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CoQ deficiency causes disruption of mitochondrial
sulfide oxidation, a new pathomechanism
associated with this syndrome
Marta Luna-Sánchez1,2,*,†, Agustín Hidalgo-Gutiérrez1,2,†, Tatjana M Hildebrandt3,

Julio Chaves-Serrano2, Eliana Barriocanal-Casado1,2, Ángela Santos-Fandila4, Miguel Romero5,

Ramy KA Sayed2,6, Juan Duarte5, Holger Prokisch7, Markus Schuelke8, Felix Distelmaier9,
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Abstract

Coenzyme Q (CoQ) is a key component of the mitochondrial respi-
ratory chain, but it also has several other functions in the cellular
metabolism. One of them is to function as an electron carrier in
the reaction catalyzed by sulfide:quinone oxidoreductase (SQR),
which catalyzes the first reaction in the hydrogen sulfide oxidation
pathway. Therefore, SQR may be affected by CoQ deficiency. Using
human skin fibroblasts and two mouse models with primary CoQ
deficiency, we demonstrate that severe CoQ deficiency causes a
reduction in SQR levels and activity, which leads to an alteration
of mitochondrial sulfide metabolism. In cerebrum of Coq9R239X

mice, the deficit in SQR induces an increase in thiosulfate sulfur-
transferase and sulfite oxidase, as well as modifications in the
levels of thiols. As a result, biosynthetic pathways of glutamate,
serotonin, and catecholamines were altered in the cerebrum, and
the blood pressure was reduced. Therefore, this study reveals the
reduction in SQR activity as one of the pathomechanisms associ-
ated with CoQ deficiency syndrome.
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Introduction

Primary and secondary coenzyme Q (CoQ) deficiencies are clinically

and genetically heterogeneous, with muscle, kidneys, and central

nervous system being the main affected organs and systems.

Because of the function of CoQ as antioxidant and as electron carrier

in the mitochondrial respiratory chain, increases in oxidative stress

and/or a decline in mitochondrial energy production and pyrimidine

biosynthesis have been identified as pathomechanisms of the

disease (Quinzii et al, 2008, 2010; Emmanuele et al, 2012).

Besides the antioxidant and bioenergetics functions, CoQ links

the mitochondrial electron transport chain to the TCA cycle by

succinate dehydrogenase (EC 1.3.5.1), to b-oxidation by electron-

transfer flavoprotein:ubiquinone oxidoreductase (EC 1.5.5.1), to the

shuttling of reduction equivalents from the cytoplasm by glycerol-3-

phosphate dehydrogenase (EC 1.1.99.5), to the synthesis of pyrim-

idines by dihydroorotate dehydrogenase (EC 1.3.3.1), to the metabo-

lism of glycine by choline dehydrogenase (EC 1.1.99.1), to arginine

and proline metabolism by proline dehydrogenase (EC 1.5.99.8),

and to sulfide metabolism by sulfide:quinone oxidoreductase (EC

1.8.99.1; SQR). However, the relative contributions of these path-

ways to the overall pathophysiology of CoQ deficiency have not

been evaluated so far, and only a defect in pyrimidine biosynthesis

in cell culture and a decline in the steady-state levels of SQR protein

in a proteomic analysis on heart and kidney of Coq9R239X mice have

been reported (Lopez-Martin et al, 2007; Lohman et al, 2014).

Sulfide:quinone oxidoreductase catalyzes the first step in the mito-

chondrial sulfide oxidation pathway. In this reaction, H2S is oxidized
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by SQR, forming a protein-bound persulfide. Two electrons from the

oxidation of H2S are transferred via flavin adenine dinucleotide to CoQ

and then to the electron transport chain. The SQR-bound persulfide is

transferred to an acceptor such as glutathione (GSH) or sulfite,

resulting in the generation of GSH persulfide (GSSH) or thiosulfate,

respectively (Fig 1). The persulfide group from GSSH is oxidized to

sulfite by a sulfur dioxygenase (EC 1.13.11.18; SDO) (also known as

ETHE1 or persulfide dioxygenase). Sulfite can then either be oxidized

to sulfate by sulfite oxidase (EC 1.8.3.1; SO) or converted to thiosulfate

via addition of a persulfide catalyzed by the thiosulfate sulfurtrans-

ferase or rhodanese (EC 2.8.1.1; TST). The sulfane sulfur from thiosul-

fate can be remobilized by another sulfurtransferase called thiosulfate

reductase (EC 2.8.1.3; TR) (Hildebrandt & Grieshaber, 2008; Kabil

et al, 2014; Libiad et al, 2014; Di Meo et al, 2015).

How low levels of CoQ affect SQR activity has been studied in

Schizosaccharomyces pombe mutant strains Ddps1 (homologue to

PDSS1) and Dppt1 (homologue to COQ2). In those mutant strains,

high accumulation of sulfide was reported (Uchida et al, 2000;

Zhang et al, 2008). In fission yeasts, sulfide is required for the

biosynthesis of both methionine and cysteine (Brzywczy et al,

2002). This latter aminoacid is required to synthesize glutathione,

an important antioxidant in mammalian cells. Curiously, CoQ-

deficient fission yeasts require cysteine and glutathione to grow on

minimal medium (Uchida et al, 2000).

In mammals, hydrogen sulfide is increasingly being recognized as

an important signaling molecule in both nervous and cardiovascular

systems. Increase in hydrogen sulfide levels induces an increase in

the concentration of serotonin and a decrease in norepinephrine,

aspartate, GABA, and glutamate (Skrajny et al, 1992; Roth et al,

1995). In the cardiovascular system, hydrogen sulfide induces

smooth muscle relaxation and enhances vasodilation (Kabil et al,

2014). Moreover, accumulation of hydrogen sulfide due to mutations

in ETHE1 has been associated with cytochrome oxidase (COX) defi-

ciency in ethylmalonic encephalopathy (Tiranti et al, 2009).

Based on those data, CoQ deficiency could induce a decrease in

SQR activity with a concomitant increase in hydrogen sulfide levels,

a fact that may contribute to the pathophysiology of CoQ deficiency.

Thus, in this study, we evaluate mitochondrial hydrogen sulfide

metabolism in cell and mouse models of CoQ deficiency due to

mutations in different CoQ biosynthetic genes (Appendix Fig S1),

with the aim of elucidating the pathophysiological consequences of

an alteration in this pathway.

