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Diabetic retinopathy (DR) is a potentially devastating complication of diabetes because it
puts patients at risk of blindness. Diabetes is a common cause of blindness in the U.S. and
worldwide and is dramatically increasing in global prevalence. Thus new approaches are
needed to prevent this dreaded complication. There is extensive data that indicates beta
cell secretory failure is a risk factor for DR, independent of its influence on glycemic control.
This perspective article will provide evidence for insufficient endogenous insulin secretion
as an important factor in the development of DR. The areas of evidence discussed are:
(a) Presence of insulin receptors in the retina, (b) Clinical studies that show an association
of beta cell insufficiency with DR, (c) Treatment with insulin in type 2 diabetes, a marker for
endogenous insulin deficiency, is an independent risk factor for DR, (d) Recent clinical
studies that link DR with an insulin deficient form of type 2 diabetes, and (e) Beta cell
replacement studies that demonstrate endogenous insulin prevents progression of DR.
The cumulative data drive our conclusion that beta cell replacement will have an important
role in preventing DR and/or mitigating its severity in both type 1 diabetes and
insulinopenic type 2 diabetes.
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INTRODUCTION

Diabetic retinopathy (DR) is a devastating complication of diabetes because it can lead to visual
impairment and blindness. Diabetes is the most common cause of blindness in the working age
population of the U.S. As prevalence of diabetes increases worldwide, new approaches are needed to
prevent blindness. Pathogenesis of DR is multifactorial, but there is increasing evidence that
diminished beta cell function is an independent risk factor for DR. This perspective article will put
forth evidence for the role of insufficient endogenous insulin as an important factor in the
development of DR that may therefore be amenable to prevention by beta cell replacement.

There are five areas of evidence that will be discussed (Figure 1):

(a) Evidence for, and role of, insulin receptors in the retina.

(b) Clinical data that demonstrate an association of beta cell insufficiency with the presence and
severity of DR.

(c) Therapeutic use of insulin in type 2 diabetes as a marker for insulin deficiency and thus as an
independent risk factor for DR.
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Ipp Diabetic Retinopathy and Insulin Insufficiency
(d) Recent prospective clinical studies linking development of
DR with a newly described subtype of type 2 diabetes, that is
characterized by insulin insufficiency.

(e) Pancreas and islet transplantation as a source of endogenous
insulin and C-peptide that have a beneficial effect on DR.

The accumulation of data that derives from these disparate
areas of investigation drives our conclusion that beta cell
replacement will have an important role in preventing DR
and/or mitigating its severity in both type 1 and insulinopenic
type 2 diabetes.

Insulin Receptors in the Retina
In order to consider a direct link of insulin secretion to DR that
does not involve other biological pathways, evidence for insulin
action in the retina is essential. The presence of retinal insulin
receptors is thus an important pre-requisite. Though the retina is
not regarded as a typical end organ for insulin action such as
muscle, fat and liver - precedent exists for insulin receptors in
tissues that are not classical insulin targets. The retina is indeed a
non-classical target for insulin action, as evidenced by the finding
that insulin receptors are widely expressed in the human retina
(1). Insulin receptors have been localized to the nerve fiber layer,
ganglion cells, M̈ller glia, outer nuclear layer, inner segments of
rods and cones, the outer limiting membrane and retinal
pigment epithelium (RPE) (1). Also, insulin signaling within
the RPE occurs in dose response fashion (2).

DR has traditionally been defined by vascular changes in the
retina, which form the basis for grading and classification ofDR (3).
It is now thought that neural involvement is an equally important
participant in thepathogenesis ofDR(4). It is therefore relevant that
insulin has been proposed as an important neuroprotective factor
(5–16), potentially protecting against the development and
progression of DR. Insulin receptors are widely expressed in the
Frontiers in Endocrinology | www.frontiersin.org 2
neural retina (1). In rats with streptozotocin-induced diabetes,
insulin has been reported to protect retinal function, reducing
retinal cell apoptosis, glial activation, VEGF upregulation, and
Brain-Retinal-Barrier damage (5). Insulin receptors expressed by
theRPE appear toprovide support to photoreceptors in the diabetic
retina (6). Recent data also suggest that, evenmore than insulin, the
pro-hormone proinsulin may exert significant neuroprotective
actions in the retina (7).

