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ABSTRACT

Recent RNA knockdown experiments revealed that
a dozen divergent long noncoding RNAs (lncR-
NAs) positively regulate the transcription of genes
in cis. Here, to understand the regulatory mecha-
nism of divergent lncRNAs, we proposed a com-
putational model IRDL (Identify the Regulatory Di-
vergent LncRNAs) to associate divergent lncRNAs
with target genes. IRDL took advantage of the
cross-tissue paired expression and chromatin ac-
cessibility data in ENCODE and a dozen experi-
mentally validated divergent lncRNA target genes.
IRDL integrated sequence similarity, co-expression
and co-accessibility features, battled the scarcity of
gold standard datasets with an increasingly learn-
ing framework and identified 446 and 977 divergent
lncRNA-gene regulatory associations for mouse and
human, respectively. We found that the identified di-
vergent lncRNAs and target genes correlated well
in expression and chromatin accessibility. The func-
tional and pathway enrichment analysis suggests
that divergent lncRNAs are strongly associated with
developmental regulatory transcription factors. The
predicted loop structure validation and canonical
database search indicate a scaffold regulatory model
for divergent lncRNAs. Furthermore, we computa-
tionally revealed the tissue/cell-specific regulatory
associations considering the specificity of lncRNA.
In conclusion, IRDL provides a way to understand
the regulatory mechanism of divergent lncRNAs and

hints at hundreds of tissue/cell-specific regulatory
associations worthy for further biological validation.

INTRODUCTION

Most of the human genome is transcribed into RNAs but
only a small fraction of them code for proteins, the rest
are called noncoding RNAs (ncRNAs). Long noncoding
RNAs (lncRNAs) are ncRNAs with lengths longer than
200 nt. Accumulating experimental studies have indicated
that lncRNAs are versatile regulators of genes at the epige-
netic, transcriptional and post-transcriptional levels (1,2),
and their alterations and dysfunctions have been associ-
ated with some complex diseases, including cancer (3–6).
However, the vast majority of lncRNAs are functionally un-
characterized, and the molecular mechanism through which
they act remains unclear. Thus, identifying the functional
lncRNAs and then inferring the biological process in which
they participate represent the major challenges in under-
standing genome complexity and RNA-mediated gene reg-
ulation (7).

Many methods have been proposed to categorize lncR-
NAs and characterize their function based on genome re-
sources, including genome distribution, expression pattern,
chromatin features, and subcellular localization (8–11), and
initial evidence supports the coexpression of tissue-specific
lncRNAs and protein-coding genes. However, there has
been debate for years as to whether the expression of lncR-
NAs correlates with nearby (cis) or distal (trans) protein-
coding genes, and whether lncRNAs regulate nearby genes
(8,9,12–14). In addition, Yin et al., (15) revealed the oppos-
ing role of the lncRNA Haunt in regulating HOXA gene ex-
pression during embryonic stem cell (ESC) differentiation:

*To whom correspondence should be addressed. Fax: +86 971 6143282; Email: ycwang@nwipb.cas.cn
Correspondence may also be addressed to Yong Wang. Email: ywang@amss.ac.cn

C© The Author(s) 2020. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-2528-5714


2 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2

the Haunt DNA locus contains potential HOXA enhancers.
The Haunt transcript binds to chromatin and acts to pre-
vent the expression of HOXA (15). These findings suggest
a complicated mechanism of lncRNA regulation.

Recently, Luo et al., (7) has provided a novel way to
study the function of lncRNAs and their regulatory mecha-
nism. They categorized lncRNAs into different biotypes via
a comprehensive genome locus, and revealed that divergent
lncRNAs (transcribed in the opposite direction to nearby
protein-coding genes) had a non-random distribution in
genome. Among 24 randomly selected divergent lncRNAs
that were successfully knocked down by RNAi (RNA inter-
ference) experiments, depletion of 75% (12 of them are tran-
scription factors) led to downregulation of nearby protein-
coding genes, which indicates that at least a subset of lncR-
NAs positively regulate the transcription of genes in cis, and
that their function could be inferred through the role of
neighboring genes (7). However, only a dozen regulations
were confirmed in (7), and the authors only discussed the
regulatory mechanism for one mouse gene: Evx1(7). Thus,
the fundamental role of divergent lncRNAs in gene regu-
lation is urgently needed to assess the effects of lncRNAs
on gene expression and increase the number of functionally
characterized lncRNAs.