Results

Primary CoQ deficiency causes a decline in SQR activity

As previously reported, the two mouse models of CoQ deficiency

used in this study, Coq9R239X and Coq9Q95X, have different residual

CoQ levels, resulting in different clinical phenotypes (Luna-Sanchez

et al, 2015). While Coq9R239X mice have 10–15% of residual CoQ

Figure 1. Hydrogen sulfide oxidation pathway in mammalian mitochondria.
SQR, sulfide:quinone oxidoreductase; TR, thiosulfate reductase; SDO, sulfur deoxygenase or ETHE1; SO, sulfite oxidase or SUOX; TST, thiosulfate sulfurtransferase or rhodanase.
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levels in cerebrum and kidney, Coq9Q95 mice have 40–50% of resid-

ual CoQ in the same tissues. In muscle, however, both mouse

models show similar CoQ levels, 10–20% as compared to wild-type

animals (Luna-Sanchez et al, 2015). As a result, Coq9R239X mice

develop a fatal mitochondrial encephalopathy, while Coq9Q95X mice

develop a late-onset mild mitochondrial myopathy (Garcia-Corzo

et al, 2013; Luna-Sanchez et al, 2015). Because CoQ acts as an elec-

tron acceptor in the reaction catalyzed by SQR in the mitochondrial

sulfide oxidation pathway, we first evaluated whether the deficit in

CoQ could affect mitochondrial H2S metabolism in these mouse

models. Thus, we first checked the consequences of low CoQ levels

on cerebral, renal, and muscular SQR of Coq9R239X and Coq9Q95X

mice at 3 months of age. The levels of Sqr mRNA were similar

between the three experimental groups (Fig 1A–C), and only a

reduction (by 25%) in kidneys of Coq9R239X mice was detected

(Fig 1B). At the protein level, the changes were more dramatic. The

levels of SQR protein were significantly reduced in cerebrum,

kidneys, and muscle of Coq9R239X mice, while Coq9Q95X mice only

showed reductions in the levels of SQR in muscle (Fig 1D and F). In

parallel to the reduction in SQR protein levels, the activity of SQR

was significantly reduced in kidneys and muscle of Coq9R239X and

Coq9Q95X mice (Fig 1G and H). While in kidneys, SQR activity in

Coq9R239X mice was lower than Coq9Q95X mice (Fig 1E), SQR activity

was similar in muscle of both mutant mouse strains (Fig 1F). In the

cerebrum, the SQR protein was only detected in isolated mitochon-

dria (Fig 1D) and no band was detected in tissue homogenate. This

reflects the low abundance of SQR in brain (Geiger et al, 2013)

(http://pax-db.org/protein/2093754/Sqrdl). Accordingly, we were

not able to measure SQR activity in cerebrum.

Based on the results obtained in Coq9 mutant mice, where SQR

levels and function were decreased in correlation with the residual

CoQ levels, we next evaluated if this alteration was also present in

primary CoQ-deficient skin fibroblasts due to mutations in different

CoQ biosynthetic genes. We used skin fibroblasts of patients with

severe CoQ deficiency due to mutation in PDSS2, COQ2, COQ4, and

COQ9 (Appendix Table S1 and Appendix Fig S2A). The four mutant

cells showed a reduction in the levels of SQR protein compared to

control cells (Fig 2B). While the treatment with 5 lM of CoQ10 for

1 day did not increase the SQR levels, after 7 days of treatment the

levels of SQR increased in the four mutant cells, confirming that the

low levels of CoQ10 were responsible for the SQR deficiency (Fig 2B).

These changes in SQR levels over the time after CoQ10 supplementa-

tion correlate with the increase in ATP levels previously reported

(Lopez et al, 2010). In vivo, supplementation with ubiquinol-10

(240 mg/kg bw/day) during 2 months in the Coq9R239X mouse

model increased the SQR levels in muscle (Fig 3F), while in

kidneys, a trend toward increase was observed (Fig 3E). These

changes correlate with the increase in CoQ levels on those tissues

after ubiquinol-10 supplementation (Fig 3C and D).

Low SQR activity induces changes in the proteins involved in the
mitochondrial hydrogen sulfide oxidation pathway

To know whether SQR deficiency has some impact on the mitochon-

drial hydrogen sulfide oxidation pathway, we first evaluated the

levels and activity of TST, which also takes part in this pathway, in

the tissues of mutant mice. An increase in TST levels was detected

in cerebrum of Coq9R239X mice (Fig 4A), while in kidneys and

muscle, the differences were not statistically significant (Fig 4B and

C). Nevertheless, TST activity was significantly increased in both

cerebrum and kidneys of Coq9R239X mice, while TST activity in the

same tissues of Coq9Q95X mice was similar to the activity in control

mice (Fig 4D and E). In muscle, where the activity of TST is lower

than in other two tissues, the TST activity was not altered in both

mutant mouse strains (Fig 4F). Coq9+/+, Coq9R239X, and Coq9Q95X

mice showed similarities in the levels of ETHE1 (SDO) in cerebrum,

kidneys, and muscle (Fig 4G–I). The levels of SUOX (SO) were

significantly higher in cerebrum of Coq9R239X mice compared to

those levels in Coq9+/+ and Coq9Q95X mice (Fig 4J). In kidneys and

muscle, however, the levels of SUOX were similar in the three

experimental groups (Fig 4K and L).

Disruption of the mitochondrial sulfide oxidation pathway
induces changes in thiols levels and metabolic disturbances in
the cerebrum of Coq9R239X mice

Because an alteration in the metabolization of hydrogen sulfide may

affect the levels of thiols, we then measured the levels of sulfides,

thiosulfate, sulfite, and glutathione in mouse tissues. The levels of

sulfides in the cerebrum of mutant mice were similar to those levels

in control mice (Fig 5A and B). In kidneys, however, the levels of

sulfides in Coq9R239X mice were higher than in Coq9+/+ and

Coq9Q95X mice (Fig 5A and B). The levels of thiosulfate and sulfite

were below the detection limit (5 lM) in all tested tissues.

The major non-protein thiol in cells is GSH, which is synthesized

in the cytosol and imported into mitochondria and into other orga-

nelles, where it plays an essential role in the antioxidant defense

against reactive oxygen species (ROS) (Ribas et al, 2014). The levels

of total GSH in the cytosol of cerebrum, muscle, and kidney were

significantly decreased in Coq9R239X mice (Fig 6A and Appendix Fig

S4A and B). However, the total GSH levels in mitochondria were

normal in the three tissues of Coq9R239X mice (Fig 6A and

Appendix Fig S2A and B). The activities of the GSH-utilizing

enzymes, GPx and GRd, were significantly decreased in the cytoso-

lic fraction of cerebrum of Coq9R239X mice compared to wild-type

animals (Fig 6B), while in muscle and kidney, the differences were

statistically significant for the renal GPx (Appendix Fig S2C and D).

The decrease in GPx and GRd activities in cerebrum of Coq9R239X

was due to a decline in the levels of GPx4 and GRd (Fig 6C and D).

