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Abstract

The SARS-CoV-2 virus responsible for the COVID-19 pandemic has generated an explosion of interest both in the 
mechanisms of infection leading to dissemination and expression of this disease, and in potential risk factors that may 
have a mechanistic basis for disease propagation or control. Vitamin D has emerged as a factor that may be involved 
in these two areas. The focus of this article is to apply our current understanding of vitamin D as a facilitator of 
immunocompetence both with regard to innate and adaptive immunity and to consider how this may relate to  
COVID-19 disease. There are also intriguing potential links to vitamin D as a factor in the cytokine storm that portends 
some of the most serious consequences of SARS-CoV-2 infection, such as the acute respiratory distress syndrome. 
Moreover, cardiac and coagulopathic features of COVID-19 disease deserve attention as they may also be related 
to vitamin D. Finally, we review the current clinical data associating vitamin D with SARS-CoV-2 infection, a putative 
clinical link that at this time must still be considered hypothetical.
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Introduction

At the time of this writing, SARS-CoV-2, the virus causing 
the COVID-19 pandemic had infected over 15 million 
people and had caused over 400 000 deaths worldwide 
(1). In the United States, one of the countries hardest hit 
by the pandemic, there have been over 4 million people 
infected and over 140 000 deaths. Undoubtedly, these 
numbers will grow greatly in the months to come. The 
search for risk factors predisposing to adverse outcomes 
of this disease has focused upon age, obesity, diabetes, 
hypertension, ethnicity, and other factors (2, 3, 4, 5, 
6, 7). Recently, vitamin D inadequacy has emerged 
as another potential risk factor (8, 9, 10). In view of 
current interest in vitamin D as a potential factor in the  
COVID-19 pandemic, we review what is known about the 
role of vitamin D as a facilitator of immunocompetence 
regarding innate and adaptive immunity. We also 
summarize current information implicating vitamin D as a 
factor in the cytokine storm that portends some of the most 
serious consequences of COVID-19 disease. A discussion 
of possible involvement of vitamin D in the cardiac and 
coagulopathic features of COVID-19 disease is followed by 
a review of the available clinical data associating vitamin 
D with SARS-CoV-2, a putative clinical link that, at this 
time, must still be considered hypothetical.

Vitamin D as a regulator of the 
immune response

A major initial observation linking vitamin D to the immune 
system was the appreciation that antigen-presenting cells 
such as macrophages and dendritic cells synthesise the 
active form of vitamin D, 1,25-dihydroxyvitamin D (1,25 
(OH)2D) from its precursor 25-hydroxyvitamin D (25-
OHD) via the enzyme 1α-hydroxylase (CYP27B1). This 
property of macrophages and dendritic cells was initially 
considered to be a pathological response in association 
with immune disorders, such as sarcoidosis, tuberculosis, 
and other granulomatous diseases (11). However, 
subsequent studies showed that the expression of 
CYP27B1 and synthesis of 1,25 (OH)2D are a fundamental 
feature in the normal development of antigen-presenting 
cells (12, 13). These seminal observations provided a 
mechanism by which macrophages and dendritic cells 
could be influenced by vitamin D. Accompanying these 
observations is the finding that epithelia, the main barrier 
between the environment and the body, also express 
CYP27B1. In general, the epithelia are the first responders 

to invading pathogens sounding the alarm, as it were, via 
their own innate immune system to activate dendritic 
cells and macrophages and to recruit neutrophils and 
T cells to the site of infection. In the setting of vitamin 
D deficiency, immune responses would be impaired 
because less 25-OHD would be available for synthesis of 
1,25 (OH)2D leading to impairment of innate immune 
function (14). This localized, intracrine, mechanism is 
now considered a cornerstone of the interaction between 
vitamin D and the immune system. It is quite distinct 
from the endocrine actions of vitamin D concerned with 
regulating mineral homeostasis. Conventional skeletal 
and calcium regulating effects of vitamin D are driven 
by circulating 1,25 (OH)2D synthesized primarily by the 
kidneys. In this conventional setting, 1,25 (OH)2D is 
under the regulation not only by its precursor, 25-OHD 
but also by parathyroid hormone and fibroblast growth 
factor 23 (15). In contrast, vitamin D’s role in immune 
response mechanisms appears to be regulated primarily 
by availability of 25-OHD, induction of CYP27B1 by the 
invading pathogens and, ultimately, by stimulation of 
1,25 (OH)2D in target tissues of the immune system.

