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In this article, we examine gradient type Ricci solitons and (𝑚, 𝜏)-quasi Einstein solitons in 
generalized Robertson-Walker (𝐺𝑅𝑊 ) spacetimes. Besides, we demonstrate that in this scenario 
the 𝐺𝑅𝑊 spacetime presents the Robertson-Walker (𝑅𝑊 ) spacetime and the perfect fluid (𝑃𝐹 ) 
spacetime presents the phantom era. Consequently, we show that if a 𝐺𝑅𝑊 spacetime permits a 
gradient 𝜏-Einstein solitons, then it also represents a 𝑃𝐹 spacetime under certain condition.

1. Introduction

Suppose 𝑛 is a Lorentzian manifold of dimension 𝑛 and 𝑔 is a Lorentzian metric of signature (+, +, ..., +, −). In 1995, the notion 
of 𝐺𝑅𝑊 spacetimes was proposed by Alias et al. [1]. A 𝐺𝑅𝑊 spacetime is a Lorentzian manifold M𝑛 (𝑛 ≥ 4) which can be presented 
as  = −𝐼 × 𝑓 2𝑀∗, in which 𝐼 ⊆ ℝ (Real numbers set), 𝑀∗ indicates the Riemannian manifold of dimension (n-1) and the smooth 
function 𝑓 > 0 is termed as warping function or scale factor. If 𝑀∗ is of dimension three and is of constant sectional curvature, 
then the above stated spacetime represents a 𝑅𝑊 spacetime. A comprehensive investigation of 𝐺𝑅𝑊 spacetimes are presented in 
([2–7]).

Definition 1.1. For a scalar function 𝜓 and a 1-form 𝜔𝑘 (non vanishing), let the condition ∇𝑘𝑢ℎ = 𝜔𝑘𝑢ℎ+𝜓𝑔𝑘ℎ be obeyed, the vector 
field 𝑢 is then referred to as torse-forming.

The foregoing equation can be expressed as ∇𝑋𝑢 = 𝜔(𝑋)𝑢 +𝜓𝑋, 𝜔 being a 1-form. The following theorem has been demonstrated 
by Mantica and Molinari [5]:
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Theorem 1.1. ([5]) The Lorentzian manifold 𝑛 (𝑛 ≥ 3) is a 𝐺𝑅𝑊 spacetime iff the spacetime permits a unit torse-forming time-like 
vector field: ∇𝑗𝑢𝑘 = 𝜓(𝑔𝑖𝑘 + 𝑢𝑘𝑢𝑖), it is also an eigenvector of the Ricci tensor.

The  is termed as a 𝑃𝐹 spacetime if for the non-vanishing Ricci tensor 𝑆 , the spacetime fulfills

𝑆 = 𝑎1𝑔 + 𝑏1𝜂 ⊗ 𝜂, (1.1)

where 𝑎1, 𝑏1 are scalar fields and 𝑔(𝑈1, 𝜌) = 𝜂(𝑈1) for any 𝑈1 and 𝑔(𝜌, 𝜌) = −1 in which 𝜌 stands for a unit time-like vector field of 
the 𝑃𝐹 spacetime and 𝜂 is a 1-form. Each and every 𝑅𝑊 spacetime presents a 𝑃𝐹 spacetime [8]. However, in the dimension 4, the 
𝐺𝑅𝑊 spacetime presents a 𝑃𝐹 spacetime iff the spacetime is 𝑅𝑊 [9].

In a 𝑃𝐹 spacetime the expression of the energy-momentum tensor 𝑇 is described as

𝑇 = (𝜈 + 𝑝)𝜂 ⊗ 𝜂 + 𝑝𝑔, (1.2)

𝜈 denotes the energy density, 𝑝 indicates the isotropic pressure [8].

In absence of the cosmological constant in the theory of general relativity, the Einstein’s field equations which is a highly nonlinear 
equations, is written as

𝑆 − 𝑟

2
𝑔 = 𝑘2𝑇 , (1.3)

where 𝑘 =
√
8𝜋G, G indicates Newton’s gravitational constant and the scalar curvature is denoted by 𝑟.

