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Hepatocellular carcinoma (HCC) is considered the second most deadly cancer worldwide.
Due to the absence of early diagnostic markers and effective therapeutic approaches,
distant metastasis and increasing recurrence rates are major difficulties in the clinical
treatment of HCC. Further understanding of its pathogenesis has become an urgent goal
in HCC research. Recently, abnormal expression of long noncoding RNAs (lncRNAs) was
identified as a vital regulator involved in the initiation and development of HCC. Activation
of the Wnt/b-catenin pathway has been reported to obviously impact cell proliferation,
invasion, and migration of HCC. This article reviews specific interactions, significant
mechanisms and molecules related to HCC initiation and progression to provide
promising strategies for treatment.
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INTRODUCTION

Liver cancer has become one of most prevalent malignant diseases worldwide, and hepatocellular
carcinoma (HCC) accounts for most liver cancer cases (1–3). Owing to the increasing incidence and
mortality, HCC is considered the second most deadly cancer worldwide (4). As clinical research is
rapidly advancing, the short survival time and rising recurrence rate of HCC present difficulties in
patient treatment (5–7). Thus, deeply exploring the pathogenesis mechanism could remarkably
improve prognosis (8–10). HCC generally develops from chronic liver diseases commonly caused
by infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) (11–13), and other
pathogenic factors also play important roles in the initiation of malignancy. Recently, emerging
investigations have concentrated on the molecular mechanisms by which long noncoding RNAs
(lncRNAs) regulate HCC tumorigenesis and progression by affecting Wnt/b-catenin signaling
(14–16).

As diverse RNA detection methods are rapidly improved and widely applied, a large number of
noncoding RNAs have been discovered and initially referred to in broad studies (17–19). LncRNAs
(Long non-coding RNAs) are a special category of noncoding RNAs with no less than 200
nucleotides. Accumulating evidence has proven and emphasized the indispensable role of
lncRNAs that participate in the pathogenesis of multiple cancers (20–22). For example, it was
found that lncRNA HCG11 (human leukocyte antigen complex group 11) could enhance the
expression of GFI1 (growth factor independence-1) to suppress the proliferation and invasion of
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cancer cells, functioning as a regulator of miR-942-5p via
sponging in cervical cancer (23). Thus, lncRNA HCG11 is
considered a vital suppressor of HCC. In addition, lncRNA
DDX1-AS1 was confirmed to regulate HCC cell proliferation
and has a strong correlation with a poor prognosis. It was
reported that demethylation in HCC could increase the
expression of DDX1-AS1 through the inhibition of P53 in the
poly(ADP-ribose) polymerase 1 (PARP1)–p53 axis (24).

The Wnt/b-catenin pathway, an evolutionarily conserved
signaling axis and a complicated protein network, plays a
pivotal role in governing numerous physiological processes,
including proliferation, differentiation, and tissue homeostasis
(25–27). A previous study uncovered that dysregulation of the
Wnt/b-catenin cascade has a major impact on the complicated
developmental process of multiple cancers (28–30). For instance,
overexpression of lncRNAs positively related to the Wnt/b-
catenin signaling pathway plays an indispensable role in the
progression of bladder cancer (31–33). Analogously, lncRNA
AB073614 is highly expressed in glioma and indicates a shorter
survival time; this lncRNA targets sex-determining region Y-box
7 (SOX7) to enhance the expression of Wnt/b-catenin and
promote the proliferation and metastasis of glioma cells (34).
In addition, the upregulation of lncRNA SNHG1 could promote
the proliferation of Non-Small-Cell Lung Carcinoma (NSCLC)
cells (35). SNHG1 overexpression is negatively correlated with
miR-101-3p expression, and sex-determining region Y-box 9
(SOX9) serves as the downstream effector of miR-101-3p. SOX9
is considered a vital regulator of the activation of Wnt/b-catenin
signaling (36–38).

Despite increased knowledge regarding associations between
lncRNAs and the Wnt/b-catenin pathway in multiple cancers,
the underlying mechanisms in the occurrence and development
of HCC remain unclear. Therefore, exploration of the effect of
interactions with lncRNAs and the Wnt/b-catenin pathway is
still a rewarding direction. In this review, we summarized and
highlighted the mechanisms of lncRNAs involved in the Wnt/b-
catenin pathway in HCC. We expect that these discoveries could
provide prospective and creative ideas for targeted treatment for
HCC patients.
THE WNT/b-CATENIN PATHWAY IS
RELATED TO HCC

A previous report confirmed that the Wnt cascade is commonly
divided into two pathways—the canonical and noncanonical
signal pathways (39–41)—that mediate the biological process
of cell proliferation and differentiation by affecting the
transcriptional framework (42). Canonical signaling is known
as the Wnt/b-catenin pathway, and the abnormal expression of
b-catenin directly contributes to tumorigenesis (43–45). It was
reported that destruction of b-catenin is mainly determined by
the key degradation complex, which contains scaffold proteins
(AXIN), the human tumor suppressor adenomatous polyposis
coli (APC), glycogen synthase kinase 3b (GSK3b), and casein
kinase 1 alpha 1 (CSNK1A1) (46–48). The degradation complex
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could lead to the phosphorylation of b-catenin at serine/
threonine residues of the N-terminus; subsequently, beta-
transducin repeat containing E3 ubiquitin protein (b-TRCP)
can recognize and ubiquitinate phosphorylated b-catenin to
facilitate its degradation in proteasome (46). Mutations of
members from degradation complex presented remarkable
correlation with hepatocarcinogenesis. Unphosphorylated
CTNNB1 (b-catenin gene) accumulates in the cytoplasm and
accesses the nucleus, interacting with T cell-specific factor
(TCF)/lymphoid enhancer-binding factor (LEF) and activating
a wide range of signaling cascades (30). When CTNNB1
dramatically accumulates in the nucleus and cytoplasm, the
probability of HCC cell invasion, proliferation, and
deterioration is significantly increased (49). Therefore,
CTNNB1 knockdown could block the process of migration and
invasion in HCC and improve patient prognosis (50).