Here, we designed a computational model, called IRDL
(Identify the Regulatory Divergent LncRNAs), to under-
stand the fundamental molecular mechanism in divergent
lncRNA regulation and construct a comprehensive diver-
gent lncRNAs regulatory network. Specifically, the data
sources that were previously used to characterize lncRNA
function (8–10), including genome sequence, expression
and chromatin accessibility, were incorporated to learn the
genomic properties for divergent lncRNA-gene regulatory
relationships. Using the knowledge of experimentally vali-
dated regulations and an increasingly learning framework,
IRDL identified 446 and 977 regulatory divergent lncRNA
and gene associations for mouse and human, respectively.
The functional analysis indicates that the divergent lncRNA
strongly correlates with essential developmental regulatory
genes. Those genes usually have transcription factor activ-
ity, and are involved in immune- and cancer-related path-
way. Importantly, the predicted loop structure validation
and canonical database search offer a possible regulatory
mechanism of divergent lncRNA: the divergent lncRNA
DNA locus contains potential gene enhancers, and the
RNA transcript is crucial to recruit the mediated com-
plex to help gene transcript. Furthermore, the specificity of
lncRNA leads to the tissue/cell-specific regulatory associa-
tion, which offers a great opportunity to validate the novel
predictions in certain circumstances. IRDL is freely avail-
able at https://github.com/wangyc82/IRDLv1.

MATERIALS AND METHODS

IRDL framework

Previous work has validated a dozen regulatory relation-
ships between divergent lncRNAs and genes through RNA
knockdown experiments (Figure 1A), which encourage us
to collect several genome resources, including genome dis-
tance, genome sequence, expression and chromatin accessi-
bility, for detecting the molecular mechanism behind that

regulatory phenomenon (Figure 1B). Through introducing
genome sequence, expression and chromatin accessibility
correlation coefficients and genome distance on experimen-
tal validated regulatory lncRNA-gene pairs (positives), ran-
domly selected nearby lncRNA-gene pairs (negatives) and
divergent lncRNA-gene pairs (testing set) into an increasing
learning framework (Figure 1C), hundreds of regulatory di-
vergent lncRNA-gene associations were uncovered from the
testing set (Figure 1D). The predicted loop structure val-
idation and canonical database search indicate a possible
regulatory mechanism of divergent lncRNA: the divergent
lncRNA DNA locus contains potential gene enhancers, and
the RNA transcript is crucial to recruit the mediated com-
plex to help gene transcript (Figure 1E). We explain the
above framework in detail in the following subsections.

Increasingly learning framework

To learn the molecular mechanism in divergent lncRNA
regulation from experimentally validated regulatory asso-
ciations and generate more regulatory associations, an in-
creasingly learning framework was proposed. Specifically,
eight experimentally validated regulatory pairs of divergent
lncRNAs and genes were introduced as the training posi-
tives (Figure 2A), and the randomly selected 5-fold nearby
lncRNA-gene pairs were introduced as the training nega-
tives (Figure 2B). The genome distance, and sequence, ex-
pression and openness (chromatin accessibility) correlation
coefficients were calculated for training positives and neg-
atives, which were utilized as the input feature for training
a support vector machine (SVM) classification model (Fig-
ure 2C). Then, the divergent pairs of lncRNAs and genes
with genome distance, and sequence, expression and open-
ness correlation coefficients as their representative feature
were predicted by that SVM classification model. Those
divergent lncRNA-gene pairs with SVM predicted score
larger than 0.9 were added into the list of training posi-
tives (Figure 2D), and another randomly selected nearby
lncRNA-gene pairs were collected as the training negatives
(Figure 2E). The genome distance, sequence, expression and
openness correlation coefficients were calculated as the rep-
resentative feature for newly training positives and nega-
tives, which were utilized to train a new SVM classification
model (Figure 2F). The remaining divergent lncRNA-gene
pairs with genome distance, and sequence, expression and
openness correlation coefficients as the representative fea-
ture were predicted by this newly trained SVM classifica-
tion model. Then, the divergent lncRNA-gene pairs with
SVM predicted score larger than 0.9 were added into the list
of training positives, and another randomly selected 5-fold
nearby lncRNA-gene pairs were collected as the training
negatives (Figure 2F). The remaining divergent lncRNA-
gene pairs were predicted, and the pairs with predicted score
larger than 0.9 were added into the list of training positives
(Figure 2F). The procedure was executed until only one new
positive was added in two continuous steps. At last, the reg-
ulatory divergent lncRNA and gene associations were un-
veiled for further analysis (Figure 2G).