Using differential equations (1.2) and (1.3), we reveal the equation (1.1), where

𝑏1 = 𝑘2(𝑝+ 𝜈), 𝑎1 =
𝑘2(𝑝− 𝜈)
2 − 𝑛

. (1.4)

Additionally, for a equation of state (EOS) parameter 𝜔, 𝜈 and 𝑝 are interconnected by the equation 𝑝 = 𝜔𝜈. The EOS having the 
shape 𝑝 = 𝑝(𝜈) is named isentropic. According to [10], if 𝑝 = 0, 𝑝 = 𝜈

3
, and if 𝑝 + 𝜈 = 0, then the PF-spacetime is represented the dust 

matter, the radiation and the dark energy era, respectively. Furthermore, it includes the phantom era when 𝜔 < −1. The physical 
implications are discussed in ([11–14]).

A self-reinforcing wave packet named as a soliton, also called a solitary wave, maintains its formation while traveling with a 
constant speed. It is created when nonlinear and dispersive effects in the medium are neutralized. Gradient is a common term in 
mathematics and physics to describe the direction and magnitude of a force acting on a particle. In other disciplines, such as chemistry 
and engineering, the gradient is also used to demonstrate how a substance’s property changes in relation to other variables.

Hamilton [15] develops the novel idea of Ricci flow. It is referred to as a Ricci flow [15] if the partial differential equations 
𝜕

𝜕𝑡
𝑔𝑖𝑗 (𝑡) = −2𝑆𝑖𝑗 satisfies the metric of a Lorentzian manifold . The Ricci solitons (𝑅𝑆) are produced by the self-similar solutions 

to the Ricci flow. If a metric of  obeys the differential equations,

𝔏𝑊1
𝑔 + 2𝑆 + 2𝜆1𝑔 = 0, (1.5)

it is referred to as a 𝑅𝑆 [16], in which 𝜆1 indicates a real scalar. Also, 𝔏𝑊1
stands for the Lie derivative operator and 𝑊1 is the 

potential vector field. Equation (1.5) has the subsequent form

𝐻𝑒𝑠𝑠𝑓 +𝑆 + 𝜆1𝑔 = 0, (1.6)

in which the Hessian is denoted by 𝐻𝑒𝑠𝑠 and 𝐷 stands for the gradient operator of 𝑔 if 𝑊1 = 𝐷𝑓 , for a smooth function 𝑓 . A 
gradient 𝑅𝑆 is a metric that fulfills the partial differential equation (1.6). The gradient 𝑅𝑆 is said to have the smooth function 𝑓 as 
its potential function.

𝑅𝑆s have a significant impact in both physics and mathematics. In physics, metrics that obey (1.5) are attractive and helpful. 
In connection to string theory, theoretical physicists have also been investigating the 𝑅𝑆 equation. Friedan, who has done study on 
various features of 𝑅𝑆s, has made the initial contribution to these studies [17]. In [18], Blaga has considered PF spacetime endowed 
with a torse-forming vector field to study 𝜂-RSs and 𝜂-Einstein solitons (𝐸𝑆) and deduced a poison equation from the soliton 
equation. Chen and Desmukh have characterized 𝑅𝑆s with the help of concurrent potential fields and on Euclidean hypersurfaces, 
under certain restriction they classify shrinking 𝑅𝑆s [19]. Also in [20], the authors investigated compact shrinking gradient 𝑅𝑆s. 
Karaka and Ozgur have studied 𝑅𝑆s of gradient type on multiply warped product manifolds [21] and obtained a necessary and 
sufficient condition for these manifolds to be gradient 𝑅𝑆s. In [22], Wang established that an almost 𝑅𝑆 of gradient type on a (𝑘, 𝜇)′
almost Kenmotsu manifold is a rigid gradient 𝑅𝑆s.

In [23], the authors have obtained exact solution for the fractional differential equations and these are emerging from solitons 
theory. In [24], the authors have formulated plans that are useful in solving many different kinds of nonlinear partial differential 
equations arising in several areas of applied sciences. In [25], to acquire soliton solutions to the nonlocal integrable equations, the 
authors have developed a new formulation of solutions to Riemann-Hilbert problems with the identity jump matrix. Rezazadeh has 
found a new soliton solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity in [26]. Here, we may mention 
that zero curvature equations make the link between integrable models and geometry manifest, and the Kronecker product produces 
2

new zero curvature representations from old ones [27].
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If there are 𝜆1, 𝜏 and 𝑚 (0 <𝑚 <∞), three real constants which obeys the partial differential equation