Although mutation of CTNNB1 was shown to be associated
with HBV-related cancer in previous research (51), other
functional mechanisms of CTNNB1 in HBV-related HCC have
also gradually been revealed (52). For instance, the HBV gene
positively mediates the expression of von Willebrand factor C
and EGF domains (VWCE/URG11) at high levels and binds with
APC to boost the activation of CTNNB1. In humans, nineteen
Wnt ligands and ten receptors from the frizzled class receptor
(FZD) family have been verified (53). Several experiments
confirmed that elevated expression of Wnt1 and Wnt3a is
positively associated with the HCV core protein in HCC (54,
55). The mutual effects of Wnt3a and FZD7 (Frizzled class
receptor 7) can trigger the Wnt signaling pathway. FZD7
upregulation might give rise to migration in the early stage of
HCC (56, 57). The mechanisms of CTNNB1 involvement in
HCV-related HCC have been explored in more detail than
those of HBV-related tumors. HCV can increase miRNA-155
expression, facilitating the nuclear accumulation of CTNNB1
and triggering the expression of downstream targets (58).
Additionally, NS5A (nonstructural protein 5A), the core protein
of HCV, was found to accelerate GSK3b phosphorylation and
actively regulate PI3K, contributing to increased CTNNB1
expression (54, 59, 60).
LNCRNAS RELATED TO HCC

LncRNAs are no less than 200 nucleotides in length, and they are
unable to encode proteins. According to the principle of
correlative location for the closest coding genes, lncRNAs fall
into the five following varieties: sense lncRNA, antisense
lncRNA, intergenic lncRNA, intronic lncRNA, and
bidirectional lncRNA (61–63). The distribution of lncRNAs in
the nucleus or cytoplasm and the dysregulation of lncRNAs may
bring about many diseases (64–66). Increasing experiments
about lncRNA can offer a bright orientation of earlier
diagnosis and effective treatment of HCC (67, 68).

Emerging investigations have revealed that lncRNAs mainly
exert epigenetic, transcriptional or posttranscriptional regulation
effects on downstream factors (Figure 1), leading to alterations in
March 2022 | Volume 12 | Article 831366
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expression and stability (69). For example, lncRNAHOTAIR (HOX
transcript antisense intergenic RNA) can increase the expression of
DNMTs to catalyze epigenetic methylation of the promoter region
of miR-122, filled with GC islands (70, 71), which leads to the
inhibition of miR-122 expression. MiR-122 downregulation might
induce the abnormal expression of cyclin G1 and promote cell
proliferation in HCC (72). At the transcriptional level, lncRNAs
have been reported to directly mediate and alter the expression of
noncoding genes, such as miRNAs. In HCC, downregulated H19
was shown to be positively correlated with migration (73). H19
directly interacts with the hnRNP U/PCAF/RNA pol II complex,
promoting the transcriptional expression of the miR-200 family
through the acetylation of histone H3 in the promoter region.
Moreover, the posttranscriptional regulation of lncRNAs is mainly
regarded as the effect of alterations in alternative splicing and
mRNA stability. The lncRNA termed metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) is highly expressed in
HCC and triggers the Wnt pathway, and cells with MALAT1
upregulation tend to exhibit increased splicing factor serine and
arginine rich splicing factor 1 (SRSF1) expression. The mentioned
effect can also induce apoptosis by alternatively splicing of S6 kinase
1 (S6 K1), further increasing the expression of the mTOR pathway
to affect HCC progression (74). A number of lncRNAs also regulate
downstream factors and affect important pathways involved in vital
biological processes of HCC.
Frontiers in Oncology | www.frontiersin.org 3
THE LNCRNA/WNT/b-CATENIN AXIS
IN HCC

In emerging studies, a number of molecules were considered to
serve as transcriptional regulators or directly mediate gene
expression, participating in the regulation of the Wnt/b-
catenin pathway by affecting the expression of several lncRNAs
(75). It was confirmed that b-catenin-specific proteins were key
regulators that triggered the Wnt/b-catenin cascade (76).
Recently, the study of the involvement of the lncRNA/Wnt/b-
catenin axis in the pathogenesis of malignant tumors has been
successful (77, 78). We conclude that the primary lncRNA/Wnt/
b-catenin axis plays a role in HCC (Table 1).
THE LNCRNA CRNDE/WNT2/FRIZZLED
4/WNT/b-CATENIN AXIS

LncRNA colorectal neoplasia differentially expressed (CRNDE)
has a tendency to be abnormally expressed in colorectal
neoplasia samples (115, 116). Substantial experiments have
gradually recognized the participation of CRNDE in cell
proliferation, apoptosis, invasion, and migration in various
malignant tumors (117–119). CRNDE expression is higher in
A