Vitamin D as a regulator of the innate 
immune response

Antimicrobial actions of vitamin D and the innate 
immune response

An antimicrobial role for 1,25 (OH)2D was initially 
described almost 30 years ago (16). However, the 
relevance of this antimicrobial property of vitamin D 
was appreciated only later in studies of the intracellular 
synthesis of 1,25 (OH)2D as a mechanism for promoting 
antibacterial responses to Mycobacterium tuberculosis. 
Local, intracellular synthesis of 1,25 (OH)2D by 
monocytes/macrophages promotes the expression of 
the antimicrobial protein cathelicidin and enhances 
intracellular killing of M. tuberculosis. (17). Similar processes 
occur in epithelia and are an important component of the 
barrier function that these tissues display. Specifically, 
the 1,25 (OH)2D–vitamin D receptor complex acts on the 
cathelicidin gene promoter vitamin D response elements 
to enhance transcription of cathelicidin (18). Although 
the antimicrobial function of cathelicidin is crucial, this 
protein has a number of other functions including the 
induction of a variety of proinflammatory cytokines, 
stimulation of the chemotaxis of neutrophils, monocytes, 
macrophages, and T cells into the site of infection, and 
promotion of the clearance of respiratory pathogens by 
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inducing apoptosis and autophagy of infected epithelial 
cells (19, 20). The induction of cathelicidin by1,25 (OH)2D 
is observed only in higher primates, and, thus, it appears 
that the ability of vitamin D to promote cathelicidin 
synthesis is a recent evolutionary development (21). The 
ability of macrophages to produce cathelicidin correlated 
well with the serum 25-OHD concentration (17, 22). 
These observations provided a plausible explanation for 
the reported high prevalence of tuberculosis and various 
other respiratory disorders in individuals with vitamin D 
deficiency (23).

In addition to cathelicidin, vitamin D influences 
another innate antibacterial element, β-defensin2 
(18). β-Defensin2, such as cathelicidin, contributes to 
host defense by stimulating the expression of antiviral 
cytokines and chemokines involved in the recruitment of 
monocytes/macrophages, natural killer cells, neutrophils, 
T cells (24). Cellular production of cathelcidin and 
β-defensin2 depends on the vitamin D receptor and 
CYP27B1 the expressions of which are enhanced 
following interaction of pathogens with membrane 
PRRs, such as toll-like receptor 2 and toll-like receptor 
4. Another important intracellular pattern recognition 
receptor, stimulated by 1,25 (OH)2D, is nucleotide-
binding oligomerization domain-containing protein 2 
(NOD2) which enhances β-defensin2 expression (25). Yet 
another mechanism by which vitamin D can serve an 
antimicrobial function relates to cellular iron metabolism. 
Bacteria depend upon intracellular iron for survival. 
In the course of infection, hepcidin, which restricts 
the transcellular export of iron through ferroportin is 
induced, thus increasing cellular iron levels (26). 1,25 
(OH)2D is a potent suppressor of hepcidin, and therefore 
acts to enhance ferroportin and reduce intracellular iron, 
thereby providing another mechanism for suppression of 
bacterial growth (27). Ultimately, the ability of vitamin 
D to promote antimicrobial, innate immune function is 
closely linked to phagocytosis, and subsequent enhanced 
bacterial killing via the induction of autophagy (28). 
Similar considerations pertain to viral clearance as 
described below. A model for integration of antimicrobial 
responses to vitamin D, as it relates to M tb is shown  
in Fig. 1.

Importantly, vitamin D may have broader 
antimicrobial actions beyond those described in Fig. 
1, including the generation of nitric oxide (29) and 
superoxide (30). In addition to enhancing monocyte/
macrophage antimicrobial functions, vitamin D promotes 
the killing of pneumococcus by stimulating neutrophils 
via a range of mechanisms that included upregulation 

of toll-like receptor 2, NOD2, and cathelicidin together 
with enhanced antimicrobial human neutrophil peptide 
(HNP1–3) production (31). Even beyond monocytes, 
macrophages, and neutrophils, which collectively 
illustrate the importance of vitamin D in supporting a 
range of innate antibacterial responses, vitamin D can 
promote antimicrobial function outside the immune 
system. For example, within the gastrointestinal tract, 
vitamin D promotes the expression of gap junction 
proteins that maintain barrier integrity thereby preventing 
tissue ingress by bacteria from the gut microbiome (32). 
Similar barrier integrity effects of vitamin D have also 
been observed for the epithelial cells of the lung (33), 
along with stimulation of antimicrobial proteins by lung 
epithelial cells (34, 35).