∇2𝑓 +𝑆 − 1
𝑚
𝑑𝑓 ⊗ 𝑑𝑓 = (𝜆1 + 𝜏𝑟)𝑔 = 𝛽1𝑔, (1.7)

then the semi-Riemannian metric 𝑔 on the Lorentzian manifold  is known as a gradient (𝑚, 𝜏)-quasi Einstein soliton (𝑄𝐸𝑆), where 
⊗ denotes tensor product. If the potential function 𝑓 is constant, the soliton becomes trivial, which suggests that the manifold is 
Einstein. Additionally, the aforementioned relation turns into a gradient 𝜏-ES when 𝑚 = ∞. This idea was presented in [28], and 
Venkatesha et al. examined [29] 𝜏-𝐸𝑆 on almost Kenmotsu manifolds. More recently, in this same manifold we studied gradient 
(𝑚, 𝜏)-𝑄𝐸𝑆 [30].

Many researchers recently examined various types of solitons in 𝑃𝐹 spacetimes, including 𝑅𝑆 ([18], [31]), gradient RSs ([31], 
[32]), Yamabe and gradient Yamabe solitons ([32], [33]), gradient m-QESs [32], gradient 𝜂-ESs [31], gradient Schouten solitons 
[31], Ricci-Yamabe solitons [34], respectively.

According to the information we have, there are many findings in the literature about 𝑃𝐹 spacetimes with solitons, but there are 
just a few results in 𝐺𝑅𝑊 spacetimes. We want to fill this gap in this article and focus on characterizing the 𝐺𝑅𝑊 spacetimes that 
satisfy gradient 𝑅𝑆 and gradient (𝑚, 𝜏)-𝑄𝐸𝑆 .

In [5], it is established that a 𝐺𝑅𝑊 spacetime with divergence free Weyl tensor is a 𝑃𝐹 spacetime. The foregoing result raises 
the question: Is the preceding result still valid if the condition divergence free Weyl tensor is substituted by a gradient Ricci soliton, 
or by a gradient (𝑚, 𝜏)-𝑄𝐸𝑆? Here, we provide evidence that the answer to this question is, in fact, ‘yes’ in both cases under certain 
conditions. Precisely, we prove the subsequent main theorems.

Theorem 1.2. If a 𝐺𝑅𝑊 spacetime admits a gradient 𝑅𝑆 with 𝜌𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, then it becomes a 𝑃𝐹 spacetime.

Theorem 1.3. If a 𝐺𝑅𝑊 spacetime permits a gradient (𝑚, 𝜏)-𝑄𝐸𝑆 with 𝛽1 = (𝑛 − 1)𝜇 =constant and 𝜌𝑓 = constant, then it becomes a 
𝑃𝐹 spacetime.

2. Preliminaries

Let  be a 𝐺𝑅𝑊 spacetime and hence using Theorem 1.1, we acquire

∇𝑈1
𝜌 = 𝜓[𝑈1 + 𝜂(𝑈1)𝜌] (2.1)

and

𝑆(𝑈1, 𝜌) = 𝜉𝜂(𝑈1), (2.2)

where 𝜓 is a scalar and 𝜉 is a non-zero eigenvector.

Lemma 2.1. In a 𝐺𝑅𝑊 spacetime, we have

𝑅(𝑈1, 𝑉1)𝜌 = 𝜇[𝜂(𝑉1)𝑈1 − 𝜂(𝑈1)𝑉1] (2.3)

and

𝑆(𝑈1, 𝜌) = (𝑛− 1)𝜇𝜂(𝑈1), (2.4)

where we choose 𝜇 = (𝜌𝜓 +𝜓2).

Proof. Differentiating covariantly equation (2.1), we obtain

∇𝑉1
∇𝑈1

𝜌 = (𝑉1𝜓)[𝑈1 + 𝜂(𝑈1)𝜌] (2.5)

+𝜓[∇𝑉1
𝑈1 + (∇𝑉1

𝜂(𝑈1))𝜌+𝜓(𝑉1 + 𝜂(𝑉1)𝜌)𝜂(𝑈1)].

Interchanging 𝑈1 and 𝑉1 yields

∇𝑈1
∇𝑉1

𝜌 = (𝑈1𝜓)[𝑉1 + 𝜂(𝑉1)𝜌] (2.6)

+𝜓[∇𝑈1
𝑉1 + (∇𝑋𝜂(𝑉1))𝜌+𝜓(𝑈1 + 𝜂(𝑈1)𝜌)𝜂(𝑉1)].