B C

FIGURE 1 | The regulation of lncRNAs in HCC at the epigenetic, transcriptional or posttranscriptional level. (A) LncRNA HOTAIR upregulates DNMTs to increase the
methylation of the promoter of miR-122, decreasing the expression of miR-122 to stimulate HCC cell proliferation. (B) The interaction of lncRNA H19 and the hnRNP
U/PCAF/RNA pol II complex upregulates the transcriptional expression of the miR-200 family. (C) LncRNA MALAT1 is highly expressed and induces the progression
of HCC by triggering the Wnt pathway.
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HCC tissues than in adjacent tissues. In addition, overexpression
of CRNDE could promote HCC cell proliferation, predicting a
poorer prognosis in patients. Mechanistically, CRNDE is
reported to upregulate the expression of cyclins and promote
cell cycle transition from the G0/G1 phase to S phase (79). When
CRNDE was silenced, inhibition of HCC cell proliferation,
invasion, and metastasis was observed (80). Knockdown of
CRNDE also reduced the expression of slug, twist, N‐cadherin,
and vimentin, resulting in blockade of the oncogenic effect of
epithelial to mesenchymal transition (EMT) induction.
Numerous studies have demonstrated that EMT plays a vital
role in invading and migrating in diverse cancers (120, 121).
Activation of Wnt/b-catenin is considered an essential process in
stimulating EMT progression (122). CRNDE downregulation
might suppress the expression of Wnt2, Frizzled 4, and b‐catenin
to affect the Wnt/b-catenin pathway. Wnt2 belongs to the WNT
gene family and promotes the expression of b‐catenin to trigger
the canonical Wnt pathway (123, 124). It was reported that the
HCV core protein could increase the gene expression of Wnt2 in
the SMMC7721 cell line (125). In addition, overexpression of
Wnt2 mRNA was detected to exert an indispensable effect on
Frontiers in Oncology | www.frontiersin.org 4
disease processes, such as colorectal polyps, primary colorectal
cancer, and the liver metastasis of colorectal cancer (126). In
humans, nineteen Wnt ligands and ten receptors from the FZD
family have been verified (51). Frizzled 4 downregulation
represses the proliferation of cervical cancer cells by increasing
the expression of miR-375 (127). These results indicated that
high expression of CRNDE promotes the invasion of HCC cells
by inducing upregulation of the Wnt/b‐catenin cascades. On the
basis of the mentioned study, CRNDE is regarded as a potential
therapeutic target for HCC.
LNCRNA ASB16-AS1/MIR-1827/FZD4/
WNT/b-CATENIN AXIS

In HCC, lncRNA ASB16 antisense RNA1 (ASB16-AS1) was
found to aberrantly express in high level and have positively
association with unsatisfied outcome (108). On the contrary,
knockdown of ASB16-AS1 could exert the anti-tumor effect on
biological function of cancer cell, containing proliferation,
TABLE 1 | Expression of lncRNAs in related lncRNA/Wnt/b-catenin axes in HCC.

LncRNA Expression Related regulation axis Prognosis Diagnosis value References

CRNDE high CRNDE/Wnt2/Frizzled4/Wnt/b-catenin axis poor profitable (79, 80)
LINC00346 high LINC00346/miR-542-3p/FZD7/Wnt/b-catenin axis poor profitable (81)
DUXAP10 high DUXAP10/Wnt/b-catenin poor / (82)
SOX9-AS1 high SOX9-AS1/SOX9/miR-5590-3p/Wnt/b-catenin axis poor profitable (83)
MiR143HG down MiR143HG/Wnt/b-catenin favorable / (84)
lncRNA-
CR594175

high lncRNA-CR594175/Wnt/b-catenin poor profitable (85)

MiRNA194-2HG high MiRNA194-2HG/miR-1207-5p/Wnt/b-catenin poor / (86)
FEZF1-AS1 high FEZF1-AS1/miR-107/Wnt/b-catenin poor profitable (87)
HOTAIR high HOTAIR/miR-34a/Wnt/b-catenin poor / (88)
LINC00210 high LINC00210/Wnt/b-catenin poor profitable (89)
LncRNA TCF7 high LncRNATCF7/TCF7/Wnt/b-catenin poor profitable (90)
PRR34-AS1 high PRR34-AS1/miR-296-5p/E2F2/SOX12/Wnt/b-catenin poor / (91)
H19 high H19/EZH2/Wnt/b-catenin poor profitable (92)
ANRIL high ANRIL/mi-RNA191/Wnt/b-catenin poor / (93)
DSCR8 high DSCR8/miR-485-5p/FZD7/Wnt/b-catenin poor profitable (94)
FOXD2-AS1 high FOXD2-AS1/EZH2/DKK1/Wnt/b-catenin poor / (95)
LncRNA-NEF down LncRNA-NEF/Wnt/b-catenin favorable profitable (96)
CASC2c down CASC2c/Wnt/b-catenin favorable / (97)
TP53TG1 down TP53TG1/PRDX4/Wnt/b-catenin favorable profitable (87)
SUMO1P3 high SUMO1P3/miR-320a/Wnt/b-catenin poor / (98)
CASC15 high CASC15/SOX4/Wnt/b-catenin poor profitable (99)
OTUD6B-AS1 high OTUD6B-AS1/Wnt/b-catenin poor profitable (100)
LINC01278 high LINC01278/Wnt/b-catenin poor profitable (101)
LINC00662 high LINC00662/miR-15a/miR-16/miR-107/Wnt3a/Wnt/b-

catenin
poor profitable (102)