These decreases in the glutathione enzymes did not modify the

GSSG/GSH ratios in cytosol and mitochondria (Appendix Fig S3).

Therefore, our results show a global depletion in the glutathione

system in cerebrum of Coq9R239X, a mouse model of mitochondrial

encephalopathy with severe histopathological signs of spongiform

degeneration and reactive astrogliosis in the cerebrum.

The GSH depletion in the cerebrum may be due to a decrease in the

levels of glutamate, one of the three amino acids components of GSH,

with the parallel increase in N-acetylglutamate (Fig 6E). In addition,

we found an increase in metabolites (L-tryptophan, 5-HIAA, and N-

acetyltryptophan) of serotonin biosynthesis (Fig 6E) and a decrease in

L-tyrosine (Fig 6E), which is essential in the biosynthesis of dopamine,

norepinephrine, and epinephrine, in the cerebrum of Coq9R239X mice.

To know whether the SQR deficiency is generally responsible for

the depletion in the glutathione system, we measured GSH after Sqr

silencing in Hepa1c1c7 cells. The silencing induced a significant

decrease in the levels of Sqr mRNA (Appendix Fig S4A) and SQR
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protein (Appendix Fig S4B). However, the total GSH did not change

in Hepa1c1c7 cells after Sqr silencing (Appendix Fig S4C). In the

mutant skin fibroblast with primary CoQ deficiency, where the SQR

deficiency is chronic but less severe than in mice tissues or after Sqr

silencing, the GSH levels were also similar to those levels in control

fibroblasts (Appendix Fig S4D).

A B C

D E F

G H

Figure 2. SQR levels and activity depend on CoQ levels in mice tissues.

A–H Sqr mRNA levels (A–C), SQR protein levels (D–F), and SQR activity (G, H) in cerebrum (A, D), kidneys (B, E, G), and muscle (C, F, H) of Coq9+/+, Coq9R239X, and Coq9Q95X

mice. Note that SQR Western blots were performed in isolated cerebral mitochondria due to the low levels of this protein in cerebrum. In kidneys and muscle, the
Western blots were performed in tissue homogenates. Data are expressed as mean � SD. *P < 0.05; **P < 0.01; ***P < 0.001; Coq9R239X and Coq9Q95X mice versus
Coq9+/+ mice. #P < 0.05; ##P < 0.01; ###P < 0.001; Coq9R239X versus Coq9Q95X mice (one-way ANOVA with a Tukey’s post hoc test; n = 5–9 for each group).

Source data are available online for this figure.
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H2S supplementation in wild-type animals induces changes in
neurotransmitters levels but does not alter mitochondrial sulfide
oxidation pathway

The changes observed in the levels of the proteins involved in mito-

chondrial sulfide oxidation pathway, as well as in the levels of

neurotransmitters in cerebrum of Coq9R239X mice may be attributed

to the increase in hydrogen sulfide. Thus, we treated control

fibroblast and wild-type mice with the H2S donor GYY4137. After the

treatment, the levels of SQR (Fig 7A) and TST (Fig 7B) did not

change in control fibroblasts. Also, TST levels were similar in kidneys

(Fig 7C) and cerebrum (Fig 7D) after the treatment compared with

the levels in untreated animals. Nevertheless, GYY4137 induced a

decrease in the levels of L-Glu and DA and an increase in the levels of

5-HIAA in cerebrum of Coq9+/+ mice (Fig 7E), a similar tendency

observed in the cerebrum of Coq9R239X mice (Fig 6E).

Pathophysiological consequences of reductions in CoQ levels and
SQR activity

It has been proposed that hydrogen sulfide metabolism influences

COX activity and regulates blood pressure (Kabil et al, 2014). COX

activity was, however, normal in cerebrum, kidneys, and muscle of

Coq9R239X and Coq9Q95X mice (Fig 8A). COX stain did not show any

signs of COX deficiency in the gastrocnemius muscle of Coq9R239X

and Coq9Q95X mice (Fig 8B).

The measurement of blood pressure in Coq9R239X mice

revealed a decrease in systolic and diastolic blood pressure

A C D

B

E F

Figure 3. Human skin fibroblasts and mouse tissues with primary CoQ10 deficiency exhibit increased SQR protein levels after exogenous CoQ10

supplementation.

A Levels of CoQ10 in fibroblasts of controls (C) and patients (P1-4) with primary CoQ10 deficiency.
B Levels of SQR protein in fibroblasts of controls (C) and patients (P1-4) with primary CoQ10 deficiency cultured without (vehicle) and with 5 lM of CoQ10 (+ CoQ10)

during 1 day or 7 days.
C, D Total CoQ levels (CoQ9 + CoQ10) in kidneys (C) and muscle (D) of Coq9+/+, Coq9R239X, and Coq9R239X + ubiquinol-10 (Q10H2) mice.
E, F Levels of SQR protein in kidneys (E) and muscle (F) of Coq9+/+, Coq9R239X, and Coq9R239X + ubiquinol-10 (Q10H2) mice.

Data information: Data are expressed as mean � SD. **P < 0.01; ***P < 0.001; patients versus controls, as well as Coq9R239X versus Coq9+/+ mice. +P < 0.05; ++P < 0.01;
+++P < 0.001; + CoQ10 versus vehicle (one-way ANOVA with a Tukey’s post hoc test; n = 3–5 for each group).
Source data are available online for this figure.
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A B C

G H I

J K L

D E F

Figure 4. Changes in the proteins involved in the mitochondrial sulfide oxidation pathway in response to SQR deficiency in Coq9R239X mice.

A–C TST protein levels in cerebrum (A), kidneys (B), and muscle (C) of Coq9+/+, Coq9R239X, and Coq9Q95X mice.
D–F TST activity in cerebrum (D), kidneys (E), and muscle (F) of Coq9+/+, Coq9R239X, and Coq9Q95X mice.
G–I ETEH1 (SDO) protein levels in cerebrum (G), kidneys (H), and muscle (I) of Coq9+/+, Coq9R239X, and Coq9Q95X mice.
J–L SUOX protein levels in cerebrum (J), kidneys (K), and muscle (L) of Coq9+/+, Coq9R239X and Coq9Q95X mice.

Data information: Images in panels (C, F, and I) were obtained from the same membrane after stripping and re-blotting. Data are expressed as mean � SD. *P < 0.05;
**P < 0.01; ***P < 0.001; Coq9R239X and Coq9Q95X mice versus Coq9+/+ mice. #P < 0.05; ##P < 0.01; ###P < 0.001; Coq9R239X versus Coq9Q95X mice (one-way ANOVA with
a Tukey’s post hoc test; n = 5–9 for each group).
Source data are available online for this figure.
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as compared to age-matched wild-type animals (Fig 9A).