Also, we have

∇[𝑈1 ,𝑉1]𝜌 = 𝜓{[𝑈1, 𝑉1] + 𝜂([𝑈1, 𝑉1])𝜌}. (2.7)
3

Equations (2.1), (2.5), (2.6) and (2.7) together implies
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𝑅(𝑈1, 𝑉1)𝜌 = (𝑈1𝜓)[𝑉1 + 𝜂(𝑉1)𝜌] − (𝑉1𝜓)[𝑈1 + 𝜂(𝑈1)𝜌] (2.8)

+𝜓2[𝜂(𝑉1)𝑈1 − 𝜂(𝑈1)𝑉1].

Contracting 𝑉1 from equation (2.8), we obtain

𝑆(𝑈1, 𝜌) = (2 − 𝑛)(𝑈1𝜓) + (𝜌𝜓)𝜂(𝑈1) (2.9)

+(𝑛− 1)𝜓2𝜂(𝑈1).

Combining equations (2.2) and (2.9), we infer

𝜉𝜂(𝑈1) = (2 − 𝑛)(𝑈1𝜓) + (𝜌𝜓)𝜂(𝑈1) + (𝑛− 1)𝜓2𝜂(𝑈1). (2.10)

Setting 𝑈1 = 𝜌 in (2.10) entails that

𝜉 = (𝑛− 1)𝜇, (2.11)

where 𝜇 = (𝜌𝜓 +𝜓2).
From the last two equations, we acquire

𝑈1𝜓 = −(𝜌𝜓)𝜂(𝑈1). (2.12)

Using equation (2.12) in equation (2.8), we get

𝑅(𝑈1, 𝑉1)𝜌 = 𝜇[𝜂(𝑉1)𝑈1 − 𝜂(𝑈1)𝑉1].

In view of equations (2.2) and (2.11), we provide

𝑆(𝑈1, 𝜌) = (𝑛− 1)𝜇𝜂(𝑈1).

This ends the proof.

Lemma 2.2. In a 𝐺𝑅𝑊 spacetime, we obtain

𝜇{𝑈1 + 𝜌𝜂(𝑈1)} = 0. (2.13)

Proof. From equation (2.3), we get

𝑅(𝑈1, 𝑉1)𝜌 = 𝜇[𝜂(𝑉1)𝑈1 − 𝜂(𝑈1)𝑉1].

Now,

(∇𝑊1
𝑅)(𝑈1, 𝑉1)𝜌 =∇𝑊1

𝑅(𝑈1, 𝑉1)𝜌−𝑅(∇𝑊1
𝑈1, 𝑉1)𝜌 (2.14)

−𝑅(𝑈1,∇𝑊1
𝑉1)𝜌−𝑅(𝑈1, 𝑉1)∇𝑊1

𝜌.

Using equations (2.1) and (2.3) in equation (2.14) entails that

(∇𝑊1
𝑅)(𝑈1, 𝑉1)𝜌 = {𝑊1𝜇}[𝜂(𝑉1)𝑈1 − 𝜂(𝑈1)𝑉1]

+𝜓𝜇[𝑔(𝑉1,𝑊1)𝑈1 − 𝑔(𝑈1,𝑊1)𝑉1] −𝜓𝑅(𝑈1, 𝑉1)𝑊1.

The well-known second Bianchi identity is given by

(∇𝑊1
𝑅)(𝑈1, 𝑉1)𝜌+ (∇𝑈1

𝑅)(𝑉1,𝑊1)𝜌+ (∇𝑉1
𝑅)(𝑊1,𝑈1)𝜌 = 0.

From the foregoing two equations, we infer

[{𝑊1𝜇}𝜂(𝑉1) − {𝑉1𝜇}𝜂(𝑊1)]𝑈1

+[{𝑈1𝜇}𝜂(𝑊1) − {𝑊1𝜇}𝜂(𝑈1)]𝑉1
+[{𝑉1𝜇}𝜂(𝑈1) − {𝑈1𝜇}𝜂(𝑉1)]𝑊1

−𝜓[𝑅(𝑈1, 𝑉1)𝑊1 +𝑅(𝑉1,𝑊1)𝑈1 +𝑅(𝑊1,𝑈1)𝑉1] = 0.