Antiviral actions of vitamin D and the innate 
immune response

Although studies of vitamin D and innate immune 
activity have focused primarily on antibacterial 

Figure 1
Antimicrobial actions of vitamin D. Schematic showing 
possible macrophage responses to microbial infection. Pattern 
recognition receptors such as toll-like receptors (TLR) signal 
responses to pathogens. This includes transcriptional 
induction of 1α-hydroxylase (CYP27B1) and the vitamin D 
receptor (VDR). Serum 25-hydroxyvitamin D (25-OHD) bound 
to vitamin D binding protein (DBP) allows intracellular access 
of free 25-OHD for conversion to 1,25 (OH)2D, which then bind 
to VDR. Transcriptional responses to 1,25 (OH)2D (shown with 
red arrows) include induction of cathelicidin and β-defensin 2 
(DEFB4), NOD2, and nitric oxide (NO). Intracellular iron (Fe) is 
exported via ferroportin which is targeted for degradation by 
hepcidin. The bacterial cell wall product muramyl dipeptide 
binds to NOD2.
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mechanisms, as noted and illustrated in Fig. 1, vitamin 
D can also promote antiviral immunity, which is of great 
importance in any discussion for its role in COVID-
19 infection. This involves a number of mechanisms 
that overlap with antibacterial responses, such as the 
induction of cathelicidin and defensins, which can block 
viral entry into cells as well as suppress viral replication 
(36, 37). Another property of vitamin D relevant both to 
antibacterial and antiviral mechanisms are promoting 
autophagy (38, 39). Autophagy is a fundamental 
biological process that maintains cellular homeostasis 
via intracellular membrane encapsulation of damaged 
organelles and misfolded proteins. Autophagy is also an 
essential mechanism by which cells deal with viruses. 
Autophagic encapsulation of viral particles packages 
them for lysosomal degradation and subsequent antigen-
presentation and adaptive antiviral immune responses 
(40). Thus, autophagy facilitates, but does not guarantee, 
a hostile cellular antiviral environment.

Induction of autophagy is a key cellular response 
to vitamin D, with both 25-OHD and 1,25 (OH)2D 
enhancing expression of the autophagy marker LC3 
(28, 41). Within the innate immune response, vitamin 
D enhances autophagy by mechanisms similar to the 
response prompted by antibacterial proteins (42). 
Thus, autophagy may be sensitive to changes in serum 
25-OHD levels. The specific mechanisms by which 
vitamin D promotes autophagy involves downregulating 
the mTOR pathway, which inhibits autophagy (43), and 
by promoting Beclin 1 and PI3KC3, key enzyme drivers 
of autophagy (44). Upregulation of intracellular Ca and 
NO by vitamin D also stimulates PI3KC3 activity to 
promote autophagy (45) (Fig. 2). Beyond the immediate 
regulation of pathways associated with autophagy 
induction, vitamin D may also stimulate the formation 
of autophagosomes to facilitate viral clearance indirectly 
through induction of cathelicidin expression, which in 
turn stimulates key autophagy factors such as Beclin 
1 (28). In considering the effects of vitamin D on 
autophagy, it is important to recognize that these actions 
are closely linked to apoptosis, which may aid viral 
replication. Therefore vitamin D may play a crucial role 
in maintaining appropriate balance between autophagy 
and apoptosis to maximize antiviral responses to 
infection (46). Vitamin D-induced autophagy decreases 
HIV-1 infection (47, 48), influenza A (49), rotavirus 
(50), and hepatitis C (51), but wider virus- and target 
cell-specific antiviral responses to vitamin D have been 
reviewed in detail elsewhere (46).

Vitamin D as a regulator of the adaptive 
immune response

The adaptive immune response is initiated by cells 
specialized in antigen presentation, such as dendritic 
cells and macrophages, which in turn activate the cells 
responsible for subsequent antigen recognition, T and B 
lymphocytes. These cells are capable of a wide repertoire 
of responses that ultimately determine the nature and 
duration of the immune response. Activation of T and B 
cells occurs after a priming period in tissues of the body, 
such as lymph nodes, that are typically distant from the 
site of the initial exposure to the antigenic substance. This 
period is marked by proliferation of the activated T and 
B cells accompanied by post-translational modifications 
of immunoglobulin production that enable the cellular 
response to adapt specifically to the antigen presented. 
The type of T cell activated, CD4 or CD8, or within the 
helper T cell class Th1, Th2, Th17, Treg, is dependent on 
the context of the antigen presented by which cell and 
in what environment. Systemic factors such as vitamin 
D influence this process. 1,25(OH)2D, in general, exerts 
an inhibitory, anti-inflammatory, action on the adaptive 
immune system. When airway dendritic cells are activated 

Figure 2
Autophagy and antivirobial actions of vitamin D. Schematic 
showing possible macrophage responses to viral infection. 
This includes transcriptional induction of 1α-hydroxylase 
(CYP27B1) and the vitamin D receptor (VDR). Serum 
25-hydroxyvitamin D (25-OHD) bound to vitamin D binding 
protein (DBP) allows intracellular access of free 25-OHD for 
conversion to 1,25 (OH)2D, which then bind to VDR. 
Transcriptional responses to 1,25 (OH)2D (shown with red 
arrows) include induction of cathelicidin and β-defensin 2 
(DEFB4), nitric oxide (NO) and intracellular calcium (Ca).
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by a virus, for example, they migrate to lymph nodes 
where they gain enhanced ability to present antigen 
for activation of T cells (52). As noted previously, this 
activation and maturation of dendritic cells includes 
increased CYP27B1 expression but also a decrease in 
the vitamin D receptor (21). 1,25(OH)2D decreases the 
maturation of dendritic cells, decreasing their ability to 
present antigen and to activate T cells (53). Treatment of 
dendritic cells with 1,25(OH)2D can also induce regulatory 
T cells (Treg) cells (54, 55). Treg cells are critical for the 
induction of immune tolerance (56) and likely play a key 
role in preventing the cytokine storm associated with 
severe respiratory disease caused by viral infections (57).