These changes were not related to the heart rate because the

beats per minute were similar in Coq9R239X and Coq9+/+ mice

(Fig 9B).

Discussion

Sulfide:quinone oxidoreductase is a mitochondrial enzyme that

requires CoQ as acceptor of electrons, thereby feeding electrons

A

B

Figure 5. Tissue levels of sulfides in CoQ-deficient mice.

A Quantification of sulfide levels in cerebrum and kidneys of Coq9+/+, Coq9R239X, and Coq9Q95X mice. Data are expressed as mean � SD. *P < 0.05; Coq9R239X and
Coq9Q95X mice versus Coq9+/+ mice. ##P < 0.01; Coq9R239X versus Coq9Q95X mice (one-way ANOVA with a Tukey’s post hoc test; n = 5–10 for each group).

B Qualitative measurement of hydrogen sulfide in cerebrum and kidneys of Coq9+/+ and Coq9R239X mice.
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A B

C D

E F

Figure 6. Glutathione system and neurotransmitters biosynthesis are compromised in cerebrum of Coq9R239X mice.

A Total GSH in cytosol and mitochondria of cerebrum of Coq9+/+ and Coq9R239X mice.
B Cytosolic GPx and GRd activities in cerebrum of Coq9+/+ and Coq9R239X mice.
C, D Levels of GPx4 (C) and GRd (D) protein in cerebral homogenate of Coq9+/+ and Coq9R239X mice.
E Levels of L-glutamate (L-Glu), N-acetylglutamate (NacGlu), L-tryptophan (L-Trp), 5-HIAA, N-acetyltryptophan (NALT), L-tyrosine (L-Tyr) in cerebrum of Coq9+/+ and

Coq9R239X mice.
F Biosynthetic pathway of GSH, serotonin, and catecholamine.

Data information: Data are expressed as mean � SD. *P < 0.05; **P < 0.01; ***P < 0.001; Coq9R239X mice versus Coq9+/+ mice (t-test; n = 5 for each group).
Source data are available online for this figure.
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A B

C

E

D

Figure 7. Supplementation with an H2S donor in wild-type animals induces changes in neurotransmitters levels.

A, B SQR (A) and TST (B) protein levels in human skin fibroblasts supplemented with the H2S donor GYY4137.
C, D TST protein level in kidneys (C) and cerebrum (D) of Coq9+/+ mice supplemented with the H2S donor GYY4137.
E Levels of neurotransmitters in cerebrum of Coq9+/+ mice supplemented with the H2S donor GYY4137.

Data information: Images in panels (A and B) were obtained from the same membrane after stripping and re-blotting. Data are expressed as mean � SD. **P < 0.01;
***P < 0.001; Coq9+/+ mice supplemented with GYY4137 versus Coq9+/+ mice (t-test; n = 4–6 for each group).
Source data are available online for this figure.
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into the mitochondrial electron transport chain (Hildebrandt &

Grieshaber, 2008; Modis et al, 2013). Low levels of CoQ may thus

affect the activity of SQR and its downstream reactions. Here, we

demonstrate that severe CoQ deficiency causes a dramatic reduction

in SQR levels and activity, which lead to an alteration of the mitochon-

drial sulfide metabolism. This pattern was observed in a mouse model

of primary CoQ deficiency as well as in skin fibroblasts of patients

with primary CoQ deficiency due to mutations in different CoQ

biosynthetic genes. The deficit in SQR induces changes in the mito-

chondrial sulfide oxidation pathway with modifications in the levels

of thiols. As a result, biosynthetic pathways of some neurotransmitters

were altered in the cerebrum and the blood pressure was reduced.

Therefore, this study reveals the reduction in SQR activity as one of

the pathomechanisms associated with the CoQ deficiency syndrome.

Low levels of CoQ induce a disruption in the mitochondrial
hydrogen sulfide oxidation pathway

In this work, we first investigated the tissue levels of Sqr mRNA and

SQR protein, as well as the SQR activity, in two mouse models of

A

B

Figure 8. COX activity in tissues from CoQ-deficient mice.

A COX activity in cerebrum, kidneys, and muscle of Coq9+/+, Coq9R239X, and Coq9Q95X mice. Data are expressed as mean � SD (one-way ANOVA with a Tukey’s post hoc
test; n = 3–6 for each group).

B Images COX histochemistry in gastrocnemius of Coq9+/+, Coq9R239X, and Coq9Q95X mice; scale bar: 100 lm.
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primary CoQ deficiency: the Coq9R239X mouse model with fatal

mitochondrial encephalopathy and the Coq9Q95X mouse model with

late-onset mild mitochondrial myopathy (Garcia-Corzo et al, 2013;

Luna-Sanchez et al, 2015). Our results confirm that the abundance

of the SQR protein is high in kidney, medium–low in muscle, and

very low in cerebrum (Geiger et al, 2013; http://pax-db.org/protein/

2093754/Sqrdl). However, the pattern of response to CoQ deficiency

is similar in the three tissues; that is, SQR protein levels and SQR

activity in cerebrum, kidneys, and muscle show a correlation

between the severity of CoQ deficiency and the decrease in SQR

protein levels and activity. Moreover, the deficit on SQR is not

limited to mutations in the Coq9 gene because similar results were

obtained in human skin fibroblasts with mutations in different CoQ

biosynthetic genes, that is, PDSS2, COQ2, COQ4, and COQ9. In the

mutant fibroblasts, CoQ10 depletion causes a significant impairment

of SQR-driven respiration, compared with control fibroblasts (Ziosi

et al, 2017). These results also point out that the deficit in SQR

occurs in human primary CoQ10 deficiency. Moreover, exogenous

supplementation with CoQ10 both in vitro and in vivo, in human and

mouse, increased the SQR levels in the mutant cells and mice. The

increase in SQR protein levels correlate with the increase in

SQR-driven respiration in presence of 5 lM of CoQ10 (Ziosi et al,

2017). This confirms that the levels of SQR depend on the levels of

CoQ and that exogenous CoQ10 supplementation may normalize SQR

levels and activity in patients with primary CoQ10 deficiency.

As a consequence of the reduced SQR levels, TST activity was

increased in cerebrum and kidneys. Interestingly, the cerebral TST

activity in Coq9R239X mice was increased at a higher magnitude (2.3-

fold increase) than the renal TST (1.3-fold increase), compared in

both cases with TST activity in control animals. This response is not

likely due to an increase in the hydrogen sulfide because the admin-

istration of the H2S donor GYY4137 did not increase TST levels in

control fibroblasts and wild-type mice. However, control cells have

normal SQR activity that can metabolize hydrogen sulfide. Therefore,

we cannot discard that such increases in TST enzyme in CoqR239X

mice may be a response to the high levels of hydrogen sulfide, which

probably lead to an increase in protein sulfhydration (Mustafa et al,

2009; Gao et al, 2015). As a consequence, the function of proteins

that can be regulated by this posttranslational modification would be

affected, and the expression of enzymes potentially involved in the

removal of persulfide groups, such as sulfurtransferases, might be

induced. Similarly, the levels of SO were only increased in cerebrum

of Coq9R239X compared to wild-type animals. Together, these data

point out that the disturbances in the mitochondrial hydrogen sulfide

oxidation pathway are more accentuated in the cerebrum of the

encephalopathic Coq9R239X mouse model.