Putting 𝑊1 = 𝜌 in the previous equation gives

[{𝜌𝜇}𝜂(𝑉1) + {𝑉1𝜇}]𝑈1 (2.15)
4

−[{𝑈1𝜇} + {𝜌𝜇}𝜂(𝑈1)]𝑉1
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+[{𝑉1𝜇}𝜂(𝑈1) − {𝑈1𝜇}𝜂(𝑉1)]𝜌

−𝜓[𝑅(𝑈1, 𝑉1)𝜌+𝑅(𝑉1, 𝜌)𝑈1 +𝑅(𝜌,𝑈1)𝑉1] = 0.

From equation (2.3), we get

𝑅(𝜌,𝑈1)𝑉1 = 𝜇[𝑔(𝑈1, 𝑉1)𝜌− 𝜂(𝑉1)𝑈1] (2.16)

and

𝑅(𝑈1, 𝜌)𝑉1 = 𝜇[𝜂(𝑉1)𝑈1 − 𝑔(𝑈1, 𝑉1)𝜌]. (2.17)

Using equations (2.3), (2.16) and (2.17) in equation (2.15) entails that

{𝜌𝜇}[𝜂(𝑉1)𝑈1 − 𝜂(𝑈1)𝑉1] (2.18)

+{𝑉1𝜇}[𝑈1 + 𝜂(𝑈1)𝜌]

−{𝑈1𝜇}[𝑉1 + 𝜂(𝑉1)𝜌] = 0.

Contracting 𝑉1 from the equation (2.18), we infer

𝜇{𝑈1 + 𝜌𝜂(𝑈1)} = 0.

Hence the proof is completed.

Lemma 2.3. In a 𝐺𝑅𝑊 spacetime, we have

𝑔((∇𝜌𝑄)𝑈1 − (∇𝑈1
𝑄)𝜌, 𝜌) = 0, (2.19)

in which the Ricci operator 𝑄 is described by 𝑔(𝑄𝑈1, 𝑉1) = 𝑆(𝑈1, 𝑉1).

Proof. From equation (2.4), we get

𝑄𝜌 = (𝑛− 1)𝜇𝜌. (2.20)

Differentiating equation (2.20), we acquire

(∇𝑈1
𝑄)𝜌 = (𝑛− 1){𝑈1𝜇}𝜌 (2.21)

+(𝑛− 1)𝜓𝜇[𝑈1 + 𝜂(𝑈1)𝜌]

−𝜓𝑄𝑈1 − (𝑛− 1)𝜓𝜇𝜂(𝑈1)𝜌.

Using equation (2.21) and Lemma 2.2, we easily acquire the desired result.

3. Proof of the prime theorems

Proof of the Theorem 1.2. Let us suppose that a 𝐺𝑅𝑊 spacetime admit a gradient 𝑅𝑆 . Then the equation (1.6) may be written as

∇𝑈1
𝐷𝑓 = −𝑄𝑈1 − 𝜆1𝑈1.

The foregoing equation and the following relation

𝑅(𝑈1, 𝑉1)𝐷𝑓 =∇𝑈1
∇𝑉1

𝐷𝑓 −∇𝑉1
∇𝑈1

𝐷𝑓 −∇[𝑈1 ,𝑉1]𝐷𝑓

give

𝑅(𝑈1, 𝑉1)𝐷𝑓 = (∇𝑉1
𝑄)(𝑈1) − (∇𝑈1

𝑄)(𝑉1).

Taking inner product of the previous equation with 𝜌 and making use of Lemma 2.3, we acquire

𝑔(𝑅(𝑈1, 𝑉1)𝐷𝑓,𝜌) = 0. (3.1)

Again, from equation (2.3) we infer

𝑔(𝑅(𝑈1, 𝑉1)𝜌,𝐷𝑓 ) = 𝜇[𝜂(𝑉1)(𝑈1𝑓 ) − 𝜂(𝑈1)(𝑉1𝑓 )]. (3.2)

Combining equations (3.1) and (3.2), we get
5

−𝜇[𝜂(𝑉1)(𝑈1𝑓 ) − 𝜂(𝑈1)(𝑉1𝑓 )] = 0. (3.3)
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Replacing 𝑉1 by 𝜌 in equation (3.3), we obtain

𝜇[(𝑈1𝑓 ) + 𝜂(𝑈1)(𝜌𝑓 )] = 0. (3.4)

This entails that either 𝜇 = 0, or 𝜇 ≠ 0.

Case (i): If 𝜇 = 0, then from equation (2.4) we have 𝑆(𝑈1, 𝜌) = 0. This reflects that the eigenvector 𝜉 is zero, which contradicts 
the Theorem 1.1.