The vitamin D receptor as a regulator of 
both innate and adaptive immunity

Both innate and adaptive immune responses can vary 
according to different polymorphisms found in many 
steps of the vitamin D pathway. One of the most studied 
of these polymorphisms is that related to the vitamin D 
receptor. By meta-analysis, variability in risk for enveloped 
virus infection was dependent on the presence of alleles 
defined by FokI. The majority studies included in this meta-
analysis focused on Respiratory Syncytial Virus infection. 
The recessive genotype TT of Fokl increases susceptibility 
as compared to CT+CC genotypes. The T allele reduces 
the ability of vitamin D receptor complex to bind to gene 
elements responsive to vitamin D and, according to this 
meta-analysis, it was consistently associated with higher 
susceptibility to Respiratory Syncytial Virus infections. 
Moreover, the worldwide distribution of the T allele 
overlaps the incidence of Respiratory Syncytial Virus 
infection, reinforcing the association between vitamin D 
and immune response against enveloped viruses such as 
Respiratory Syncytial Virus (58).

The lung as a host for vitamin D-associated 
immune defense mechanisms

The lungs are a major target for SARS-CoV-2 and related 
viruses and, thus, are of major interest in understanding 
the host immune response to them. The respiratory tract 
has a large surface area (approximately 70 m2) in contact 
with the environment. Thus, it provides a major site 
for invasion by pathogenic organisms, against which it 
must defend. The defense mechanism is composed of 
both innate and adaptive immunity. Activation of the 

innate immune system drives the induction of the long-
term adaptive immune system (59). The principal cells 
involved are the airway epithelia, alveolar macrophages, 
and dendritic cells. These cells all express CYP27B1 and 
therefore have the potential to synthesize 1,25 (OH)2D. 
Expression of CYP27B1 is constitutive in airway epithelial 
cells (60), but is induced in alveolar macrophages by 
toll-like receptor (TLR) ligands (e.g. lipopeptide from M. 
tuberculosis), interferonγ (IFNγ), and LPS (61, 62), and in 
dendritic cells by TNFα, IFNγ, polyI:C, and LPS (63, 64, 
65). Moreover, these cells all express pattern recognition 
receptors (PRRs) of which TLRs are a major component 
and by which viral RNAs are recognized (66).

Proposed mechanisms for antibacterial and antiviral 
actions of vitamin D have been derived essentially from 
in vitro and ex vivo studies, but they have also been used 
as a rationale for in vivo analysis of the antimicrobial 
actions of vitamin D. Experiments using animal models 
have been limited because key antimicrobial responses 
to vitamin D such as cathelicidin induction appear to be 
restricted to primates (21). As outlined earlier, vitamin D 
deficiency in humans is linked to mycobacterial diseases, 
such as tuberculosis (67). However, over the last 10 years, 
vitamin D deficiency has also been linked to a wide range 
of common infectious disease, such as sepsis, pneumonia, 
and MRSA as well as viral infections such as influenza, 
hepatitis C and human immunodeficiency virus type 1 
(HIV-1) (68). Other viral infections putatively linked to 
vitamin D include EBS, VZV, CMV, HIV, HCV, HBV, HPV, 
and Dengue (46). A causal link between low serum 25-OHD 
and impaired antibacterial and antiviral immunity via the 
mechanisms outlined in Figs 1 and 2, is plausible given 
the impact that this will have on intracrine generation of 
1,25 (OH)2D and subsequent vitamin D receptor-mediated 
responses by cells within the immune system and barrier 
tissue sites.

Although 25-OHD is an important component 
of antimicrobial responses to vitamin D via its local 
conversion to 1,25 (OH)2D, it is also noteworthy as a 
circulating lipophilic molecule bound to vitamin D 
binding protein (69). Thus, the ability of 25-OHD to access 
target immune cells, such as macrophages and dendritic 
cells and the epithelia of the lung and skin, is limited by 
its binding to vitamin D binding protein. Indeed, studies 
have shown that in fact, it is the relatively small unbound 
or ‘free’ fraction of 25-OHD that is acquired by immune 
cells to drive intracrine induction of antimicrobial 
responses (70). This suggests that in considering the 
impact of vitamin D on antimicrobial immune responses, 
it is important not only to assess the level of 25-OHD but 
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also the associated concentration of vitamin D binding 
protein. It is also possible that infection and associated 
inflammatory immune responses lead, in turn, to altered 
vitamin D metabolism, so that low serum 25-OHD could 
also be a consequence of infectious disease.