DGCR5 down DGCR5/Wnt/b-catenin favorable profitable (103)
CCAL high CCAL/AP-2a/Wnt/b-catenin poor profitable (104)
OGFRP1 high OGFRP1/Wnt/b-catenin poor / (105)
SNHG5 high SNHG5/miR-26a-5p/Wnt/b-catenin poor profitable (106)
LINC01391 down LINC01391/ICAT/Wnt/b-catenin favorable profitable (107)
ASB16-AS1 high LncRNA ASB16-AS1/miR-1827/FZD4/Wnt/b-catenin poor / (108)
RUNX1-IT1 down RUNX1-IT1/miR-632/Wnt/b-catenin favorable profitable (109)
LINCROR high LINCROR/Wnt/b-catenin poor / (110)
ANCR down ANCR/Wnt/b-catenin favorable / (111)
LncAY high LncAY/YTHDF2/BMI1/Wnt/b-catenin poor / (112)
LINC00355:8 high LINC00355:8/miR-6777-3p/Wnt10b/Wnt/b-catenin poor profitable (113)
DLGAP1-AS1 high DLGAP1-AS1/miR-26a/b-5p/Wnt/b-catenin poor profitable (114)
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invasion, and metastasis. Simultaneously expression of miR-1827
presented increasing after knock of ASB16-AS1, which indicated
the fact that activity of miR-1827 might be controlled by lncRNA
ASB16-AS1. FZD4 (Frizzled class receptor 4) is regard as the
significant molecule to active Wnt/b-catenin signaling pathway
(128). Upregulated miR-1827 could negatively mediated
expression of FZD4 to inhibit progression of HCC. When
FZD4 was high-expressed, the effect from knockdown of
ASB16-AS1 would be reversed. Briefly, lncRNA ASB16-AS1
might sponge miR-1827 to decrease its expression level,
resulting in upregulating FZD and triggering Wnt/b-catenin
pathway to involve in tumorigenesis of HCC. However,
whether lncRNA ASB16-AS1 has upstream regulators to
modulate lncRNA ASB16-AS1/miR-1827/FZD4/Wnt/b-catenin
axis is still unclear, and more explorations and researches
are required.
THE LINC00346/MIR-542-3P/FZD7/WNT/b-
CATENIN AXIS

LncRNA LINC00346 was is highly expressed and plays tumor-
promoting roles in several tumors (129). LINC00346 was
commonly verified to be highly expressed in HCC tissues.
LINC00346 functions as an oncogenic regulator, boosting the
viability, migration, and developmental ability of HCC cells.
Mechanistically, LINC00346 attenuates the suppressive effect of
miR-542-3p on WDR18 (WD repeat domain 18)) expression by
sponging miR-542-3p, contributing to increased Wnt/b-catenin
expression in vitro and in vivo (130–132). MiR-542-3p presented
diverse effects in several studies via the regulation of various
signaling pathways. One study confirmed that miR-542-3p could
trigger the TGF-b/Smad pathway to promote the migration of
HCC cells. In contrast, miR-542-3p could downregulate FZD7/
Wnt to block the proliferation of HCC cells in another study
(97). WDR18 was observed to be expressed predominantly in
HCC tissues and regarded as an oncogenic regulator of
tumorigenesis in HCC. Activation of Wnt/b-catenin signaling
cascades might partly depend on WDR18. Enhancing the
expression of WDR18 could promote increased b-catenin
expression, triggering the Wnt/b-catenin signaling pathway
(133–135). Furthermore, accumulating evidence has proven
that the final downstream target of the Wnt/b-catenin cascades
is MYC in ALK-positive anaplastic large cell lymphoma and
basal stem cells (81). However, more molecular mechanisms
remain unreported, and further exploration of Wnt/b-catenin
signaling in HCC is necessary.
THE LNCRNA DUXAP10/WNT/
b-CATENIN AXIS

LncRNA DUXAP10 was reported to be expressed at increasing
levels in different malignant tumors (136), such as bladder cancer
(137), prostate cancer (138), renal cell carcinoma (139), liver
cancer (38) and colorectal cancer (140). Overexpression of
Frontiers in Oncology | www.frontiersin.org 5
DUXAP10 was observed in HCC tissues versus normal tissues
(141, 142), which indicates that DUXAP10 is a risk predictor in
patients with HCC (83). DUXAP10 overexpression is significantly
correlated with the malignant behavior of HCC cells and could
predict the survival time of patients with advanced-stage disease
(143). Inhibition of DUXAP10 dramatically weakened the viability
and proliferative ability of SMMC-7721 cells and HepG2 cells. In
concordance with the result from ovarian cancer in DUXAP10. It
was reported that silencing DUXAP10 caused damage to the
development of lung cancer in vivo (144). In HCC, knockdown
of DUXAP10 could mediate the promotion of apoptosis and
suppression of cell proliferation. Additionally, downregulation of
PI3K/Akt was affected by knockdown of DUXAP10 (140, 145).
The PI3K/Akt signaling pathway was found to be involved in the
process of invasion and migration as well as the Wnt/b-catenin
signaling pathway. DUXAP10 is considered to regulate EMT to
mediate the progression of HCC via PI3K/Akt andWnt/b-catenin
cascades. Thus, inhibition of DUXAP10 could strongly suppress
EMT (82).
THE LNCRNA SOX9-AS1/SOX9/MIR-5590-
3P/WNT/b-CATENIN AXIS