The SVM classification model (motivated by statistical
learning theory (16,17)) is the key for implementation of
the IRDL model. It was run via the R ‘e1071’ package. The
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Figure 1. The framework of IRDL. (A) The experimentally validated divergent lncRNA-gene regulations. (B) The genome resources that were introduced
to model divergent lncRNA regulation. (C) The genome sequence, expression and chromatin accessibility correlation coefficients and genome distance were
calculated on experimentally validated lncRNA-gene pairs, randomly selected nearby lncRNA-gene pairs and divergent lncRNA-gene pairs for training
positives, negatives and testing set, respectively. (D) An increasing learning framework was proposed to unveil the regulatory divergent lncRNA-gene pairs
from the testing set. (E) The potential molecular mechanism was elucidated from the predicted loop structure validation and database search.

model parameters, including the penalty parameter and the
RBF kernel parameter, were determined by 3-fold cross-
validation. To avoid an extreme imbalance of positives and
negatives, the ratio of training positives and negatives was
set to 1:5. Thus, the classification problem in each step of
increasing learning framework was imbalanced. To evalu-
ate the classification model on imbalance problem, the area
under the precision-recall curves (AUPR), a better index
for evaluatiing the imbalance problem (18), was introduced.
The AUPR was calculated via the R ‘PRROC’ package.

Definition of the chromatin accessibility value: openness, and
the genome distance

The score to quantify the chromatin accessibility (i.e. open-
ness) for the lncRNAs and genes was introduced by (19).
To ensure that the score could be comparable across differ-
ent conditions and remove the sequencing depth effect, for
a certain region of length, the openness score was defined as
the fold change of the number of reads per base pair and was
calculated as follows: O = (X+δ)/L

(Y+δ)/L0
, where X is the count of

reads in the region with length L, Y is the count of reads in
a background region with length L0 and � is a pseudocount
(the default value of is 5 in our setting). The count reads

were obtained from the DNase-seq deposited in ENCODE
(20).

The genome distances between lncRNAs and genes were
calculated to display the co-localization: if they were located
in the same chromatin, the distance defined by the start site
of gene minus the start site of lncRNA, and if they were
located in different chromatin, the distance defined as the
infinity.

Prediction of loop structure for regulatory associations based
on DeepTACT

To detect whether there are physical interactions among
IRDL-identified regulatory lncRNA-gene pairs, the Deep-
TACT method that was developed to predict high-
resolution chromatin contacts based on genome sequence
and bootstrapping deep learning (21), was introduced. It
was applied on the genome sequences for the ‘promoter’ re-
gion of lncRNA/gene (2000 bp before lncRNA/gene start
locus). Overall, there are over 10% mouse or human reg-
ulatory associations with the loop structure. To show the
significance of above results, a significance test was per-
formed. That is, 20-sampled groups, each containing 977
random human promoter–promoter pairs (same number of
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Figure 2. The increasingly learning framework. (A) The training positives: experimentally validated divergent lncRNA and gene regulations. (B) The
training negatives: 5-fold randomly selected nearby lncRNA-gene pairs. (C) The machine learning algorithm that is taken validated regulatory lncRNA-
gene pairs as training positives, 5-fold randomly selected nearby lncRNA-gene pairs as the training negatives and divergent lncRNA-gene pairs as the
testing set, was introduced to generate the larger list of positives. The genome sequence, expression and chromatin accessibility correlation coefficients and
genome distance were used as input features for that machine learning algorithm. (D) The increased regulatory divergent lncRNA-gene pairs generated
from the machine learning algorithm. (E) Another 5-fold randomly selected nearby lncRNA-gene pairs. (F) The iterative process to generate the larger
list of positives with genome sequence, expression and chromatin accessibility correlation coefficients and genome distance as the input feature for newly
positives and negatives. (G) Hundreds of regulatory divergent lncRNA-gene associations generated via increasingly expanding the list of positives.

regulatory human lncRNA-gene pairs) were scored with the
DeepTACT model trained in tB (total B cells) and the num-
ber of pairs that were predicted as positive (loop structure)
were counted. The number of pairs that were predicted to
be positives is ∼36–58, which is significantly smaller than
divergent cases (104).