Cytokine storm and vitamin D

One of the devastating pathophysiological aspects of 
SARS-CoV-2 infection is the so-called pulmonary cytokine 
storm, a major cause of morbidity and mortality. The 
cytokine storm results from dysregulation of the innate 
immune system with an outpouring of proinflammatory 
cytokines and chemokines, leading to abnormal 
activation of the adaptive immune pathway. The serious 
damage caused by coronaviruses such as SARS-COV-2 is 
due to their infection of both the upper and lower airways 
with rapid virus replication, massive inflammatory cell 
infiltration producing a huge increase in proinflammatory 
cytokines and chemokines leading to acute respiratory 
distress syndrome (71). The initial infection of the 
airway epithelium leads to rapid viral replication (72, 73) 
complicated by a virus-induced delayed increase in class 
1 interferon (IFNα/β) expression in dendritic cells that 
would normally block viral replication and enhance viral 
clearance by CD8 T cells (74). The delayed expression of 
class 1 interferon subsequently increases recruitment of 
proinflammatory cells, contributing to the problem. These 
infected airway epithelial cells then secrete a number 
of proinflammatory cytokines/chemokines that further 
dysregulate the innate immune response and attract 
the influx of inflammatory cells including neutrophils, 
monocytes and macrophages while sensitizing T cells to 
apoptosis (75). The consequences include a breakdown 
in the microvascular and alveolar epithelial barrier from 
apoptosis of the lung epithelium and endothelium, 
resulting in vascular leakage and alveolar edema. The T 
cell response required for viral clearance is blunted (76), 
and their role in dampening the cytokine storm is reduced.

A potential role for vitamin D in modulating these 
pathophysiological aspects of the cytokine storm is 
noteworthy. Airway epithelia constitutively express 
both CYP27B1, 1,25(OH)2D, and the vitamin D receptor. 
Furthermore, pulmonary alveolar macrophages are 
induced to express both CYP27B1 and the vitamin D 
receptor by pathogens such as viruses and cytokines 
released from infected cells. Although not demonstrated 
for coronaviruses, such as SARS-CoV-2, for other viruses and 
other respiratory pathogens, activation of innate immunity 

leading to increased local 1,25(OH)2D production has 
been shown to enhance viral neutralization and clearance 
while modulating the subsequent proinflammatory 
response. Whether this sequence of events will be the case 
for SARS-CoV-2 remains to be seen.

Summary of molecular features that could 
link vitamin D to COVID-19 infection

The innate immune system is the first line of defense 
against invading pathogens, such as viruses. It is prebuilt, 
relying on constitutive expression of pattern recognition 
receptors like TLRs to identify such pathogens. 1,25(OH)2D 
enhances that defense by inducing antimicrobial peptides 
such as cathelicidin that lead to viral destruction 
and clearance by several mechanisms, helps recruit 
neutrophils, monocytes/macrophages, and dendritic 
cells which further the killing and clearance of these 
pathogens, and initiates the adaptive immune response. 
While beneficial acutely, chronic activation of the innate 
immune response is not necessarily beneficial, and can 
result in a cytokine storm. 1,25(OH)2D works to curtail 
this chronic innate immune response through a number 
of mechanisms including down regulation of TLRs and 
direction inhibition of TNF/NFκB and IFNγ signaling 
pathways. The adaptive immune system provides a more 
specific response, but takes longer to develop, although 
once developed provides a powerful response against 
invading organisms. However, this response if not 
controlled can also be destructive. Vitamin D, via its active 
metabolite 1,25(OH)2D, regulates adaptive immunity by 
limiting the maturation of dendritic cells, limiting their 
ability to present antigen to T cells, and shifting the T cell 
profile from the proinflammatory Th1 and Th17 subsets to 
Th2 and Treg subsets, which inhibit the proinflammatory 
processes. Although these results come from studies with 
a variety of pathogens, viral and bacterial, the relevance 
of these protective actions on SARS-CoV-2 merits further 
investigation.

Vitamin D and the cardiovascular system 
in COVID-19

COVID-19 has been associated with cardiovascular 
sequelae, including myocardial injury, type 1 myocardial 
infarction, acute coronary syndromes, acute cor pulmonale, 
cardiomyopathy, arrhythmias, thrombotic complications, 
and cardiogenic shock (77, 78, 79). Myocardial injury, 
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with the elevation of cardiac biomarkers as well as 
electrocardiographic or echocardiographic changes, is 
common, reported in 20–30% of hospitalized patients 
with COVID-19 (80, 81). Cardiomyopathy has been 
reported in 7–33% of critically ill COVID-19 patients (82, 
83, 84). Cardiac arrhythmias, including new onset atrial 
fibrillation and atrial flutter, heart block, and ventricular 
arrhythmias have been reported in 17% of hospitalized 
patients, and 44% of patients in the ICU setting (85).