SOX9 is a member of the sex-determining region Y (146) box gene
(SRY) superfamily and is a transcription factor (147) that plays an
essential role in gene expression regulation (148, 149). A previous
study confirmed the facilitative effect of SRY members in a variety
of tumors. LncRNA SOX9 antisense RNA 1 (SOX9-AS1) is
regarded to promote SOX9 expression. SOX9 has a positive
association with the development of HCC and commonly
contributes to the dismal outcome of patients (150). In a recent
study, miRNA-138 is perceived as an inhibitor that affects HCC
cell growth via the suppression of SOX9. Additionally, SOX9
might have an impact on mediating b-catenin expression in
canonical signaling and may strongly affect the expression of
downstream regulators, such as cyclin D1 and c-Myc (38), to
promote the development of malignancies. Activation of the Wnt/
b-catenin cascades exert an indispensable effect on cell
proliferation, invasion, and metastasis in HCC (141, 142).
Silencing of SOX9 or SOX9-AS1 reduces Wnt/b-catenin
expression, leading to the inhibition of EMT. SOX9-AS1 is
highly expressed in HCC tissue, but miRNA-5590-3p is
expressed at low levels. SOX9-AS1 might modulate SOX9/Wnt/
b-catenin by regulating miR-5590-3p. When mutations occur at
the miRNA-5590-3p site on SOX9-AS1, the activating effect of
SOX9 upregulation via the SOX9/b-catenin axis is attenuated.
These results suggest that miRNAs might regulate SOX9-AS1 via
SOX9/miR-5590-3p/Wnt/b-catenin axis (83).
OTHER LNCRNAS INVOLVED IN LNCRNA/
WNT/b-CATENIN AXES

Lnc RNA MiR143HG is downregulated in HCC cells and
commonly indicates shorter survival time in patients. A recent
March 2022 | Volume 12 | Article 831366
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study shed light on the function of miR-143HG in HCC and
found that miR-143HG inhibited the activation of Wnt/b-
catenin cascades to restrict the proliferation of HCC cells (84).
In contrast, lncRNA-CR594175 was proven to be expressed at
higher levels in primary HCC than in adjacent tumor tissues.
LncRNA-CR594175 is considered an effector that reverses the
downregulation of CTNNB1 from hsa-miR-142-3p, facilitating
HCC progression by triggering the Wnt pathway (85). Similarly,
patients with overexpression of miRNA194-2HG in HCC exhibit
a poor prognosis. MiRNA194-2HG functions as a competing
endogenous RNA (ceRNA) to sponge miR-1207-5p,
contributing to enhanced cell invasion and migration in HCC
by activating Wnt signaling (86). Another investigation found
that lncRNA-TP53TG1 expression was low in HCC tissues.
LncRNA-TP53TG1 expression is regarded as an independent
prognostic factor in patients with HCC. Additionally, lncRNA-
TP53TG1 acts as a suppressor in HCC to negatively influence
several processes of cell proliferation, invasion and metastasis.
The inhibition of proliferation via lncRNA-TP53TG1 is
mediated by the alteration in the ubiquitination levels of
PRDX4 (peroxiredoxin 4) protein and the activation of the
Wnt pathway (151). Zhu et al. (87) revealed that lncRNA
FEZF1-AS1 is upregulated in HCC and facilitates malignant
behavior, such as early invasion and metastasis. The molecular
mechanism showed that FEZF1-AS1 increases the development
and progression of HCC through modulation of the miR-107/
Wnt/b-catenin axis. A previous study indicated that miR-107
serves as a suppressor involved in a variety of cancers (152–154).
In HCC, miR-107 downregulation was observed. Overexpression
of miR-107 has been proven to downregulate b-catenin and
wnt3a and increase the expression level of p-GSK-3b, resulting in
the blockade of Wnt signaling activation. Thus, we can presume
that the inhibitory lncRNA FEZF1-AS1 might interact with
miRNA-107 to alter the expression of the Wnt pathway. In
brief, these lncRNAs are reported to have a significant
association with HCC prognosis in patients with HCC, and the
mechanism by which lncRNAs regulate the Wnt/b-catenin
pathway needs to be further explored. Fortunately, the
Frontiers in Oncology | www.frontiersin.org 6
mentioned study provides promising ideas for diagnostic or
therapeutic approaches in HCC.
BIOLOGICAL FUNCTIONS OF LNCRNA/
WNT/b-CATENIN AXES IN HCC

LncRNAs impact a variety of functions of HCC through the
regulation of Wnt n cascades. Thus, we summarized the
mechanisms related to the clinical features of HCC in Table 2,
expecting to find effective approaches to prolong the survival
time of patients.
DEVELOPMENT OF CANCER STEM
CELLS (CSCS)

CSCs were first verified in the xenotransplant process via the
injection of acute myeloid leukemia (AML) cells into SCID mice,
and their biological features resemble those of normal stem cells
with self-renewal and differentiation abilities (155). The CSCs of
HCC are termed liver cancer stem cells (LCSCs) or liver tumor-
initiating cells (TICs), which have a crucial impact on tumor
initiation, migration, and recurrence (156–158). Elevated
expression of Linc00210 has been discovered in liver cancer
and TICs. Emerging surface markers have been discovered to
further identify TICs; these include CD13, CD133, CD24, and
EPCAM (159–161). As a study reported, Wnt/b-catenin
signaling is one of the pathways involved in liver cancer and is
active in liver TICs (162). Linc00210 alleviates the suppressive
role of CTNNBIP1, actively facilitating the binding of b-catenin
and the TCF/LEF complex to trigger Wnt cascades. Furthermore,
massive amplifications of linc00210 were shown to be vital for
activating Wnt/b-catenin and stimulating TIC self-renewal (89).
Likewise, LncTCF7 actively regulates TCF7 expression, primarily
by recruiting the SWI/SNF complex. TCF7 upregulation
remarkably increases the expression of Wnt signaling, inducing
TABLE 2 | Role and clinical functions of lncRNAs in HCC.