Correlation analysis, statistical test and regression model

The correlation analysis on divergent lncRNA-gene pairs
and randomly selected neighboring lncRNA-gene pairs was
performed through calculating Pearson correlation coeffi-
cients (PCCs) based on genome data sources. Specifically,
when lncRNA and gene were represented either by expres-
sion or chromatin accessibility, the PCCs were calculated
based on the expression or chromatin accessibility profile.
When lncRNA and gene were represented by genome se-
quence, the 3-mer sequence feature (an 84-dimensional vec-
tor with the first four elements as the frequency of each type
of nucleic acid, the following 16 elements as the frequency of
all possible combinations of two types of nucleic acid and
the last 64 elements as the frequency of all possible com-
binations of three types of nucleic acid) was first applied

to represent lncRNA/gene, and the PCCs were calculated
based on their 3-mer sequence features. The statistical test
for the significance of differences among different types of
correlations was based on the KS-test, which was performed
using R.

The Random Forest (RF) regression model was intro-
duced here for comparison. Specifically, we run RF regres-
sion model with gene as the response, lncRNAs as the regu-
lators and the expression level as the regression feature. The
regulatory lncRNAs were determined from the feature im-
portance that was generated from the RF model. The RF
regression model was performed via the R ‘randomForest’
package with default parameters.

Identification of tissue/cell-specific regulations

To identify the tissue/cell-specific regulations, we checked
the expression of given regulatory lncRNA-gene associa-
tions, and determined whether both lncRNA and gene in-
volved in that regulatory association are specifically ex-
pressed in a certain type of tissue/cell. That is, for each reg-
ulatory lncRNA-gene pair, reported tissues/cells that had
samples with high-gene expression levels (larger than six),
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and tissues/cells that had samples with high-lncRNA ex-
pression levels (larger than four), respectively. Then, an en-
richment score for each overlap tissue/cell was defined as
follows: ES = m×n

p×q , where m and n are the number of sam-
ples with high-expression levels belonging to a certain type
of tissue/cell for gene and lncRNA, respectively, and p and
q are the number of all samples with high-expression lev-
els for gene and lncRNA, respectively, and the final specific
tissue/cell for each lncRNA-gene regulation is assigned by
the tissue/cell with largest score.

Material

The gold standard positives for the IRDL model were col-
lected from (7): the eight regulatory divergent lncRNA-gene
associations that were validated by RNA knockdown ex-
periments (Figure 2A). The candidates for regulatory as-
sociations were those mouse and human divergent pairs
of lncRNAs and genes, which were also generated from
(7). In (7), the authors generated 1665 and 2847 pairs of
divergent lncRNAs and genes for mouse and human, re-
spectively, and there are 650 mouse and 1369 human di-
vergent pairs with all genome data sources available, in-
cluding the genome sequence, expression and chromatin
accessibility. The randomly selected nearby pairs of lncR-
NAs and genes (exclusive from the candidates) were used
as the training negatives for IRDL. The genome sequence
for lncRNA and gene and their promoter region came from
the mouse mm9 and human hg19 genome sequence, re-
spectively, which were downloaded from UCSC Genome
Browser. The paired gene expression and chromatin accessi-
bility data were from ENCODE and we used a diverse panel
of cell lines with both expression and accessibility data. This
includes 56 cell lines in the case of mouse and 148 cell lines
in the case of human (https://www.pnas.org/content/suppl/
2018/07/07/1805681115.DCSupplemental). The details of
the dataset were from our previous publication in (19). The
divergent lncRNAs proposed in (7) were presented by their
official gene symbols. The NONCODE ID was used to rep-
resent the lncRNAs in ENCODE RNA-seq and DNase-
seq project. Thus, the NONCODE ID conversion (22) was
applied to convert the gene symbol into NONCODE ID.
The information for biosamples was also collected from
ENCODE. The log2 transformation was applied to the ex-
pressions for both lncRNAs and genes before calculating
correlation coefficients.

RESULTS

The correlation analysis on experimentally validated regu-
lations hints at the clear genomic properties in regulatory
lncRNA-gene associations

Luo et al., (7) constructed 1665 and 2846 pairs of diver-
gent lncRNAs and nearby protein-coding genes for mouse
and human, respectively, and validated 18 positively reg-
ulatory relationships among 24 randomly selected mouse
pairs (7). We took a close look at those validated regula-
tions in terms of genomic properties (including genome se-
quence, expression and chromatin accessibility), especially
for those lncRNAs neighboring a transcription factor (TF)