In addition to the finding of receptors, insulin mediated
intracellular pathways have been shown to play a role as pro-
survival factors in the retina, acting through phosphoinositide-3-
kinase (PI3K), protein-kinase B (Akt) and the ribosomal protein
S6 kinase, p70S6K, to protect the retina from apoptosis or stress;
including damage due to light (8–10). Loss of the insulin receptor
in rod photoreceptors leads to diminished PI3K and Akt signaling
and increased sensitivity to light induced photoreceptor
degeneration (11). Insulin has also been shown to be necessary
for photoreceptor survival and activity (11–15). The insulin
receptor-PI3K signaling pathway provides neuroprotection to
cones (16). Loss of PI3K in cones triggers cone degeneration not
protected by rod-derived cone survival factors. It has therefore
been suggested that the insulin receptor-PI3K signaling pathway
may be a target for neuroprotective therapeutic intervention (16).

Thus, accumulating evidence supports both the presence of
insulin receptors in multiple sites in the retina as well as a role for
insulin mediated pathways in maintaining normal physiological
function. Though more work needs to be done in this area, it
appears that a basic cellular framework exists for insulin action in
the retina including a likely neuroprotective role.
Clinical Studies
Glycemic control is a key risk factor in determining the
development of DR in type 1 and type 2 diabetes (17, 18),
FIGURE 1 | Evidence that Supports a Role for Beta Cell Replacement to Prevent Progression of Diabetic Retinopathy: insulin deficiency in the role of risk factors,
effects of replacement methods, and retinal effects of insulin. DM2 = Type 2 Diabetes.
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Ipp Diabetic Retinopathy and Insulin Insufficiency
and this information has driven the adoption of glycemic goals as
standards of care for diabetes management, at HbA1c levels of
7%. Though key to the development and progression of DR, the
mechanisms by which glycemia influences the development of
DR have been questioned (19). Also, glycemic control as a
management strategy may have its limitations in DR
prevention, as shown in studies of type 2 diabetes in which
further improvement in HbA1c below 7% did not provide
additional benefit to reduce DR (20, 21). DR progressed in
these studies, independent of improved glycemic control. This
strongly suggests that factors other than glycemic control may be
involved in the progression of DR.

In type 1 diabetes, residual endogenous insulin secretion was
first shown to protect patients against development of DR (22).
In an early follow-up (6 years) of the Diabetes Control and
Complications Trial (DCCT) beta cell function, measured as
residual C-peptide, showed a clear protective role in DR. At that
stage of the trial, there was a sufficient number of participants
with some residual C-peptide secretion (56%) to demonstrate
this protective effect (22). But there are limits to this protection.
In long-standing type 1 diabetes when beta cell function is so
depleted, protection against DR no longer occurs (23). In the
latter report, after 37 years of DCCT and its follow up study
(DCCT/EDIC), only 12% had residual C-peptide responses,
providing an explanation for the lack of a demonstrated
beneficial effect on DR.

Importantly, in type 1 diabetes glycemic control was shown to
be irrelevant to protection provided by endogenous beta cell
secretion – in the 6 year DCCT trial, an effect of residual C-
peptide to protect the retina was found, irrespective of the A1C
achieved in each of the experimental arms (22). In other words,
even in the ‘protected’ group in good glycemic control of A1C
about 7%, the development of DR was significantly dependent on
residual C-peptide. This suggests that in addition to the effects of
glycemic control, other factors are also relevant – specifically,
residual beta cell function.