Case (ii): If 𝜇 ≠ 0, then from equation (3.4), we reveal

[(𝑈1𝑓 ) + (𝜌𝑓 )𝜂(𝑈1)] = 0,

which implies

𝐷𝑓 = −(𝜌𝑓 )𝜌. (3.5)

Differentiating the equation (3.5), we acquire

∇𝑈1
𝐷𝑓 = −{𝑈1(𝜌𝑓 )}𝜌−𝜓(𝜌𝑓 ){𝑈1 + 𝜂(𝑈1)𝜌}. (3.6)

If we take 𝜌𝑓 = 𝑐1 = constant, then either 𝑐1 ≠ 0, or 𝑐1 = 0.

Case (i): If 𝑐1 ≠ 0, then equation (3.6) implies

∇𝑈1
𝐷𝑓 = −𝑐1𝜓{𝑈1 + 𝜂(𝑈1)𝜌}. (3.7)

Using equation (3.7) in equation (3.1) yields

𝑄𝑈1 = 𝑐1𝜓{𝑈1 + 𝜂(𝑈1)𝜌} − 𝜆1𝑈1,

which implies

𝑆(𝑈1, 𝑉1) = {𝑐1𝜓 − 𝜆1}𝑔(𝑈1, 𝑉1) + 𝑐1𝜓𝜂(𝑈1)𝜂(𝑉1).

Therefore, the spacetime under consideration is a 𝑃𝐹 spacetime.

Case (ii): If 𝑐1 = 0, then equation (3.5) gives 𝐷𝑓 = 0. Using this in equation (3.1) yields

𝑆(𝑈1, 𝑉1) = −𝜆1𝑔(𝑈1, 𝑉1). (3.8)

We know that

(𝑑𝑖𝑣𝐶)(𝑈1, 𝑉1)𝑊1 =
𝑛− 3
𝑛− 2

[{(∇𝑈1
𝑆)(𝑉1,𝑊1) − (∇𝑉1

𝑆)(𝑈1,𝑊1)}

− 1
2(𝑛− 1)

{𝑔(𝑉1,𝑊1)𝑑𝑟(𝑈1) − 𝑔(𝑈1,𝑊1)𝑑𝑟(𝑉1)}], (3.9)

in which 𝐶 stands for the Weyl conformal curvature tensor. Therefore using equation (3.8), from equation (3.9) we acquire 
(𝑑𝑖𝑣𝐶)(𝑈1, 𝑉1)𝑊1 = 0.

Thus, the spacetime is a 𝐺𝑅𝑊 spacetime with 𝑑𝑖𝑣𝐶 = 0 and hence, it is a 𝑃𝐹 spacetime [5].

Hence the proof is finished.

Since, in 4−dimension, a 𝐺𝑅𝑊 spacetime is a 𝑃𝐹 spacetime iff the spacetime is a 𝑅𝑊 spacetime [9]. Therefore, from the above 
theorem, we arrive:

Corollary 3.1. In 4−dimension, for 𝜌𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, a 𝐺𝑅𝑊 spacetime admitting a gradient 𝑅𝑆 turns into a 𝑅𝑊 spacetime.

Remark 1. For 𝑛 = 4, comparing the equations (1.1) and (3.8), we have

𝑎1𝑔(𝑈1, 𝑉1) + 𝑏1𝜂(𝑈1)𝜂(𝑉1) = {𝑐1𝜓 − 𝜆1}𝑔(𝑈1, 𝑉1) + 𝑐1𝜓𝜂(𝑈1)𝜂(𝑉1).

Making use of equation (1.4), the foregoing equation yields

𝑘2(3𝑝− 𝜈) = −𝜆1,

which implies

(3𝑝− 𝜈) = 𝑐 (𝑠𝑎𝑦).
6

Hence, the 𝑃𝐹 spacetime satisfies the EOS 𝜈 = −3𝑝+ constant.
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If 𝑐 = 0, the above equation yields

𝜔 = 𝑝

𝜈
= −1

3
,

which entails that the 𝑃𝐹 spacetime presents the phantom era [12].