gene (Figure 3A). The correlation analysis indicates the ob-
vious genomic properties among those regulatory lncRNA-
gene pairs. There are eight lncRNA-gene pairs with all
three genome data sources available, and none of them
show a close correlation relationship in terms of genome
sequence. Five of them strongly correlated in expression,
and six of them closely correlated in chromatin accessi-
bility (Figure 3B). Eight lncRNA-gene pairs correlated ei-
ther in terms of expression or chromatin accessibility (Fig-
ure 3C), and the highest chromatin accessibility correlation
coefficients hint at the important role of chromatin acces-
sibility in divergent lncRNA regulation. DNase-seq pro-
file for mouse genes Zfp687 and N2f1 display two ways in
which the nearby lncRNA-gene pairs share the same chro-
matin accessibility profiles: they either share the common
promoter locus or their promoter regions are co-open. To-
gether, these results suggest that, the regulatory lncRNA-
gene pairs displayed several clear genomic properties (such
as high correlation in terms of expression and chromatin
accessibility, and close positioning). Based on these proper-
ties, the searching space of functional lncRNAs with known
target genes could be expanded.

Inspired by that, we proposed an increasingly learn-
ing framework to identify the regulatory lncRNA-gene
pairs from those divergent lncRNA-gene pairs proposed in
(7). Learning from the knowledge of experimentally vali-
dated regulatory lncRNA-gene pairs, the increasingly learn-
ing framework identified 446 and 977 lncRNA-gene pairs
as regulatory associations for mouse and human, respec-
tively (Supplementary Figure S1A). To validate these iden-
tified regulatory associations, three evaluations were imple-
mented, including comparison of genomic properties with
experimentally validated regulations, predicted loop struc-
ture validation, and canonical database checking. More-
over, to suggest the possible function of those regulatory di-
vergent lncRNAs, functional and pathway enrichment anal-
yses were performed on their target genes.

IRDL generated regulatory divergent lncRNA-gene associa-
tions that exhibit similar genomic properties to experimen-
tally validated ones

We first tested whether the IRDL could generate regula-
tory associations that have similar genomic properties to
experimentally validated ones. The comparison of correla-
tion coefficients and genome distance on mouse 446 reg-
ulatory associations indicate that IRDL generates regula-
tions sharing similar genomic properties to experimentally
validated ones, including close positioning, poor correla-
tion in genome sequence, high correlation in expression and
chromatin accessibility and is more closely related in terms
of chromatin accessibility (Figure 4A). Furthermore, when
compared with the regression model based on expression,
the regulations identified through IRDL obtained much
similar properties to experimentally validated ones. That is,
they displayed higher expression and openness correlation
coefficients (Figure 4A), and there were many more identi-
fied regulatory associations with expression and openness
correlation coefficients >0.7 (Figure 4B). The comparison
of genomic properties on human 977 regulatory associa-
tions tells us a similar story. That is, compared with the re-

https://www.pnas.org/content/suppl/2018/07/07/1805681115.DCSupplemental
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Figure 3. The differences in genome profiles of experimentally validated regulatory lncRNA-gene pairs. (A) The genome sequence, expression, and chro-
matin accessibility correlation coefficients and genome distance among validated regulatory lncRNA-gene pairs. (B) The number of validated regulatory
lncRNA-gene pairs with clear genomic properties, including high-correlation coefficients (>0.7) and closely located (<100 kb). (C) The summary of ge-
nomic properties among those validated regulatory lncRNA-gene pairs in terms of correlation and genome distance. (D and E) Examples showing how
regulatory lncRNA-gene pairs are correlated in terms of chromatin accessibility: the mouse gene Zfp687 shares the common promoter locus with its nearby
divergent lncRNA (D); the promoter region of the mouse gene N2f1 and its nearby divergent lncRNA are co-open (E).

gression model, IRDL identified divergent lncRNAs that
were more correlated with their regulated genes in terms
of expression and chromatin accessibility (Supplementary
Figure S2A). Furthermore, they were more strongly related
in chromatin accessibility than in expression pattern (Sup-
plementary Figure S2B). These results together indicate
that IRDL did identify the regulatory associations exhibit-
ing similar genomic properties to experimentally validated
ones, and the regulatory associations are worthy for further
discussion. Moreover, the function of those divergent lncR-
NAs could be inferred from their regulated genes.