In type 2 diabetes, a clear relationship between residual
insulin and DR was initially more difficult to show. Some
studies demonstrated that lower levels of C peptide are
associated with DR (24–27), while other studies did
not (28–30). The GOLDR (Genetics of Latino Diabetic
Retinopathy) cohort (31) was an opportunity to resolve this
question by introducing three distinct methodological
advantages: a cohort large enough to include analyzable
subgroups, measurement of circulating insulin in addition to
C-peptide, and statistical approaches to deal with specific
confounders. This study confirmed an inverse correlation of
DR with C peptide and insulin in type 2 diabetes (31).

The GOLDR study (31) differed from previous studies in that
it examined the relationship of C-peptide and insulin within the
entire spectrum of DR severity and used 7-field digital imaging
with standard ETDRS grading criteria. This was the first study to
measure insulin as well as C-peptide concentrations, to better
represent residual beta-cell function. It was also the first study to
evaluate all categories of DR severity and residual beta cell
function. The deficit in endogenous insulin secretion was
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associated with increasingly severe DR. Plasma C peptide
concentrations paralleled plasma insulin, suggesting that
insulin concentrations reflect insulin secretion— and therefore
beta-cell function. This association of circulating insulin and C
peptide with the presence and severity of DR remained highly
significant after adjusting for well-known risk factors for DR,
including diabetes duration and notably, was independent of
glycemic control (31). A concurring earlier study found lower
post-prandial insulin associated with DR (32).

Insulin secretory failure is a complex outcome to evaluate in
clinical studies of diabetic complications, such as DR. Circulating
insulin reflects rates of secretion and clearance. Renal clearance is
the main mechanism for C peptide degradation, while insulin is
also cleared by the liver. The more severe DR, the more likely
renal clearance will be impaired and therefore that insulin and C-
peptide concentrations will be increased, no longer reflecting
accurately rate of insulin secretion. By appropriate statistical
analysis, Kuo et al. confirmed that worse DR occurred with
decreasing C peptide, reinforcing the importance of deficient
beta-cell function in DR (31).

It is therefore likely that discrepant results in earlier type 2
diabetes studies, all of which reported C peptide/DR
relationships without insulin measurements, may be due to the
complexity of using C peptide as a marker of beta-cell function in
the presence of kidney disease.

The results of the GOLDR study suggest that besides attention
to glycemic control, maintenance of beta-cell function or beta-
cell mass in type 2 diabetes may also be justified as a therapeutic
goal, thus warranting further investigation (31).

Therapeutic Insulin Use as a Risk Factor
for DR in Type 2 Diabetes
Multiple studies of type 2 diabetes have shown that use of insulin
to manage glycemic control is an independent risk factor for DR
(33–35). Tudor (33) in the San Luis Valley Diabetes Study,
Colorado found an odds ratio for any DR (95% CI) = 8.45
(2.65-26.97), in patients on insulin vs. no medications. Jones (34)
in the Norfolk Diabetic Retinopathy Study showed that
compared to diet control only, the adjusted hazard ratio (95%
CI) = 2.17 (1.68–2.81) if participants were using insulin. Thomas
(35) compared insulin use to diet control with an adjusted hazard
ratio = 2.03 (1.89–2.18) for DR.

What could account for this relationship between use of
insulin and the increased likelihood of developing DR? The
reflex conclusion has been that insulin use signals poor
glycemic control, and while this is generally true, it has led to
overlooking the possibility that insulin use reflects beta cell
failure and that lack of endogenous insulin might have a direct
influence in DR pathogenesis. Impairment of beta cell function is
integral to the pathogenesis of type 2 diabetes, but most patients
nevertheless do not require insulin treatment to control blood
glucose. Only those with more severe beta cell decompensation
require exogenous insulin to manage their diabetes, and so
insulin treatment becomes a de facto marker for endogenous
insulin deficiency in the face of the insulin resistance in type 2
diabetes (36).
November 2021 | Volume 12 | Article 734360