LncRNA Role Clinical functions Related factors References

LINC00210 oncogene Promote development of cancer stem cells CTNNBIP1 (89)
LncRNA TCF7 oncogene Promote development of cancer stem cells SWI, SNF, b-catenin (90)
PRR34-AS1 oncogene Promote tumorigenesis miR-296-5p, E2F2, SOX12, b-catenin (91)
H19 oncogene Promote tumorigenesis EZH2, H3K27me3, b-catenin (92)
ANRIL oncogene Promote proliferation, invasion, and metastasis miR-191, b-catenin (93)
DSCR8 oncogene Promote proliferation, and inhibit apoptosis miR-485-5p, FZD7, b-catenin (94)
FOXD2-AS1 oncogene Promote proliferation and invasion EMT, E2H2, DKK1, FOXA2, E-cadherin, MMP9, Cyclin D1, and c-Myc (95)
CASC2c suppressor Inhibit proliferation and invasion b-catenin (97)
SUMO1P3 oncogene Promote proliferation, invasion, and migration miR-320a, b-catenin (98)
CASC15 oncogene Promote invasion SOX4, b-catenin, Cyclin D1, and c-Myc (99)
OTUD6B-AS1 oncogene Promote proliferation and invasion GSKIP, miR-664b-3p, b-catenin (100)
LINC01278 oncogene Promote invasion, migration miR-1258, TCF-4, Smad2 and Smad3, b-catenin (101)
LINC00662 oncogene Promote proliferation migration wnt3a, miR-15a, miR-16, and miR-107, b-catenin (102)
DGCR5 suppressor Promote invasion and migration b‐catenin and cyclin D1, b-catenin (103)
CCAL oncogene Promote proliferation and invasion AP-2a, b-catenin (104)
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the initiation of self-renewal of TICs (89, 90). When TCF7 is
expressed at low levels and the levels of Wnt downstream targets
are reduced, the self-renewal capacity of TICs and tumorigenesis
are rapidly attenuated in HCC. CSCs are similar to tissue-specific
stem cells and control cell growth to significantly affect
malignancy and tumor stage. TCF7 acts as an upstream
activator of Wnt signaling to initiate the pathway (163, 164).
Thus, overexpression of TCF7, which triggers the Wnt pathway,
is required for the self-renewal of TICs and contributes to the
promotion of HCC development. TCF7 was reported to
participate in the tumorigenesis and progression of HCC (90)
(Figure 2). On the basis of these findings that LncTCF7 impacts
the biological processes of HCC via the TCF7/Wnt/b-catenin
axis, it could be a promising therapeutic target to effectively
improve the prognosis of HCC patients.
TUMORIGENESIS

In HCC, lncRNA PRR34-AS1 was found to present increased
expression and is involved in the promotion of tumorigenesis.
Inhibition of miR-296-5p could positively mediate cell
proliferation in HCC. E2F2 and SOX12 are considered
essential downstream targets of miR-296-5p. A previous study
found that E2F2 plays a significant role in regulating PRR34-AS1
transcription, contributing to enhanced expression of PRR34-
AS1 in HCC cells (91). PRR34-AS1 could drive the Wnt pathway
via the upregulation of SOX12. PRR34-AS1 is highly expressed
in HCC and promotes tumorigenesis, and this effect is closely
related to the miR-296-5p/E2F2/SOX12 axis. Additionally,
E2H2, an epigenetic regulator, participates in the process of
tumorigenesis (165). In most HCC patients, E2H2 is highly
expressed and acts as a vital oncogene (166, 167). The
expression of H3K27me3 (histone H3 lysine 27 trimethylation)
was elevated by silencing Wnt pathway suppressors from E2H2,
presenting a positive association with development in HCC.
These inhibiting factors of Wnt signaling mainly include
Frontiers in Oncology | www.frontiersin.org 7
Axin2, DKK1 and Prickle1 (168). LncRNA H19 exerts a
pivotal effect on hepatocarcinogenesis by mediating the EZH2/
Wnt/b-catenin signaling axis (169). A recent study confirmed
that the combination of F2C and curcumin obviously blocks
tumor initiation in HCC. Moreover, marked downregulation of
E2H2, b-catenin, and H3K27me3 was observed in the F2C-
treated group. However, Axin2, DKK1 and Prickle1 were
upregulated in the F2C-treated group (92). Further exploration
revealed that F2C could suppress the expression of EZH2-H19
and promote the upregulation of Wnt signaling inhibitors,
resulting in the blockade of tumorigenicity in HCC.
PROLIFERATION, INVASION,
METASTASIS