Divergent lncRNAs are prone to regulate genes linking with
developmental regulatory processes and transcription factor
activity

The IRDL model identified 446 and 977 regulatory diver-
gent lncRNA and gene associations for mouse and human,
respectively, which contain the 446 and 977 unique mouse
and human genes and lncRNAs, respectively (Figure 5A
and Supplementary Figure S3A). The genes regulated by

lncRNA offer a way to understand the function of lncRNA.
Thus, to decipher the lncRNA function, the function and
KEGG pathway enrichment analysis on genes that were
predicted to be the regulatory target of divergent lncRNA
were introduced here. DAVID bioinformatics resources re-
ports that these mouse genes are closely related to organ de-
velopmental regulatory processes (such as kidney, parathy-
roid gland and multicellular organism development, Fig-
ure 5B) and transcription factor activity (Figure 5D), and
most of them are located in the nucleus (Figure 5C). The
KEGG pathway analysis indicate that those genes prefer
to participate in immune-related KEGG pathways (MAPK
signaling, Notch signaling and HTLV-I infection) and the
cardiovascular disease pathway. For human genes that are
predicted to be regulatory targets of divergent lncRNAs, the
developmental regulatory processes (such as lung, palate
development, Supplementary Figure S3B) and transcrip-
tion factor activity (Supplementary Figure S3D) are also
connected to them. Most of them are located in the nu-
cleus (Supplementary Figure S3C). The stem cell regula-
tion and cancer-related KEGG pathways are related with
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correlation coefficients (>0.7) and close genome distance (<100kb).

them. These results together indicate the important regula-
tory function of divergent lncRNA target genes, which sug-
gests the crucial regulatory role of those divergent lncRNAs
in organ development, the immune system and cancer.

The predicted loop structure validation and canonical
database search indicate a possible regulatory mechanism of
divergent lncRNA

The previous correlation analysis indicates the similar ge-
nomic properties of IRDL-identified regulatory associa-
tions to experimentally validated ones. To further validate
these regulatory associations and explore the regulatory
mechanism of divergent lncRNAs, the predicted loop struc-
ture validation and canonical database search were imple-
mented.

The high-throughput chromosome conformation capture
(Hi-C) technique is a powerful tool for studying the spatial
organization of chromatin in a cell, as it quantifies physi-
cal interactions between all possible pairs of fragments si-
multaneously (23). However, due to sequencing cost, most
available Hi-C datasets have relatively low resolution, such

as 25 or 40 kb (24). Researchers have developed compu-
tational approaches to infer high-resolution Hi-C interac-
tion matrices from low-resolution Hi-C data based on deep
convolutional neural network (21,25). Here, the divergent
lncRNA and gene pairs proposed in Luo et al., (7) , are
close positioning in genome (usually located within 10 kb).
Thus, to detect the possible loop structure among IRDL-
identified regulatory associations, the computational model
(DeepTACT) was introduced (21). Over 10% of mouse or
human regulatory interactions were predicted to have a
loop structure under at least one cell condition, and over
5% received six cell supports (Figure 6A and Supplemen-
tary Figure S4A). To further check the physical interac-
tion of IRDL-identified regulatory associations, RISE, a
comprehensive repository of RNA–RNA interactions in
three species (mouse, human and yeast) that came from
transcriptome-wide sequencing-based experiments (such as
PARIS, SPLASH, LIGRseq and MARIO), targeted stud-
ies (such as RIAseq, RAP-RNA and CLASH), and primary
databases and publications (26), was introduced. As a re-
sult, 14 mouse and 6 human regulatory associations were
confirmed in RISE (Figure 6B and Supplementary Fig-
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Figure 5. The enriched functions on mouse genes that were identified by IRDL to be the regulatory target of divergent lncRNAs. (A) The summary of
IRDL-identified regulatory relationships. (B) The enriched top 10 GO biological process (BP) terms. (C) The enriched top 5 GO cellular component (CC)
terms. (D) The enriched top 10 GO molecular function (MF) terms. The number shows the number of genes.

ure S4B). All these results support that physical interaction
might exist among those regulatory associations.

Previous studies have suggested a possible mechanism
of lncRNA in the regulation of neighboring genes: acti-
vating RNAs are transcribed from enhancer-like lncRNAs
and are required for recruitment of the protein complex to
bridge enhancer-like lncRNAs and the promoter of a cod-
ing gene (27). The predicted loop structure validation and
RISE database search seem to indicate the physical interac-
tion of IRDL-identified regulatory associations. To validate
whether those divergent lncRNAs would act as enhancer-
like lncRNAs, the enhancer and TF binding region were
checked. As a result, over 50% (247/446) of mouse regu-
latory divergent lncRNAs share genome loci with mouse
enhancers (Figure 6C), and approximarely 25% (236/977)
of human regulatory divergent lncRNAs share genome loci
with human enhancers (Supplementary Figure S4D). Fur-
thermore, over 40% (194/446) of mouse regulatory diver-
gent lncRNAs share genome loci with the mouse TF bind-
ing region (Supplementary Figure 6D), and approximately
all human regulatory divergent lncRNAs share genome loci

with the human TF binding region (Supplementary Figure
S4D). These results suggest that the regulatory divergent
lncRNAs identified by IRDL play similar roles as eRNA
and regulate transcription from bridging scaffold model.