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Ipp Diabetic Retinopathy and Insulin Insufficiency
Modern strategies to prevent diabetic blindness focus on risk
factors that are amenable to change, such as glycemic and
hypertension control (37). Future approaches to prevent
blindness will also use large data to derive DR risk
stratification protocols to identify specific patients at high risk
to target for risk factor amelioration. Insulin use per se is not
usually targeted because the assumption is that it is a marker for
poor glycemic control rather than a marker for endogenous
insulin deficiency in the pathogenesis of DR. This perspective
article argues for endogenous insulin deficiency to be recognized
in its own right as a direct risk factor independent of glucose
control. In this setting, replacement using beta cells can be seen
as a logical strategy once methods are developed that simplify the
methodology and make it available for more widespread use,
such as immune evasion and use of insulin secreting islet
organoids (38).

New Prospective Clinical Studies
Identifying an Insulinopenic Sub-Type in
Type 2 Diabetes
Type 2 diabetes has long been considered a heterogeneous
disease (36). The classical phenotype of an obese middle-aged
person with insulin resistance, hypertension, dyslipidemia and
increased waist circumference does not include all patients with
type 2 diabetes, some of whom are older, leaner, or more insulin
sensitive (39). In 2018, Ahlqvist introduced a novel approach to
classification of diabetes using cluster analysis. These
investigators identified four different clusters of type 2 diabetes,
with an additional autoimmune cluster defined by positive anti-
GAD antibodies (39). Most notably, a type 2 cluster identified as
an insulin deficient group was also the most likely cluster to
develop DR. Thus, this clinical study demonstrated rather
conclusively in prospective fashion that belonging to an
endogenous insulin deficient group was a risk factor for DR.
Another (insulin resistant) cluster were more likely to develop
diabetic kidney disease.

These type 2 diabetes clusters, defined at diabetes onset seem
to remain consistent even after several years of diabetes,
suggesting that the degree of homogeneity within clusters
might reflect different etiologies or pathogeneses that remained
true despite the passage of time (40). These clusters were
confirmed in other populations in China (41) and the U.S.
(41). In a retrospective Japanese study, cluster analysis revealed
an association between an insulin deficient cluster and DR (42).
In Asian Indians, a cross-sectional study of about 20,000 patients
with type 2 diabetes showed a similar relationship with DR and
the insulin deficient cluster (43).

Of importance for the view presented in this perspective, is
the identification of the insulin deficient cluster, and that it was
associated with a higher incidence of DR (40, 42, 43). This
provides powerful new information illustrating that in type 2
diabetes, endogenous insulin and/or C-peptide (44) secretion,
when it fails, may be responsible for development or progression
of DR.

In another large prospective trial (Veterans Affairs Diabetes
Trial - VADT) of the effect of tight glycemic control on DR, no
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benefit was found with better A1C in the intervention arm (45).
Despite this, in the entire cohort higher baseline C-peptide
concentrations were protective for both incidence and
progression of DR (45). DR incidence was reduced by 67.2%,
and DR progression was reduced 47% for each 1 pmol/ml
increase in baseline C-peptide, respectively, another indication
that residual insulin secretion may influence DR independent of
glycemic control.

Results of Pancreas and Islet
Transplantation as a Source of
Endogenous Insulin and C-Peptide on DR
If endogenous insulin deficiency contributes to DR, can
replacement of beta cells reverse this course? If endogenous
insulin is more effective in preventing DR progression than the
exogenous form, a positive effect upon DR after beta cell
replacement should be found. Indeed, data derived from
clinical transplant studies in type 1 diabetes support a
protective role in DR for endogenous insulin secretion.

In a recent meta-analysis (46) islet cell transplantation was
associated with diminished DR progression compared with
either intensive or standard medical therapy (5.2% vs 25.0%;
relative risk=0.25; 95% CI, 0.08–0.71). This meta-analysis
included a total of 193 type 1 diabetic patients in 3 different
studies, with duration of diabetes in excess of 20 years, and
follow-up after transplant for a median of 5-7 years (46, 47).