The rapid proliferation and high aggressiveness of cancer cells
might commonly indicate the tendency of most patients to
exhibit dismal outcomes. Several experiments revealed that
knockdown of lncRNA ANRIL significantly inhibited the
proliferation, invasion, and metastasis of HCC cells but
induced apoptosis (170). ANRIL silencing observably reduced
the expression of miR-191 in HCC cells. When miR-191 was
overexpressed, the effect of ANRIL knockdown was attenuated to
some extent. In diverse studies, miRNA-191 is regarded as an
oncogene related to the aggressiveness of HCC cells (146, 171).
ANRIL silencing could modulate miR-191 expression to impede
the upregulation of the NF-kB and Wnt/b-catenin pathways
(93). The upregulation of down syndrome critical region 8
(DSCR8) was confirmed to have a vital impact on the
promotion of cell proliferation and the cell cycle and the
restriction of apoptosis. Knockdown of DSCR8 was found to
reverse the corresponding effect (94). The specific mechanism of
DSCR8 has been continually explored, and its role in sponging
miR-485-5p in HCC cells has also emerged. Unlike DSCR8, miR-
485-5p was downregulated in HCC tissues. It was reported that
FZD7 functions as the essential receptor driving the Wnt/b-
FIGURE 2 | The specific mechanism of lncRNAs and the Wnt/b-catenin pathway in the development of HCC CSCs. Overexpression of linc00210 promotes the
expression of b-catenin and the TCF/LEF complex to activate the Wnt/b-catenin pathway. lncTCF7 downregulation could impair the self-renewal ability of TICs in HCC.
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catenin cascade (172) and acts as an oncogene in HCC (57).
MiR-485-5p was found to decrease FZD7 expression, increase
b-catenin expression in the nucleus and cytoplasm, and increase
c-Myc and cyclin D1 expression in HCC cells. Cyclin D1 and c-
Myc are known to be downstream of Wnt/b-catenin signaling.
Consequently, lncRNA DSCR8 might positively affect the
activation of Wnt/b-catenin to accelerate the growth of HCC
cells via the instrumental DSCR8/miR-485-5p/FZD7 axis (94).

FOXD2-AS1 overexpression was proven to predict a poor
prognosis of patients with HCC. In contrast, knockdown of
FOXD2-AS1 might exert a negative effect on proliferation,
invasion, and EMT progression. EGR1 can promote FOXD2-
AS1 expression at the transcriptional level by binding with an
activator of FOXD2-AS1. The effect of FOXD2-AS1 on
promoting proliferation, invasion, and EMT was proven to
positively mediate the Wnt/b-catenin signaling pathway. The
mechanism by which FOXD2-AS1 interacts with the Wnt/b-
catenin pathway was further explored. FOXD2-AS1 might
regulate targets by binding with EZH2, specifically resulting
in the epigenetic silencing of downstream factors. EZH2 could
lead to a reduction in the expression of DKK1. FOXD2-AS1 is
considered a key regulator that enhances the expression of Wnt/
b-catenin signaling by silencing DKK1 (95). Liang et al. (96)
showed that lncRNA-NEF could induce the phosphorylation of
b-catenin to suppress the Wnt/b-catenin signal cascade,
subsequently driving FOXA2 expression to suppress HCC
metastasis. Accumulating evidence has revealed that FOXA2
can suppress EMT to hinder the migration of liver cancer
through the modulation of E-cadherin and MMP9 expression
(173). However, recent research revealed that CASC2c tends to
be expressed at low levels in HCC tissues and cells, while
CASC2c expression strongly blocks proliferation and reduces
aggressiveness but induces apoptosis in HCC. CASC2c is
Frontiers in Oncology | www.frontiersin.org 8
regarded as a critical regulator that mediates ERK1/2 and Wnt/
b-catenin signaling, and high expression of CASC2c attenuates
ERK1/2 and Wnt/b-catenin cascades (97). Thus, CASC2c
upregulation inhibits the activation of ERK1/2 and the Wnt/b-
catenin pathway to promote apoptosis and suppress invasion
and proliferation. Despite the inhibitory role of CASC2c in HCC,
many more experiments are needed to clarify the complex
mechanism (Figure 3).
CLINICAL APPLICATIONS OF LNCRNA
AND WNT/b-CATENIN SIGNALING IN HCC

Overall, we elaborated the critical role of lncRNAs and the Wnt/
b-catenin cascade in HCC to seek more hopeful and practical
clinical applications to patients with HCC. Therefore, we further
focused on diagnostic biomarkers, prognostic biomarkers and
therapeutic targets of lncRNA and Wnt/b-catenin signaling.
EFFECTIVE DIAGNOSTIC BIOMARKERS

Owing to the lack of characteristic symptoms in the early stages
of HCC, most patients are diagnosed in advanced stages with
short survival times. Thus, experts have explored more effective
diagnostic biomarkers of HCC in recent years (174–176). It was
reported that increasing expression of LINC00355:8 played the
oncogenic role in proliferation, invasion and metastasis ability of
HCC. Upregulated LINC00355:8 mediated miR-6777-3p
expression by acting as the ceRNA, giving rising to activation
of Wnt/b-catenin signaling (113). In addition, upregulation of
lncRNA CASC15 was observed in HCC, which suggests its
FIGURE 3 | The specific mechanism of lncRNAs and the Wnt/b-catenin pathway in the proliferation, invasion and migration processes of HCC. LncRNA DSCR8
could sponge miR-485-5p to trigger Wnt/b-catenin signaling. Silencing of lncRNA ANRIL could block the progression of HCC by downregulating miRNA-191 to
inhibit Wnt/b-catenin. Knockdown of lncRNA FOXD2-AS1 exerts a suppressive effect on the development of HCC via the inhibition of Wnt/b-catenin. Upregulation of
CASC2c attenuates the activation of Wnt/b-catenin.
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positive associations with larger tumor size, higher tumor stage,
and early lymph node metastasis (99). Silencing of CASC15
suppressed HCC development. SOX4 is regarded as the
downstream target of CASC15, and its increased expression
has been proven to attenuate the effect of inhibiting CASC15.
The upregulation of SOX4 by CASC15 was found to have a
major impact on the Wnt/b-catenin cascade. LncRNA RUNX1-
IT1 (the intronic transcript 1 of RUNX1) was reported to express
lowly in HCC patients correlated with shorter survival time.
Mechanistically, downregulated LncRNA RUNX1-IT1 could
simultaneously mitigate MiR-632 and GSK-3b expression to
cause restoration of b-catenin, remaining CSC property and
promoting invasion and metastasis in HCC (162). With regard
to the diagnostic roles of lncRNAs in HCC, more research
is required.
POTENT PROGNOSIS PREDICTORS