A

B

Figure 9. Blood pressure and heart rate in Coq9R239X mice.

A Systolic, diastolic, and mean blood pressure in Coq9+/+ and Coq9R239X mice.
B Heart rate in Coq9+/+ and Coq9R239X mice.

Data information: Data are expressed as mean � SD. **P < 0.01; Coq9R239X mice versus Coq9+/+ mice (t-test; n = 5 for each group).
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Cerebrum of Coq9R239X mice shows depletion in the glutathione
system: a possible connection with the disruption in the
mitochondrial hydrogen sulfide oxidation pathway

Thiosulfate sulfurtransferase uses GSH and GSH metabolites in its

reaction. Therefore, changes in TST activity may induce alterations

in GSH metabolism. Moreover, GSH requires cysteine in its biosyn-

thesis, and this amino acid needs hydrogen sulfide for its biosynthe-

sis in fission yeasts (Brzywczy et al, 2002). In these organisms, the

addition of cysteine reduces the hydrogen sulfide production with

CoQ deficiency, suggesting that hydrogen sulfide and cysteine

biosynthetic pathways are coordinately regulated by feedback mech-

anisms (Zhang et al, 2008). While the sources of cysteine are appar-

ently different in mammals, the therapeutic effects of NAC, a

prodrug of L-cysteine utilized to increase GSH, in ETHE1 knockout

mice suggest that mitochondrial sulfide oxidation pathway may

exert some influence on GSH metabolism (Viscomi et al, 2010). In

fact, sulfur amino acid restriction increased expression of the

enzyme cystathionine c-lyase in mouse liver, resulting in increased

hydrogen sulfide production and decreased levels of GSH (Hine

et al, 2015). Our results showing depletion in the glutathione system

in cerebrum would validate this premise, confirming one of the

cytotoxic effects of hydrogen sulfide (Truong et al, 2006). However,

when we checked the direct relation between SQR and GSH systems

by transient silencing of SQR mRNA in Hepa cells, we did not obtain

a positive correlation. To test a long-term, but moderate, deficiency

in SQR, we measured GSH levels in human skin fibroblasts with

primary CoQ deficiency. However, also GSH levels were normal in

those cases. Thus, the GSH depletion in the cerebrum, kidney, and

muscle might be unrelated to the SQR deficiency or, if there is any

relation, this one should be linked with a long-term severe SQR defi-

ciency with increased TST activity because the latter enzyme might

play a key role in GSH metabolism (Remelli et al, 2012). Alterna-

tively, the depletion in the glutathione levels may be related to a

reduction in its precursors, for example, cerebral levels of L-gluta-

mate, an essential aminoacid for GSH biosynthesis, were decreased

in Coq9R239X mice. Moreover, it is important to note that the deple-

tion in GSH levels ran in parallel to a reduction in the levels and

activity of the GSH-utilizing enzymes GPx4 and GRd and these

changes may be critical for the increase in oxidative damage, neural

death, and astrogliosis observed in the cerebrum of Coq9R239X mice

(Seiler et al, 2008; Yoo et al, 2012; Garcia-Corzo et al, 2013).

Pathophysiological consequences of SQR deficiency

The changes in neurotransmitters biosynthesis in the cerebrum of

Coq9R239X mice are not limited to the reduction in L-glutamate but

also to the biosynthesis of serotonin and catecholamines. These

alterations might be a consequence of the disruption in hydrogen

sulfide metabolism because a dose-dependent and time-dependent

decrease in glutamate levels and increase in serotonin levels have

been described in the cerebrum and frontal cortex of rats chronically

exposed to 20 ppm and 75 ppm of hydrogen sulfide (Skrajny et al,

1992; Roth et al, 1995). The same authors reported a decrease in the

levels of norepinephrine with the exposure to 20 ppm of hydrogen

sulfide and an increase in those levels with the exposure to 75 ppm

of hydrogen sulfide (Skrajny et al, 1992). Norepinephrine and

epinephrine levels were, however, decreased in isolated porcine iris-

ciliary body exposed to increased concentrations of NaSH, which is

a commonly used hydrogen sulfide donor (Kulkarni et al, 2009).

The changes in the levels of L-glutamate, 5-HIAA, and dopamine

observed in wild-type animals after 2 weeks of supplementation

with the H2S donor GYY4173 confirm the influence of hydrogen sul-

fide in the levels of some neurotransmitters. Thus, the changes in

the biosynthesis of amino acid neurotransmitters may contribute to

the encephalopathy reported in patients and mice with fatal Coq9

mutations (Duncan et al, 2009; Garcia-Corzo et al, 2013; Luna-

Sanchez et al, 2015; Danhauser et al, 2016) and add new evidences

about the potential role of hydrogen sulfide as endogenous neuro-

modulator (Eto et al, 2002a,b). Curiously, multiple system atrophy,

a neurodegenerative disorder related to disruption in catecholami-

nes metabolism, neuronal death, and astrogliosis, and clinically

manifested with problems in movement and autonomic functions of

the body such as blood pressure regulation, has been recently asso-

ciated with mutations in COQ2 (Multiple-System Atrophy Research

Collaboration, 2013), a gene involved in CoQ biosynthesis (Ashby

et al, 1992; Uchida et al, 2000; Quinzii et al, 2006).

In the cardiovascular system, hydrogen sulfide regulates smooth

muscle contractility (Kabil et al, 2014). Generally, hydrogen sulfide

induces smooth muscle relaxation, but under particular conditions,

it may induces vasoconstriction (Hosoki et al, 1997; Kabil et al,

2014). Mice in which the Cse gene is disrupted exhibit hypertension

in comparison with wild-type animals (Yang et al, 2008), although

in a second and independent study, Cse KO mice were reported to

be normotensive (Ishii et al, 2010). Our results showing a decrease

in blood pressure in Coq9R239X mice would validate the role of

hydrogen sulfide in smooth muscle relaxation. However, we cannot

exclude that the decrease in blood pressure could also be the result

of the severe dysfunction in the brainstem (Garcia-Corzo et al,

2013), where the cardiac and vasomotor centers are localized to

regulate the autonomic functions of heart rate and blood pressure.