Proof of the Theorem 1.3. Let the 𝐺𝑅𝑊 spacetime permit a (𝑚, 𝜏)-𝑄𝐸𝑆 . Then the equation (1.7) may be expressed as

∇𝑈1
𝐷𝑓 +𝑄𝑈1 =

1
𝑚
𝑔(𝑈1,𝐷𝑓 )𝐷𝑓 + 𝛽1𝑈1. (3.10)

Differentiating covariantly equation (3.10), we obtain

∇𝑉1
∇𝑈1

𝐷𝑓 = −∇𝑉1
𝑄𝑈1 +

1
𝑚
∇𝑉1

𝑔(𝑈1,𝐷𝑓 )𝐷𝑓

+ 1
𝑚
𝑔(𝑈1,𝐷𝑓 )∇𝑉1

𝐷𝑓 + 𝛽1∇𝑉1
𝑈1 + (𝑉1𝛽1)𝑈1. (3.11)

Interchanging 𝑈1 and 𝑉1 in the above equation, we get

∇𝑈1
∇𝑉1

𝐷𝑓 = −∇𝑈1
𝑄𝑉1 +

1
𝑚
∇𝑈1

𝑔(𝑉1,𝐷𝑓 )𝐷𝑓

+ 1
𝑚
𝑔(𝑉1,𝐷𝑓 )∇𝑈1

𝐷𝑓 + 𝛽1∇𝑈1
𝑉1 + (𝑈1𝛽1)𝑉1 (3.12)

and

∇[𝑈1 ,𝑉1]𝐷𝑓 = −𝑄[𝑈1, 𝑉1] +
1
𝑚
𝑔([𝑈1, 𝑉1],𝐷𝑓 )𝐷𝑓 + 𝛽1[𝑈1, 𝑉1]. (3.13)

From equations (3.10)-(3.13), we have

𝑅(𝑈1, 𝑉1)𝐷𝑓 = (∇𝑉1
𝑄)𝑈1 − (∇𝑈1

𝑄)𝑉1 +
𝛽1
𝑚
{(𝑉1𝑓 )𝑈1 − (𝑈1𝑓 )𝑉1}

+ 1
𝑚
{(𝑈1𝑓 )𝑄𝑉1 − (𝑉1𝑓 )𝑄𝑈1} + {(𝑈1𝛽1)𝑉1 − (𝑉1𝛽1)𝑈1}. (3.14)

Taking inner product of equation (3.14) with 𝜌 and using Lemma 2.3, we infer

𝑔(𝑅(𝑈1, 𝑉1)𝐷𝑓,𝜌) =
𝛽1
𝑚
{(𝑉1𝑓 )𝜂(𝑈1) − (𝑈1𝑓 )𝜂(𝑉1)}

+ 1
𝑚
{(𝑈1𝑓 )𝜂(𝑄𝑉1) − (𝑉1𝑓 )𝜂(𝑄𝑈1)}

+{(𝑈1𝛽1)𝜂(𝑉1) − (𝑉1𝛽1)𝜂(𝑈1)}. (3.15)

Again, from equation (2.3) we acquire

𝑔(𝑅(𝑈1, 𝑉1)𝜌,𝐷𝑓 ) = 𝜇[𝜂(𝑉1)(𝑈1𝑓 ) − 𝜂(𝑈1)(𝑉1𝑓 )]. (3.16)

Comparing equations (3.15) and (3.16), we obtain

−𝜇[𝜂(𝑉1)(𝑈1𝑓 ) − 𝜂(𝑈1)(𝑉1𝑓 )] =
𝛽1
𝑚
{(𝑉1𝑓 )𝜂(𝑈1) − (𝑈1𝑓 )𝜂(𝑉1)}

+ 1
𝑚
{(𝑈1𝑓 )𝜂(𝑄𝑉1) − (𝑉1𝑓 )𝜂(𝑄𝑈1)}

+{(𝑈1𝛽1)𝜂(𝑉1) − (𝑉1𝛽1)𝜂(𝑈1)}.

Replacing 𝑉1 by 𝜌 in the previous equation, we reveal

{𝜇 −
𝛽1
𝑚

+ 𝑛− 1
𝑚

𝜇}[(𝑈1𝑓 ) + 𝜂(𝑈1)(𝜌𝑓 )]

+{(𝑈1𝛽1) + (𝜌𝛽1)𝜂(𝑈1)} = 0. (3.17)

If we take 𝛽1 = (𝑛 − 1)𝜇 =constant (non zero), then from equation (3.17), we infer

[(𝑈1𝑓 ) + (𝜌𝑓 )𝜂(𝑈1)] = 0,

which implies

𝐷𝑓 = −(𝜌𝑓 )𝜌. (3.18)

Differentiating the equation (3.18), we acquire
7

∇𝑈1
𝐷𝑓 = −{𝑈1(𝜌𝑓 )}𝜌−𝜓(𝜌𝑓 ){𝑈1 + 𝜂(𝑈1)𝜌}. (3.19)
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If we take 𝜌𝑓 = 𝑐1 = constant, then either 𝑐1 ≠ 0, or 𝑐1 = 0.