Effective prognostic biomarkers have become an indispensable
part of clinical estimates of recurrence probability in HCC. Kong
et al. (100) found that overexpression of OTUD6B-AS1 in HCC
tissues was generally related to poor outcomes for patients, which
indicated its potential for prognosis prediction. When OTUD6B-
AS1 was silenced in HCC, cell proliferation, invasion, and
colony formation were rapidly restricted (100). LncRNA Small
nucleolar RNA host gene 5 (SNHG5) includes six exons and two
snoRNAs (177), competitively binding with miR-26a-5p to
enhance activity of Wnt/b-catenin pathway, which advances
hepatocellular carcinoma progression (106). Thus, high-
expressed lncRNA SNHG5 have strong association with poor
prognosis HCC patients. Although LINC01278 was
downregulated in papillary thyroid carcinoma, it is expressed at
high levels in HCC tissues. LINC01278 upregulation is frequently
positively correlated with worse prognosis. When LINC01278 is
expressed at low levels, the invasion and migration in HCC is
weakened by alleviating the induction of b-catenin and TGF-b1
(101). These results provide numerous markers to precisely assess
the recurrence probability of patients with HCC.
PRACTICAL THERAPEUTIC TARGETS

Targeted treatment has recently received broad attention from
experts due to its potency and effectiveness in therapeutic
methods of multiple cancers (178–180). LINC00662 is
overexpressed in HCC and positively associated with tumor
size, malignant behaviors and worse prognosis. It was reported
that LINC00662 can interact with miR-15a, miR-16, and miR-
107 to promote Wnt3a upregulation, triggering Wnt/b-catenin
cascades in an autocrine manner. Therefore, the effect of
advancing tumor growth and migration induced by
LINC00662 might be related to activation of the Wnt pathway
(102). Liu et al. (104) validated that lncRNA CCAL is
overexpressed in HCC tissues and correlated with tumor
size and migration. Decreased expression of CCAL was
Frontiers in Oncology | www.frontiersin.org 9
found to weaken the invasiveness of HCC. Mechanistically,
downregulation of CCAL could reduce AP-2a expression and
suppress Wnt/b-catenin signaling (104). Elevated expression of
lncRNA DLGAP1-AS1 (discs, large homolog-associated protein
1 antisense RNA 1) could downregulate miR-26a-5p and miR-
26b-5p to participate in tumorigenesis process of HCC (114).
Inversely, silencing of DLGAP1-AS1 play the suppressive role in
HCC. Inhibitors of miR-26a/b-5p might recover knockdown of
DLGAP1-AS1 by stimulating activity of Wnt/b-catenin pathway.
Therefore, lncRNA DLGAP1-AS1 might become an effective
target for therapy of HCC patients and prolonging survival time.
These findings offer hope for the development of clinical
treatments in HCC.
CONCLUSIONS AND FUTURE
PERSPECTIVES

The strikingly high incidence and mortality rates of HCC present
threats to patient health and quality of life worldwide. The poor
prognosis and rapid recurrence of HCC indicate the urgency of
these studies and explorations on emerging methods for effective
treatment. Fortunately, accumulating evidence has found that the
interaction of lncRNAs and Wnt/b-catenin signaling provides a
novel direction for understanding the pathogenesis of HCC that
could improve clinical treatment and prolong survival time.

The Wnt/b-catenin pathway was proven to have a positive
association with the EMT process. EMT is known as a regulator
involved in the tumorigenesis and progression of several tumors.
Thus, triggering the Wnt/b-catenin signaling pathway plays a
vital role in the complicated mechanisms of various cancers. The
degradation and accumulation of b-catenin have a great impact
on the activation of the Wnt/b-catenin pathway. Recently,
diverse lncRNAs have been demonstrated to participate in
regulating b-catenin stability by affecting the formation of
degradation complexes or regulating the transcriptional
expression of b-catenin. Mechanistically, a wide range of
lncRNAs are capable of functioning as ceRNAs to sponge
targeted miRNAs, downstream effectors of lncRNAs, resulting
in aberrant activation of the Wnt signaling pathway. Analogous
mechanisms have also been identified in other malignant tumors
and were found to be strongly related to the processes of cell
proliferation, invasion, and metastasis.

The main focus of this review was to summarize most
lncRNAs participating in the initiation and progression of
hepatocellular carcinoma via the lncRNA/Wnt/b-catenin axis.
These discoveries can be conducive to the identification of
prospective molecular targets used for the effective treatment
of HCC. However, several challenges have emerged in the
application of clinical treatment. For instance, the upstream
regulators of Wnt/b-catenin pathway activation vary, which
suggests that other mechanisms and models affecting the
pathogenesis of HCC remain unreported. Similarly, the
structure and function of most lncRNAs are uncharacterized,
which is an obstacle in research. Therefore, more research on
lncRNAs related to Wnt/b-catenin and HCC is still needed.
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