Preclinical evidence suggests that vitamin D may 
protect against atherosclerosis, a substrate for deleterious 
myocardial events, by inhibiting the transformation of 
macrophages to foam cells and by increasing cholesterol 
efflux (86, 87). 1,25 (OH)2D-induced production of 
vascular endothelial growth factor in vascular smooth 
muscle cells has been proposed to promote endothelial 
repair (88). Anti-inflammatory actions such as reduced 
NFκB and interleukin 6 expression in endothelial cells, 
reduced thrombogenicity – through the downregulation 
of tissue factor (F3) and upregulation of thrombomodulin 
expression in endothelial cells and macrophages, and 
increased endothelial nitric oxide production are some 
of the other possible antiatherosclerotic mechanisms 
of vitamin D (88). The effects of vitamin D on vascular 
calcification, however, can be ‘double-edged’ because both 
deficiency and excess vitamin D has been associated with 
vascular calcification, a key component of atherosclerotic 
cardiovascular disease (88).

While no direct causal evidence for a role of vitamin D  
deficiency in SARS-CoV-2-related heart disease is 
available, extrapolation of evidence from prior animal 
and human studies permits speculation of several 
plausible mechanisms. The rather widespread presence of 
CYP27B1 includes cells of the cardiovascular system (89, 
90). Furthermore, the vitamin D receptor for 1,25 (OH)2D 
is expressed in the heart and blood vessels (84, 86). In 
mice models in which the CYP27B1 or the vitamin D 
receptor has been knocked out systemically, myocardial 
hypertrophy with overexpression of the renin–
angiotensin–aldosterone system (RAAS), hypertension, 
increased thrombogenicity, and progression of 
atherosclerosis have been reported (89, 91). The proposed 
overexpression of the RAAS system, fits these sequelae 
of vitamin D deficiency in animal models. The various 
cardiovascular risk factors that have been correlated 
with higher mortality from COVID-19 are also more 
evident in experimental and clinical studies of vitamin D 
deficiency (92, 93, 94, 95, 96, 97, 98). Such risk factors 
for cardiovascular disease in COVID-19 disease, which are 
linked to vitamin D deficiency include hypertension (99), 

diabetes (100), obesity (101) and chronic kidney disease 
(102). In particular, vitamin D deficiency may predispose to 
hypertension by upregulation of the RAAS, and increasing 
vascular resistance and vasoconstriction (103, 104, 105). 
In mice with endothelial-specific knockout of the vitamin 
D receptor gene, vascular function is significantly altered, 
with increased sensitivity to angiotensin-2 compared 
with control mice (106). It is possible that this is further 
exacerbated by SARS-CoV-2 infection, in which viral 
binding with cellular entry receptor ACE2 leads to 
dysregulation of the RAAS in favour of angiotensin-2 
(107, 108, 109).

Activation of the vitamin D receptor also modulates 
myocardial contractility, likely by regulating calcium 
flux (110). Several meta-analyses of prospective clinical 
studies have consistently shown that low 25-OHD serum 
concentrations indicate an increased risk of overall 
cardiovascular events and cardiovascular mortality 
(111, 112, 113, 114, 115, 116). While a majority of 
the randomized controlled trials examining effects of 
vitamin D supplementation have not shown benefit, the 
VINDICATE study demonstrated beneficial effects for 
improvement in left ventricular rejection fraction and 
reversal of left ventricular remodeling in patients with 
chronic heart failure who received vitamin D (117).

Patients with COVID-19 are also at risk for a number 
of thrombotic complications (118), which may be due 
to a number of direct and indirect effects of SARS-CoV-2 
infection. Several reports have suggested elevated rates of 
both arterial and venous thrombotic events in patients 
with COVID-19 (119, 120, 121, 122, 123) and significant 
coagulopathy is related to poor prognosis in COVID-19  
patients (118, 121). While the mechanisms which lead 
to these events have yet to be fully elucidated, it is 
plausible that vitamin D levels may be a contributing risk 
factor. The vitamin D receptor is expressed ubiquitously 
in blood vessels (90). The possible interaction between 
inflammatory and hemostatic pathways and vitamin 
D status is supported by both preclinical and clinical 
data. Mice in which the vitamin D receptor has been 
knocked out demonstrate enhanced platelet aggregation, 
downregulation of antithrombin and thrombomodulin 
gene expression, and upregulation of tissue factor 
expression (124). Other studies have suggested that 1,25 
(OH)2D can downregulate proinflammatory signaling and 
promote inhibition of tissue factor activity, thus reducing 
a prothrombotic milieu (125). In addition, a limited 
number of clinical reports, antedating the COVID-19 
era suggest a link between the development of vitamin 
D deficiency and incident thrombotic events, including 
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deep venous thrombosis and cerebrovascular events (126, 
127, 128). This may be especially true in patients who are 
critically ill and require intensive care, among whom low 
25-OHD levels have been reported in up to 80% in the 
pre-COVID-19 era (129, 130). However, it remains unclear 
whether vitamin D supplementation in such patients has 
an effect on outcomes (131).