Then, we attempted to find evidence for our regulatory
associations from canonical databases specifically designed
for the current experimentally validated lncRNA regulatory
interactions. Because most of these databases only deposit
human regulatory interactions, such as EVLncRNAs and
LongHorn, only human regulatory associations were ana-
lyzed here. EVLncRNAs collects all published experimen-
tally validated lncRNAs of different species, including an-
imals, plants and microbes (28), and eight IRDL human
regulatory associations were found in EVLncRNAs (Sup-
plementary Figure S4C). LongHorn predicts modulation
of canonical regulators (or effectors) in human, including
miRNA, RBP and TF, by lncRNAs (29), and more than
25% (273/977) of IRDL human regulatory associations
were found in LongHorn (Supplementary Figure S4E). In
addition to EVLncRNAs and LongHorn, the Genotype-
Tissue Expression (GTEx) project, which is a comprehen-
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Figure 6. The validations on IRDL-identified mouse divergent lncRNA-gene regulations. (A) The predicted loop structure validation results on IRDL-
identified mouse regulations. The associations validated by all six cell conditions are highlighted. (B) The physical interactions validated from RISE for
IRDL-identified mouse regulations. (C) The number of mouse regulatory divergent lncRNAs identified by IRDL, which is located in the mouse enhancer
region. (D) The number of mouse regulatory divergent lncRNAs identified by IRDL, which is located in the mouse TF binding region.

sive public resource to study the relationship between ge-
netic variation and gene expression in multiple human tis-
sues, was also introduced for validation. As a result, 33 ge-
netic variations in the divergent lncRNA locus linked with
the expression of IRDL-identified regulatory target genes.
That is, the research on canonical databases provides sup-
port for a subset of IRDL-identified regulatory associa-
tions, which offers confidential candidates for further ex-
perimental validation.

A tissue/cell specific regulatory network offers a great oppor-
tunity to understand the function of divergent lncRNAs in a
certain circumstance

In comparison with protein-coding genes, the major dif-
ference in lncRNAs lies in the fact that lncRNAs have
much more tissue/cell-specific patterns (30–32). Thus,
we attempted to specify our regulatory associations as
tissue/cell-specific ones. The number of IRDL-identified
regulatory associations in the same mouse and human
tissue/cell is shown in Supplementary Figure S5. The brain
is the tissue/cell type that most mouse regulatory associa-
tions are specific to, and blood is the majority tissue/cell
type that most human regulatory associations are specific
to.

Because we obtained tissue/cell-specific regulations, we
first sought to examine experimentally validated regulations
in Luo et al., (7). Except for Evx1 and Gata3as with low ex-
pression levels in all bio-samples, the remaining six regula-
tions were specific to a tissue/cell type (Supplementary Ta-
ble S1). Five regulations were found in brain tissue. For in-
stance, Sox3 (SRY-Box 3) was reported to be related to neu-
ral stem cell maintenance (33), and Nr2f1 (The nuclear or-
phan receptor COUP-TFI) was important for the differenti-
ation of oligodendrocytes (34), suggesting that the regulator
Sox3as and Nr2f1as have a great chance of being involved
in brain development. In addition, Ccny1as, Zfp687as and
Gata3as share genome loci with the mouse enhancer region,
and Zfp687as and Gata3as share loci with the mouse TF
binding region. These results suggest that the bridging scaf-
fold model may be involved in regulatory divergent lncR-
NAs.

Then, we listed the details for the top ten IRDL pre-
dictions (the predictions were arranged according to the
IRDL prediction score) in Supplementary Tables S2 and 3
for mouse and human, respectively. Except for one human
prediction (JAZF1-JAZF1AS1), the remaining mouse and
human predictions have physical interactions supported ei-
ther by loop structure validation or by RISE. Eight of the
top ten human predictions obtained database support evi-
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dence, suggesting that our predictions are worthy for further
experimentally validated. Importantly, four mouse predic-
tions and two human predictions obtained both enhancer
and TF binding region evidence, confirming the assump-
tion of a bridging scaffold model for divergent lncRNAs.
All these results indicated that, IRDL provides tissue/cell-
specific regulatory associations between divergent lncRNAs
and neighboring genes. The function and pathway analy-
sis on genes that were predicted to be the target of diver-
gent lncRNAs provide an excellent opportunity to under-
stand the function of those lncRNAs in a certain circum-
stance. Importantly, the predicted loop structure validation
and canonical database search hint at the bridging scaffold
model of divergent lncRNAs.