Nevertheless, in contrast to the Ndufs4 KO mice, another mouse

model of Leigh syndrome in which a low heart rate was associated

with the brainstem pathology (Quintana et al, 2012), the heart rate

was normal in Coq9R239X mice.

Finally, it has been also reported that hydrogen sulfide and/or its

metabolites can interfere with COX activity (Kabil et al, 2014; Szabo

et al, 2014). Our results did not show a decrease in COX activity in

the mutant mice, as it has been reported in ethylmalonic

encephalopathy due to mutations in ETHE1 (Tiranti et al, 2009).

However, the increase in hydrogen sulfide in ETHE1mice was higher

than in Coq9R239X mice, compared in both cases with hydrogen

sulfide levels in wild-type animals. Moreover, ETHE1 mice accumu-

late thiosulfate, while Coq9R239X mice do not (Tiranti et al, 2009; Di

Meo et al, 2011). Therefore, hydrogen sulfide and/or thiosulfate

must reach critical levels in order to produce toxic effects on COX

activity.

Conclusions

Our study demonstrates that primary CoQ deficiency is associated

with a disruption of the mitochondrial hydrogen sulfide oxidation

pathway, which may be a new pathomechanism associated with

this syndrome and may contribute to explain its clinical heterogene-

ity. According to that, primary CoQ deficiency may be considered

the first disease associated with a defect in SQR and, together with
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ETHE1 and SO deficiencies (Mudd et al, 1967; Garrett et al, 1998;

Mineri et al, 2008; Tiranti et al, 2009), the third disease occurring

with a defect in the mitochondrial hydrogen sulfide oxidation

pathway. Moreover, this new pathomechanism should be taken into

consideration for the treatment of primary CoQ deficiency and the

evaluation of new experimental therapies.

Materials and Methods

Mouse models and treatments

The Coq9R239X and Coq9Q95X mouse models were previously gener-

ated and characterized under mix of C57BL/6N and C57BL/6J

genetic backgrounds (Garcia-Corzo et al, 2013; Luna-Sanchez et al,

2015). Coq9R239X/+ mice were crossbreed in order to generate

Coq9+/+, Coq9R239X/+, and Coq9R239X/R239X (referred in the article

to as Coq9R239X). Coq9Q95X/+ mice were crossbreed in order to

generate Coq9+/+, Coq9Q95X/+, and Coq9Q95X/Q95X (referred in the

article to as Coq9Q95X). Only homozygous wild-type and mutant

mice between 3 and 5 months of age were used in the study.

Coq9R239X mice were treated with ubiquinol-10 (Q10H2) in the

drinking water in a dose of 240 mg/kg bw/day during 2 months,

as previously reported (Garcia-Corzo et al, 2014). Coq9+/+ mice

were treated with the H2S donor GYY4137 in the drinking water in

a dose of 50 mg/kg bw/day during 2 weeks (Hine et al, 2015).

Animals were genotyped and randomly assigned in experimental

groups. Equal number of males and females were assigned in

each experimental group, and no sex differences were observed

in the results. A total number of 152 mice were used in this

study, excluding breeders and heterozygous mice obtained in each

litter.

Mice were housed in the Animal Facility of the University of

Granada under an SPF zone with lights on at 7:00 AM and off at

7:00 PM. Mice had unlimited access to water and rodent chow. All

experiments were performed according to a protocol approved by

the Institutional Animal Care and Use Committee of the University

of Granada (procedures 92-CEEA-OH-2015) and were in accor-

dance with the European Convention for the Protection of

Vertebrate Animals used for Experimental and Other Scientific

Purposes (CETS # 123), the directive 2010/63/EU on the protection

of animals used for scientific purposes and the Spanish law

(R.D. 53/2013).

Cell culture and treatments

Primary mutant and control fibroblasts were grown in high glucose

DMEM-GlutaMAX medium supplemented with 10% FBS, 1% MEM

non-essential amino acids, and 1% antibiotics/antimycotic at 37°C

and 5% CO2. Control and mutant fibroblasts were treated with

5 lM CoQ10 during 1 or 7 days, as previously reported (Lopez et al,

2010). Control fibroblasts were treated with different concentrations

of the H2S donor GYY4137 for 5 days, as published elsewhere (Lee

et al, 2011).

The Hepa1c1c7 murine hepatoma cell line was obtained from cell

bank of the University of Granada and maintained in MEMa
GlutaMAX with 10% FBS and 1% antibiotics/antimycotics at 37°C

and 5% CO2.

Subcellular fractionation

Mitochondrial isolation was performed as previously described

(Fernandez-Vizarra et al, 2002). Tissues were homogenized in a

glass–Teflon homogenizer. Kidney was homogenized (1:4, w/v) in

the homogenization medium A (0.32 M sucrose, 1 mM EDTA,

10 mM Tris–HCl, ph 7.4); cerebrum was homogenized (1:5, w/v) in

the homogenization medium A plus 0.2% free fatty acids BSA, and

skeletal muscle was homogenized (1:20, w/v) with Ultraturex in

homogenization medium C (0.12 M KCl, 0.02 M HEPES, 2 mM

MgCl2, 1 mM EGTA, 5 mg/ml free fatty acids BSA). Kidney and cere-

brum homogenates were centrifuged at 1,000 × g for 5 min at 4°C to

remove nuclei and debris. Cytosol was collected from supernatants

after centrifuging at 14,400 × g for 2 min at 4°C and stored at �80°C

after the addition of Halt™ protease and phosphatase inhibitor cock-

tail (ThermoFisher). The mitochondrial pellet was washed and

suspended in homogenization medium and centrifuged again for

14,400 × g for 2 min at 4°C. The final crude mitochondrial pellet

was store at �80°C. Skeletal muscle homogenate was centrifuged at

600 × g for 10 min at 4°C. The supernatant (s1) was kept on ice, and

the pellet was re-suspended in 8 volumes of buffer A and centrifuged

at 600 × g for 10 min at 4°C. The subsequent supernatant (s2) was

combined with s1 and centrifuged at 17,000 × g for 10 min at 4°C. The

cytosolic supernatant obtained was stored at �80°C after the addition

of Halt™ protease and phosphatase inhibitor cocktail (ThermoFisher),

and the pellet obtained was re-suspended in 10 volumes of medium A

and centrifuged at 7,000 × g for 10 min at 4°C. The pellet was

re-suspended in 1 volume of medium B (0.3 M sucrose, 2 mM HEPES,

0.1 mM EGTA) and centrifuged at 3,000 × g for 10 min at 4°C.

Quantification of CoQ10 levels in human skin fibroblasts

After lipid extraction from homogenized cultured skin fibroblasts,

CoQ10 was determined via reversed-phase HPLC coupled to electro-

chemical (EC) detection (Lopez et al, 2010). The results were

expressed in ng CoQ10/mg protein.