Given the relationship between vitamin D and the 
RAAS, inflammatory and hemostatic pathways, all of 
which have been implicated in the development of 
cardiovascular complications from SARS-CoV-2 infection, 
further studies evaluating the role of vitamin D in  
COVID-19-related cardiovascular and thrombotic 
events may prove critical to gaining insights into both 
mechanism and therapeutics.

Clinical data linking vitamin D to 
pulmonary infections

Historically and well before the sun was linked to vitamin 
D metabolism and activation, it occupied a central 
position in popular lore as a source of life. The Hindu 
prayer Surya Namascar is based on the myth of Samba, 
the son of Krishna, who was cured of leprosy by praying 
to Surya, a solar deity (132). Until the beginning of the 
last century, sanatoriums to treat tuberculosis were 
commonly located in sunny places, where sunbathing 
was part of the treatment. Interestingly, cod liver oil was 
used to treat tuberculosis in the 19th century, even before 
knowing that it was extremely rich in vitamin D (133). 
Recognition that the vitamin D precursor in the skin is 
thermoactivated by sunlight has been known only for the 
past 100 years (134). So intense is the activation of the 
vitamin D pathway by macrophages and other immune-
oriented cells that 1,25(OH)2D-dependent hypercalcemia 
can occur in patients with granulomatous diseases, such 
as tuberculosis or other granulomatous diseases (135). 
However, the enticing historical backdrop to vitamin D 
as a therapeutic for tuberculosis has not met with general 
consensus (136). Nevertheless, a recent meta-analysis 
evaluating the effects of vitamin D supplementation on 
different outcomes in 1787 patients with pulmonary 
tuberculosis demonstrated some benefits and concluded 
that this supplementation should be considered as an 
adjuvant therapy, together with antibiotics (137).

The link between vitamin D and viral infections arose 
from the observation of the seasonality of vitamin D with 
lower levels in the winter and concomitant increases in 
influenza. Conversely, in summer, serum levels of 25-OHD 

increase and influenza virtually disappears, except during 
pandemics. Even in pandemics, most deaths occur during 
cold months (138).

Lower 25-OHD concentrations are associated with a 
higher risk for infections, especially from the respiratory 
tract (139). Seeking a link to acute respiratory infections, 
Sabetta et al. measured monthly 25-OHD concentrations 
in 198 healthy adults and followed them during fall and 
winter (140). Individuals with 25-OHD concentrations ≥38 
ng/mL had a two-fold lower risk of viral acute respiratory 
infections and faster recovery, compared to those with 
lower concentrations (P < 0.0001). Other studies have 
also found an association between lower levels of 25-OHD 
and higher risk of acute respiratory infections but with 
different thresholds. Nevertheless, they are consistent in 
showing that the lower the 25-OHD concentration, the 
greater the risk for acute respiratory infections. Generally, 
higher-risk occurred at 25-OHD concentrations below 20 
ng/mL, but in a retrospective study of 14 108 individuals 
from the National Health and Nutrition Examination 
Survey, levels <30 ng/mL were associated with 58% higher 
odds of acute respiratory infections (141, 142, 143).

Recently, Martineau et  al. reported the effects of 
Vitamin D supplementation to prevent acute respiratory 
infections (144). This meta-analysis included 25 
randomized double-blind placebo-controlled trials with 
individual data from 10 933 patients across the lifespan. 
Vitamin D supplementation decreased risk of respiratory 
tract infections by 12%. A stronger protective effect was 
observed in those with baseline levels of 25-OHD <10 ng/
mL compared with those with a baseline levels > 10 ng/
mL. This protective effect was much more evident in those 
receiving daily or weekly doses of vitamin D in contrast to 
those receiving bolus doses. When combining the daily 
and weekly doses, the protective effect was more evident 
at baseline concentrations <10 ng/mL but also at baseline 
levels ≥10 ng/mL.

Clinical data linking Vitamin D to  
COVID-19 infection

In a small study (n = 20) of hospitalized COVID-19 
patients, vitamin D insufficiency (defined as levels of 
25-OHD < 30 ng/mL) was present in 75% of the overall 
cohort and in 85% of those who required ICU care (n = 13) 
(145). Additionally, an analysis of COVID-19 severity 
based on survey vitamin D status in Europe suggested that 
countries with highest rate of vitamin D deficiency are 
associated with highest rates of infection and death (146). 
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Furthermore, a preliminary study from the United States 
has found a strong correlation of vitamin D deficiency 
with mortality and other aspects of poorer outcome (147).