DISCUSSION

The previous study suggested that divergent lncRNAs, or
at least a subset of them, positively regulated the transcrip-
tion of genes in cis and participated in biological processes
in which nearby genes were involved (7). To identify more
divergent lncRNAs with known regulatory targets and ex-
pand the subset of functionally characterized lncRNAs, a
novel computational model, called IRDL, was proposed.
It first learned the genomic properties of regulatory asso-
ciations validated by RNA knockdown experiments, and
then expanded the regulatory associations through an in-
creasingly learning framework based on those identified ge-
nomic properties. IRDL was applied to the mouse and hu-
man divergent pairs of lncRNAs and genes that were gener-
ated in (7). As a result, IRDL identified hundreds of regula-
tory lncRNA-gene associations, which share similar prop-
erties to experimentally validated ones, including close po-
sitioning (over 90% <100 kb), poor correlation in genome
sequence, high-correlation in expression and chromatin ac-
cessibility, and more closely related chromatin accessibility.
The correlation analysis on experimentally validated and
IRDL-identified regulatory associations hint at the crucial
role of expression pattern and chromatin accessibility in
modeling divergent lncRNA regulation. In addition, ∼95%
(431/446) of mouse and 97% (951/977) of human regula-
tory associations revealed from IRDL were positively cor-
related with openness, and 93.4.9% (417/446) of mouse and
83.1% (811/977) of human regulations were positively cor-
related with expression (Supplementary Figure S1B). This
finding suggests that positive relationships might be in-
volved in established regulatory associations. The function
and pathway analysis on genes regulated by lncRNAs in-
dicate the developmental regulation and transcription fac-
tor activity of regulatory divergent lncRNAs. Nearly all top
ten mouse and human predictions were obtained support
evidence from physical interaction, and some of them re-
ceived both enhancer and TF binding region evidence. This
indicates the bridging scaffold regulatory model of diver-
gent lncRNA. Importantly, most of the top predictions ob-
tained database evidence, indicating that the predictions are
worthy for further validation. In conclusion, IRDL battles
the scarcity of gold standard dataset with an increasingly
learning framework, and generates hundreds of regulatory
lncRNA-gene associations; reveals that the expression and
chromatin accessibility are linked to divergent lncRNA reg-

ulations; suggests a possible way to understand the regu-
latory mechanism of lncRNA; provides tissue/cell-specific
confidential candidates for further experimental validation.

The SVM classification model was introduced to train
the classification model in the IRDL increasingly learning
framework. In addition to SVM, there are many machine
learning classification models, such as RF, neural network
and deep learning. RF was proven to have the state-of-the-
art performance as did as SVM among all machine learn-
ing algorithms, except for deep learning (35). Deep learn-
ing outperforms the state-of-the-art machine learning mod-
els but requires a considerable number of samples to learn
hundreds of thousands of model parameters (36). Because
we only had thousands of lncRNA-gene pairs, only RF
was chosen for comparison. Specifically, the genome data
correlation coefficients among mouse and human divergent
lncRNA-gene pairs and 5-fold randomly selected nearby
lncRNA-gene pairs were used to train the RF classification
model, and the 5-fold cross-validation was applied to as-
sess the performance of the models. The higher AUPR (a
better index for evaluation of the imbalance problem (18))
shows that SVM performs better than RF (Supplementary
Figure S6). Thus, the SVM classification model was intro-
duced here as the classification model.

Here, the genome features, including genome sequence,
expression and chromatin accessibility, which had been
used to characterize lncRNAs’ function, were introduced
to associate divergent lncRNAs with protein-coding genes.
In addition, other features have also been previously used
to link lncRNAs with their function, such as subcellular lo-
calization (11). The co-localization was already introduced
here by defining the genome distance between lncRNA and
gene. The analysis indicates that both experimentally vali-
dated and IRDL-identified regulatory lncRNA-gene asso-
ciations are close positioning, and most of them (90%) were
locate within 100 kb in genome. Thus, the co-localization is
an important property of divergent lncRNA regulation, and
with the complementation of expression and chromatin ac-
cessibility, more confidential candidates that are worthy for
further experimental validation could be generated.
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