can be transcribed.
Assuming the RNA is generated, the next step in the process
can also be regulated, this time by microRNAs (miRNAs) which
have the ability to block the translation of mRNA into proteins.
Therefore, these factors also have to be taken into account when
considering the interactions between central neurotransmitters,

particularly since both epigenetics and miRNAs have been impli-
cated in psychiatric disorders. For example, does the activation
of one system affect the prevalence or type of epigenetic mark-
ers on the genes that encode components other systems? Will
such changes in turn affect the fundamental regulation of expres-
sion for that gene? Does transmitter X affect the expression of
particular miRNAs? If so, which of the myriad of theoretical inter-
actions ascribed to each miRNA actually occur physiologically
and of those, which are relevant to the process under investiga-
tion? The involvement of both miRNAs (Dwivedi, 2011; Banigan
et al., 2013) and epigenetic markers (Zhao et al., 2012; Sun et al.,
2013) in psychiatric disorders mean that a great deal of progress
is being made in understanding the consequences of such fac-
tors. As screening protocols, such as the miRNA microarray,
are developed, they can be applied to the study of interactions
between central neurotransmitters, which in turn will feed into
our understanding of the neurochemical changes associated with
psychiatric disorders, paving the way for the development of
targeted therapeutic approaches.
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