Recently, Ilie et  al. observed a significant 
negative correlation between historical mean25-OHD 
concentrations per European country with COVID-19 
mortality and number of cases (148). Following similar 
reasoning, Marik et al. observed a higher fatality rate for 
COVID-19 for Northern (>40°N latitude) vs Southern 
states (6.0% vs 3.5%, P < 0.001) in the US (149). Very 
recently, Gennari et  al. reports lower levels of 25-OHD 
levels among patients hospitalized with COVID-19 in 
Italy (150). In the aggregate, these data suggest a potential 
deleterious effect of vitamin D deficiency on risk and 
outcome in COVID-19 disease.

D’Avolio et  al. investigated retrospectively 25-OHD 
concentrations in 107 patients who were tested for 
COVID-19 by nasopharyngeal swab from March 1 to April 
14, 2020, in a single hospital from Switzerland (151). The 
median 25-OHD level was 22.2 ng/mL, similar to the 
median of a control cohort from the same period in 2019 
(24.6 ng/mL). In the 27 individuals with PCR positivity 
for SARS-COVID-2, the median 25-OHD was 11.1 ng/mL 
while in those who were PCR negative, the median was 
24.6 ng/mL; P < 0.004. This relationship, however, was not 
found by Hastie et al. using UK biobank data (152). They 
investigated 449 individuals with confirmed COVID-19 
infection who had 25-OHD concentrations obtained 10 
years before. The initial inverse association disappeared 
after adjustment for confounders. Male sex, poorer health 
status, socioeconomic deprivation, age, BMI, and ethnicity 
were predictive factors for COVID-19 in a multivariable 
logistic regression. Curiously, they could also not find 
any association of this viral infection with diabetes, blood 
pressures, or smoking. Grant et al. have provided evidence 
that vitamin D supplementation might be associated with 
reduce risk of COVID-19 infections and deaths (153).

It is intriguing that, Italy and Spain, which have been 
heavily affected by COVID-19 are among the European 
Countries with the highest prevalence of hypovitaminosis 
D (142). In a sampling of 700 Italian women, 60-80 
years old, 25-OHD levels were reported to be lower 
than 12 ng/mL in 76% (154). Moreover, prevalence of 
hypovitaminosis D was reported in up to 32% of healthy 
postmenopausal women in winter and more than 80% in 
institutionalized individuals (155). Diabetes and obesity, 
recognized risk factors for the disease or for its severity, 
are characterized by poor vitamin D status and elevated 
vitamin D requirements (154, 156). In the vast majority 
of hospitalized elderly Italian subjects, hypovitaminosis D  

was present with more than half showing severe  
vitamin D deficiency. Lack of vitamin D also correlated 
with inflammatory parameters (157).

Endogenous levels of 25-OHD are dependent, to 
variable extent on sun irradiation, particularly in those 
countries where foods are not fortified in vitamin D. Low 
vitamin D status could potentially be a mechanistic link 
between age, comorbidities and increased susceptibility 
to complications and mortality due to COVID-19 at least 
in some countries (9, 148). However, in Italy, vitamin 
D is predominantly prescribed to post-menopausal 
women with osteoporosis and for this reason, it can be 
hypothesized that older men are, at least in part, more 
vulnerable to the most serious consequences of the 
infection on this basis (153, 158)

The available clinical data, in brief, are still very 
preliminary with regard to vitamin D status and  
COVID-19 disease. Many reports, to date, have been 
published without rigorous peer-review, are retrospective, 
and only associative. Caution is, therefore necessary in 
interpreting the data. Nevertheless, recent publications 
consistently show a higher prevalence of vitamin D 
deficiency in patients presenting with severe forms of 
COVID-19 (153). In addition, putative mechanisms 
underlying vitamin D’s role in immunity and non-
skeletal actions, would provide support for the hypothesis 
advanced that vitamin D deficiency is a risk factor for the 
disease and/or its adverse outcome.  Clearly, there are 
other factors to consider that include not only established 
risk factors (159, 160, 161) but also local public health 
measures that are taken to control the spread of the  
SARS-CoV-2 virus.

An increasing number of clinical trials are 
being registered to investigate the effect of vitamin 
D supplementation or 25-OHD levels on various  
COVID-19 outcomes (159). Until the results of these trials 
are known, a prudent, general health measure is to ensure 
vitamin D sufficiency. For most individuals worldwide, 
this recommendation comes with the need for vitamin 
D supplementation in order to maintain adequate 
circulating levels of 25-OHD.

Conclusions

The pervasive actions of vitamin D on many organ systems 
have raised many possible interactions between it and 
the mechanisms by which the SARS-CoV-2 virus infects 
human beings. While the data are far from conclusive in 
attributing a role for vitamin D in influencing the risk and 
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outcome of this disease, it is nevertheless also clear that 
more research would be timely and revealing.
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