Gene expression analyses

Total cellular RNA from frozen tissue was extracted and elec-

trophoresed in a 1.5% agarose gel to check the RNA integrity. RNA

from muscle and cerebrum samples was extracted with RNeasy

Fibrous Tissue Midi kit (for muscle) and RNeasy Lipid Tissue Mini

kit (for cerebrum) (Qiagen, Hilden, Germany) and treated with

RNase-Free DNase (Qiagen). RNA from kidney samples was

extracted with Real Total RNA Spin Plus Kit (Real). Total RNA was

quantified by optical density at 260/280 nm and was used to gener-

ate cDNA with High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems). Amplification was performed with quantita-

tive real-time PCR, by standard curve method, with specific Taqman

probes (from Applied Biosystems) for the targeted gene mouse Sqrdl

(Mm00502443_m1) and the mouse Hprt probe as a standard loading

control (Mm01545399_m1) (Luna-Sanchez et al, 2015).

Sample preparation and Western blot analysis in cells

For Western blot analyses in cerebrum, kidney, and muscle,

samples were homogenized in T-PER� buffer (Thermo Scientific)
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with protease inhibitor cocktail (Pierce) at 1,100 rpm in a glass–

Teflon homogenizer. Homogenates were sonicated and centrifuged

at 1,000 × g for 5 min at 4°C, and the resultant supernatants were

used for Western blot analysis. For Western blot analyses in cere-

bral mitochondria, the pellets containing the mitochondrial fraction

were re-suspended in RIPA buffer with protease inhibitor cocktail.

For Western blot analyses in skin fibroblasts, cells were collected,

washed twice with 1× PBS, and homogenized in RIPA buffer with

protease inhibitor cocktail. Homogenates were centrifuged at

14,000 × g for 15 min at 4°C, and the resultant supernatants were

used for Western blot analysis. 60 lg of protein from the sample

extracts was electrophoresed in 12% Mini-PROTEAN TGX™ precast

gels (Bio-Rad) using the electrophoresis system mini-PROTEAN

Tetra Cell (Bio-Rad). Proteins were transferred onto PVDF 0.45-lm
membranes using a mini Trans-blot Cell (Bio-Rad) or Trans-blot Cell

(Bio-Rad) and probed with target antibodies. Protein–antibody

interactions were detected with peroxidase-conjugated horse anti-

mouse, anti-rabbit, or anti-goat IgG antibodies using Amersham

ECL™ Prime Western Blotting Detection Reagent (GE Healthcare,

Buckinghamshire, UK). Band quantification was carried out using

an Image Station 2000R (Kodak, Spain) and a Kodak 1D 3.6

software. Protein band intensity was normalized to VDAC1

(mitochondrial proteins) or GAPDH, and the data expressed in

terms of percent relative to wild-type mice or control cells

(Luna-Sanchez et al, 2015).

The following primary antibodies were used: anti-SQRDL

(Proteintech, 17256-1-AP), anti-TST (Proteintech, 16311-1-AP),

Anti-SUOX (Proteintech, 15075-1-AP), anti-ETHE1 (Sigma,

HPA029029), anti-GPx4 (Abcam, ab125066), anti-GRd (Santa Cruz

Biotechnology, sc-32886), anti-VDAC1 (Abcam, ab14734), and anti-

GAPDH (Santa Cruz Biotechnology, sc-166574).

Histochemical analysis of COX activity

Muscle samples (gastrocnemius) were freed from excess connective

tissue, embedded in OCT compound (Tissue-Tek), and oriented so

that fibers could be cut transversely. Samples then were snap-frozen

in precooled isopentane in liquid nitrogen. 8-lm-thick cryosections

were placed on Superfrost microscope slides at �20°C by using a

Leica CM1510S Cryostat and stained for detection of COX activity as

described previously (Tanji & Bonilla, 2008; Luna-Sanchez et al,

2015). The sections were examined, and digital images were

acquired using a Carl Zeiss Primo Star Optic microscope and a

Magnifier AxioCam ICc3 digital camera.

Enzymatic activities

Sulfide:quinone oxidoreductase activity was determined in isolated

mitochondria by following the enzymatic reduction rate of decylu-

biquinone at 275 nm upon sulfide addition (100 lM) (Hildebrandt

& Grieshaber, 2008; Theissen & Martin, 2008).

Thiosulfate sulfurtransferase activity was determined in isolated

mitochondria by measuring the formation of thiocyanate from

cyanide and thiosulfate (Sorbo, 1955; Hildebrandt & Grieshaber,

2008).

Cytochrome oxidase activity was measured in isolated mitochon-

dria following the reduction in cytochrome C (cyt C) at 550 nm

(DiMauro et al, 1987).

Glutathione peroxidase (GPx) and reductase (GRd) activities

were measured spectrophotometrically from cytosolic fractions

following the NADPH oxidation for 3 min at 340 nm on a Shimadzu

UV spectrophotometer (UV-1700; Duisburg, Germany) (Griffith,

1999; Lopez et al, 2006). The enzyme activities were expressed as

nmol/min/mg protein. In both cases, non-enzymatic NADPH oxida-

tion was subtracted from the overall rates.

Measurement of sulfides, thiosulfate, and sulfite

The concentrations of sulfite and thiosulfate were measured using

the monobromobimane HPLC method (Hildebrandt & Grieshaber,

2008). Additionally, hydrogen sulfide release was measured in

approximately 100 mg fresh tissue homogenate in passive lysis

buffer (Promega) supplemented with 10 mM Cys and 8 mM PLP. A

lead acetate hydrogen sulfide detection paper (Sigma) was placed

above the liquid phase in a closed Eppendorf tube and incubated for

5 h at 37°C until lead sulfide darkening of the paper occurred (Hine

et al, 2015).

GSH measurement

Glutathione measurements were performed in cytosol and mito-

chondrial fractions of mouse tissues, as well as in Hepa1c1c7 cells

and human skin fibroblasts, which were cultured in Opti-MEM

medium lacking FBS for 72 h in order to avoid influence of the GSH

contained in the FBS.

Glutathione was measured by an established fluorometric

method (Hissin & Hilf, 1976). Mitochondrial pellets were resus-

pended in sodium phosphate buffer (A) (100 mM sodium phos-

phate, 5 mM EDTA-Na2, pH 8.0). Mitochondrial and cytosolic

fractions were deproteinized with ice-cold TCA 40% and centrifuged

at 20,000 g for 15 min. For GSH measurement, the supernatant was

incubated with a solution of (A) and orthophthalaldehyde/ethanol

(B) (1 mg/ml) for 15 min at room temperature. The fluorescence of

the samples was then measured at 340 nm excitation and 420 nm

emission wavelengths in a spectrofluorometer plate reader (Bio-Tek

Instruments Inc., Winooski, VT, USA). For GSSG measurement, the

supernatant was preincubated with N-ethylmaleimide solution

(5 mg/ml) for 40 min and then alkalinized with 0.1 N NaOH (C).