Data from pancreas transplants compared with non-
transplanted diabetic controls shows similar evidence (46).
Isolated pancreas transplantation (RR=0.16; 95% CI, 0.05–0.49)
and combined pancreas-kidney transplantation (RR 0.21; 95%
CI, 0.09–0.52) were associated with reduced risk of DR
progression compared with controls. (46, 48). These studies
were carried out in 159 patients in total, but with a shorter
median follow up, only 18-29 months. Mean diabetes duration
was also greater than 20 years prior to transplant.

These beneficial effects after transplant cannot prove, but are
consistent with, a role for beta cell secretion products over
exogenous insulin in preventing or reversing progression of
DR. More data are needed to demonstrate a firm role for
endogenous insulin that also take into account the possible
influence of other factors, such as glycemia, islet isolation
methods, and immunosuppressive regimens. Notwithstanding
these factors, the transplant data also support a role for
endogenous insulin in DR protection.

There are, however, two important caveats that need to be
mentioned: (a) results of short-term follow up studies of
pancreas transplant and DR, and (b) a putative role for
C-peptide in DR.

The early period after pancreas transplantation is a complex
setting to assess the effect of beta cell replacement because two
dominant processes occur simultaneously: successful re-
initiation of beta cell function and endogenous insulin
secretion; and rapid decline in glycemia. These two processes
have opposite effects on the retina. In the case of rapid glucose
control, worsening is a well-documented phenomenon (49, 50).
After pancreas transplant, similar deterioration has been
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Ipp Diabetic Retinopathy and Insulin Insufficiency
demonstrated in short-term trials, conceivably explaining DR
progression within a few months of transplant (51, 52),
as opposed to the longer follow-up trials mentioned above
(46–48). It is therefore essential to examine the effect of
pancreas transplant early and also after long-term follow-up.

Since endogenous beta cell function consists of both insulin
and C-peptide secretion, it should be noted that there are data
that support the concept that there is a direct biological effect of
C-peptide on the microvasculature (44). C-peptide has been
shown to decrease glucose-induced apoptosis of endothelial
cells, prevent oxidative stress through an antioxidant role,
reducing RAC-1 translocation to the membrane and NAD(P)H
oxidase activation (53). Thus it is conceivable that the role
described here for residual endogenous beta cell secretion may
be mediated by C-peptide action as well as, or instead of, insulin.
DISCUSSION AND CONCLUSIONS

In this perspective, we have assembled information available to
support the concept that endogenous insulin secretion plays an
important role in the prevention of DR, that is not achieved by
exogenous insulin alone. The presence of insulin receptors in the
retina sets the stage for an active biological role for insulin in the
eye. Although exogenous insulin may also interact with these
insulin receptors, evidence is presented that supports a role for
endogenous insulin in protecting against DR in both type 1 and
type 2 diabetes. Insulin treatment in type 2 diabetes, reflecting
endogenous insulin insufficiency, is an important risk factor for
DR. Cross-sectional and prospective clinical studies accentuate
the role of endogenous insulin deficiency in the development of
DR in both type 1 and type 2 diabetes. Replacing beta cells by
islet cell transplants prevents progression of DR in people with
type 1 diabetes, direct support for the importance of endogenous
insulin secretion to prevent DR. A caveat for many of these
studies is that insulin deficiency is commonly associated with
poor glycemic control, which is itself a risk factor for DR.
However many of the studies quoted in this perspective either
Frontiers in Endocrinology | www.frontiersin.org 5
adjusted for glycemic control or demonstrated a C-peptide
benefit even in tightly controlled patients; thus insulin
deficiency remained an independent risk factor for DR.

The accumulation of data presented here strongly suggests
that when beta cell replacement is more readily available, an
additional indication for its use could be to protect the retina in
patients with type 1 diabetes and even insulin deficient type 2
diabetes, an even larger population who could potentially benefit
from this approach.

Future prospective clinical studies of beta cell replacement
should include progression of DR as an essential outcomemeasure.
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