Case (i): If 𝑐1 ≠ 0, then equation (3.19) implies

∇𝑈1
𝐷𝑓 = −𝑐1𝜓{𝑈1 + 𝜂(𝑈1)𝜌}. (3.20)

Using equation (3.20) in equation (3.10) gives

𝑄𝑈1 = 𝑐1𝜓{𝑈1 + 𝜂(𝑈1)𝜌} + 𝛽1𝑈1,

which implies

𝑆(𝑈1, 𝑉1) = {𝑐1𝜓 + 𝛽1}𝑔(𝑈1, 𝑉1) + 𝑐1𝜓𝜂(𝑈1)𝜂(𝑉1). (3.21)

Hence, the spacetime taking into account is a 𝑃𝐹 spacetime.

Case (ii): If 𝑐1 = 0, then equation (3.18) yields 𝐷𝑓 = 0. Using this in equation (3.10) gives

𝑆(𝑈1, 𝑉1) = 𝛽1𝑔(𝑈1, 𝑉1).

Using the foregoing equation in (3.9), we get 𝑑𝑖𝑣𝐶 = 0. Therefore, it is a 𝐺𝑅𝑊 spacetime with 𝑑𝑖𝑣𝐶 = 0 and hence, it is a 𝑃𝐹

spacetime [5].

This ends the proof.

It is known that when 𝑚 =∞, a gradient (𝑚, 𝜏)-𝑄𝐸𝑆 produces a gradient 𝜏-𝐸𝑆 . In (3.17), we put 𝑚 =∞ and easily acquire the 
equation (3.18). Therefore, we have:

Corollary 3.2. If a 𝐺𝑅𝑊 spacetime permits a gradient 𝜏-𝐸𝑆 , then the gradient of the 𝜏-𝐸𝑆 potential function is pointwise collinear with 
the potential vector field 𝜌.

Similarly, as Corollary 3.1 we acquire:

Corollary 3.3. In 4−dimension, a 𝐺𝑅𝑊 spacetime admitting a gradient (𝑚, 𝜏)-𝑄𝐸𝑆 with 𝛽1 = (𝑛 − 1)𝜇 = constant and 𝜌𝑓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

turns into a 𝑅𝑊 spacetime.

Similarly, as above we can state:

Corollary 3.4. If a 𝐺𝑅𝑊 spacetime admits a gradient 𝜏-𝐸𝑆 with 𝜌𝑓 = constant, then it becomes a 𝑃𝐹 spacetime.

Remark 2. For 𝑛 = 4, comparing the equations (1.1) and (3.21), we have

𝑎1𝑔(𝑈1, 𝑉1) + 𝑏1𝜂(𝑈1)𝜂(𝑉1) = {𝑐1𝜓 + 𝛽1}𝑔(𝑈1, 𝑉1) + 𝑐1𝜓𝜂(𝑈1)𝜂(𝑉1).

Using (1.4), the previous equation gives

𝑘2(3𝑝− 𝜈) = 𝛽1,

which implies

(3𝑝− 𝜈) = 𝑐 (𝑠𝑎𝑦).

Therefore, the 𝑃𝐹 spacetime admitting a gradient (𝑚, 𝜏)-𝑄𝐸𝑆 obeys the EOS 𝜈 = −3𝑝+ constant.

If 𝑐 = 0, the above equation yields

𝜔 = 𝑝

𝜈
= −1

3
,

which implies that the 𝑃𝐹 spacetime represents the phantom era [12].

4. Discussion

The stage of the physical world’s current modeling is spacetime, which is a torsion less, time oriented Lorentzian manifold. 
Albert Einstein first proposed the idea of general relativity theory in 1915, in which the matter content of the universe is stated by 
picking the suitable energy momentum tensor and is accepted to act like a perfect fluid spacetime in the cosmological models. 𝐺𝑅𝑊

spacetimes, where large scale cosmology is staged, are a natural and extensive extension of 𝑅𝑊 spacetimes.

This article will be read not only by readers working in this field, but also by researchers from other engineering disciplines. In 
8

future, other researchers or we, will investigate others solitons in general relativity theory and cosmology.
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