Aliquots of these mixtures were then incubated with (B) and (C) for

15 min at room temperature. The fluorescence was then measured

as before. GSH and GSSG concentrations were calculated according

to standard curves prepared, and the levels of GSH and GSSG are

expressed in nmol/mg protein.

Metabolite quantification in the cerebrum

To quantify the metabolites in the cerebrum of Coq9+/+ and

Coq9R239X mice, frozen samples (�80°C) were lyophilized (Virtis-

Benchtop K, Fisher Scientific, Spain) previous to sample homoge-

nization and metabolite extraction. The extraction/homogenization

method was adapted from Romisch-Margl et al (2012). Briefly,

metabolites were extracted from liver and brain samples by adding

300 ll of a mixture of precooled methanol/water (8:2, v/v) to

~50 mg of lyophilized sample and extracted/homogenized in 1.5-ml

microcentrifugation tubes with 1.4-mm stainless steel beads using a

bead-beating homogenizer (Bullet blender blue, Next Advance,
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USA) equipped with an integrated cooler unit. The tissues were

homogenized three times for 30 s at 6,000 rpm. Afterward, the

tubes were bath-sonicated for 1 min, incubated at 4 °C for 60 min,

and centrifuged at 5,000 × g for 15 min at 4°C. Supernatants were

analyzed by LC-(ESI)qTOF.

LC-HRMS analyses were performed according to Agilent

METLIN/PCDL method [2] using a 1290 infinity UHPLC coupled to

a 6550 ESI-QTOF (Agilent Technologies, USA) operated in positive

and negative electrospray ionization mode. Briefly, metabolites

were separated on Zorbax SB-Aq RR (50 × 2.1 mm., 1.8 lm)

column using a continuous gradient elution.

LC-HRMS data were deconvoluted using Find by Molecular

Feature algorithm from Mass Hunter Qualitative analysis software

(Agilent Technologies), and detected features were aligned across

samples using the Mass Profiler Professional (MPP) software (Agi-

lent Technologies). Relative quantification of metabolites was based

on peak area of each feature normalized by sample weight. Metabo-

lite identification was performed by using METLIN/PCDL database

with the ID browser extension from MPP software, which combines

retention time with accurate mass matching to provide greater confi-

dence in compound identification.

To figure out whether an increase in H2S was responsible for the

changes in neurotransmitters levels, L-glutamate, 5-HIAA, L-tyro-

sine, and dopamine were quantified in cerebrum of Coq9+/+ mice

and Coq9+/+ mice supplemented with GYY4137. The quantification

was performed by UHPL–CMS/MS following the method described

by Santos-Falinda and colleagues (Santos-Fandila et al, 2015).

Silencing SQR

SiRNA oligonucleotides, Silencer Select Pre-designed siRNAs (Life

Technologies, Carlsbad, CA, USA), were used for the transient

silencing of SQR. For SQR, the applied sequence contained the

50-30 sense, GCUCAGUAAACAUCCCGUUtt and antisense 30-50,
AACGGGAUGUUUACUGAGCca. This SQR-silencing siRNA

(Ambion s81773) was complementary with the mRNAs belonging

to RefSeq NM_001162503.1 and NM_021507.5 genes and also

targeted exon 3. For negative control, non-targeting siRNAs were

applied with the same chemical modifications for enhanced effi-

cacy as in other Silencer Select siRNAs (Ambion). Silencing was

conducted as described previously (Modis K, Faseb 2012). Cells

(80,000 cells/well) were seeded into 6-well tissue culture plates

and cultured in normal culture medium to reach 50% confluence.

At this point, the growth medium was replaced with Opti-MEM

medium lacking FBS and antibiotics/antimicotics, followed by

transfection with 25 pmol siRNA fragments per well at 30 nM

forming complexes with 7.5 ml of Lipofectamine� RNAiMAX (Life

Technologies). Control cells were transfected in parallel with non-

targeting siRNA (Life Technologies).

Blood pressure and heart rate measurements in mice

Systolic blood pressure (SBP) and heart rate (HR) were measured in

conscious, prewarmed, and restrained mice by tail-cuff plethysmog-

raphy (Digital Pressure Meter LE 5001, Letica S.A., Barcelona,

Spain) as described previously (Gomez-Guzman et al, 2014).

Briefly, mice were held in a plastic tube, and their tail was put

through a rubber cuff, and the cuff was inflated with air. The

pressure level at which the first pulse appeared, after blood flow

had been interrupted with the inflated cuff, was designated SBP. At

least fifteen determinations were made in every session, and the

mean of the lowest ten values within 5 mmHg was taken as the SBP

level. HR values were obtained as average of several determinations

simultaneously to SBP level.

Statistical analysis

All statistical analyses were performed using the Prism 6 scientific

software. Data are expressed as the mean � SD of four–six experi-

ments per group. A one-way ANOVA with a Tukey’s post hoc test

was used to compare the differences between three experimental

groups. Studies with two experimental groups were evaluated using

unpaired Student’s t-test. A P-value of < 0.05 was considered to be

statistically significant.

Expanded View for this article is available online.
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The paper explained

Problem
Coenzyme Q (CoQ) has several functions in the cellular metabolism.
These functions may be differentially altered under CoQ deficiency,
resulting in different clinical presentations. So far, reductions in mito-
chondrial bioenergetics, pyrimidine biosynthesis, and b-oxidation, as
well as increases in oxidative damage and apoptosis, have been
described as pathomechanisms of CoQ deficiency syndrome.

Results
This study demonstrates that the severity of CoQ deficiency correlates
with the decrease in sulfide:quinone oxidoreductase (SQR) levels and
activity. The reduction in SQR activity leads to an alteration on mito-
chondrial hydrogen sulfide oxidation pathway, which results in a
modification in the levels of thiols and a decline in the glutathione
system. These changes may contribute to the bioenergetics impair-
ment, the increase in oxidative damage and the neuropathology.

Impact
Our study demonstrates that primary CoQ deficiency is associated with
a disruption of the mitochondrial hydrogen sulfide oxidation pathway, a
new pathomechanism associated with this syndrome. These findings
should be taken into consideration for the treatment of primary CoQ
deficiency and the evaluation of new experimental therapies. The
results shown in this article also consolidate the defects in sulfide
oxidation as a group of mitochondrial diseases. Furthermore, the data
shown here have important implications to elucidate the role of hydro-
gen sulfide in the regulation of COX activity, the modulation of blood
pressure, and its actions as neuromodulator.
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