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The recent discovery of significant brown fat depots in adult humans has revived discussion of exploiting brown fat
thermogenesis in the control of energy balance and body weight. The sympathetic nervous system (SNS) has a key
role in the activation of brown fat and functional mapping of its components will be crucial for the development of
specific neuromodulation techniques. The mouse is an important species used for molecular genetic modulations,
but its small size is not ideal for anatomical dissections, thus brown fat innervation studies are mostly available in
larger rodents such as rats and hamsters. Here, we use pseudorabies virus retrograde tracing, whole tissue clearing,
and confocal/light sheetmicroscopy to show the location of pre- and postganglionic neurons selectively innervating
the interscapular brown adipose tissue (iBAT) in the mouse. Using iDISCO whole tissue clearing, we identified
iBAT projecting postganglionic neurons in the caudal parts of the ipsilateral fused stellate/T1, as well as the T2−T5
sympathetic chain ganglia and preganglionic neurons between levels T2 and T6 of the ipsilateral spinal cord. The
methodology enabled high-resolution imaging and 3D rendering of the specific SNS innervation of iBAT and will
be helpful to discern peripheral nervous system innervation of other organs and tissues.
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Introduction

Interest in brown adipose tissue (BAT) as a site
for burning off excess calories in the fight against
obesity flared up 35 years ago1,2 and returned
recently after a long hiatus.3,4 While it has been
clear that brown fat thermogenesis is important
for the maintenance of body temperature for most
homeothermic animals and human infants, a
significant contribution in adult humans has only
recently been suggested by the rediscovery of signif-
icant BAT depots1,4–8 (for recent reviews, see Refs.
9 and 10). Besides responsiveness to photoperiod
and ambient temperature,11–13 BAT activity in adult
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humans increases after a high-calorie meal.14 This
latter finding revives Rothwell and Stock’s original
idea of “Luxuskonsumption,” or the ability of BAT
to burn off extra calories and prevent obesity.15
In rodents, interscapular BAT (iBAT) is the

largest depot, with smaller depots in the medi-
astinum, along the cervical and thoracic aorta, and
around the kidneys.16 In humans, BAT is less cen-
tralized than in rodents, with significant depots in
supraclavicular, neck, and paraspinal regions.4,17,18
Based on numerous experiments with denerva-
tion of the interscapular pads in rodents, as well
as pharmacological studies using β3-adrenergic
agonists and blockers, the main driver of BAT
thermogenesis seems to be its noradrenergic sym-
pathetic innervation.19–27 Furthermore, a recent
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study demonstrating increased thermogenesis by
electrical field stimulation of the dorsal surface of
iBAT in rats28 suggests that stimulation of nora-
drenaline release from sympathetic nerve terminals
is required for this effect. The functional necessity
of the sympathetic nervous system (SNS) for intact
BAT function is demonstrated by surgical and
chemical denervation methods, which block or
greatly reduce most cold-induced BAT adaptations
like UCP1 induction, increased blood flow, higher
mitochondrial density, enhanced glucose uptake,
and activation of thyroid-activating enzymes.29
Thus, there is an increasing need to visualize

the sympathetic innervation of BAT efficiently to
make this tissue accessible for peripheral nerve
stimulation, verification of viral labeling extent, and
specialized pharmacotherapy. Here, we identify dif-
ferent reportermice that efficiently visualize periph-
eral sympathetic innervation and establish the use
of immunohistochemical double labeling and tissue
clearing for large thoracic specimens to identify the
location and distribution of postganglionic sym-
pathetic neurons innervating iBAT in the mouse
using the widely utilized pseudorabies virus (PRV).

Materials and methods

Animals
Transgenic tgDbh-Cre mice (stock #: 032081-UCD,
Tg(Dbh-Cre)KH212Gsat/Mmucd, Mutant Mouse
Resource and Research Center, breeding pairs
were obtained from Dr. Derbenev, Tulane Univer-
sity), TH-IRES-Cre mice (EM: 00254; B6.129×1-
Thtm1(Cre)Te/Kieg; EuropeanMouseMutantArchive;
breeding pairs were obtained from Dr. Louis de
Lecea, Stanford University) crossed with Rosa-
Tomatofl/fl mice (stock #: 007914; B6.Cg-Gt(ROSA)
26Sortm14(CAG-tdTomato)Hze/J, Jackson Laboratories)
to generate TH:Tomato reporter mice. Both male
and female offspring were group-housed at a
12 h:12 h light/dark cycle with ad lib access to
food and water unless stated otherwise. Animal
genotypes were confirmed by PCR from tail biop-
sies DNA (tgDbh-Cre mice: transgene forward
5′-AATGGCAGAGTGGGGTTGGG-3′; transgene
reverse 5′-CGGCAAACGGACAGAAGCATT-3′;
TH-IRES-Cre: Cre reverse 5′-GAT-ACC-TGG-
CCT-GGT-CTG-3′; wild-type/Cre forward 5′-
CAC-CCT-GAC-CCA-AGC-ACT-3′; wild-type
reverse 5′-CTT-TCC-TTC-CTT-TAT-TGA-GAT-

3′; Rosa-Tomatofl/fl mice: wild-type forward 5′-
AAG GGA GCT GCA GTG GAG TA-3′; wild-type
reverse 5′-CCG AAA ATC TGT GGG AAG TC-3′;
mutant reverse 5′-GGC ATT AAA GCA GCG
TAT CC-3′; mutant forward 5′-CTG TTC CTG
TAC GGC ATG G-3′). The Institutional Animal
Care and Use Committee approved all animal
experiments.

PRV infection of the iBAT
In Figure 1A, the experimental steps are summa-
rized schematically. The iBAT (n = 9 mice; 7 F,
2 M) received a unilateral injection with green
fluorescent protein (GFP) expressing PRV (PRV-
GFP, viral titer, 1 × 109 pfu/mL, Lot #2007, 5 ×
100 nL, kindly provided by the National Center
for Experimental Neuroanatomy with Neurotropic
Viruses, Pittsburgh, PA). Mice were anesthetized
with isofluorane/oxygen and iBAT was exposed
by an intrascapular incision. The virus was then
injected with a pulled glass pipette (tip diameter ∼
5μm) attached to a 0.5-μLHamilton R© syringe. Five
separate injections of 100 nL were distributed over
the right iBATdepot, holding the pipette in place for
10 s to prevent backflow. Injection sites were then
dried with gauze to prevent leakage to surrounding
tissue and the circulation. Mice were single housed
post viral infection for 72 and 96 h, and then per-
fused and processed as described below. Controls
included dripping the same total amount of PRV
(500 nL) onto the surface of the iBAT depot (n =
2) or surgical (n = 2) denervation of iBAT.

Perfusion and fluorescence-guided
dissection of relevant tissue blocks
Mice injected with PRV were perfused at 3−4 days
post viral infection. Perfusion and immuno-
histochemistry were performed as previously
described.30 Briefly, mice were deeply anesthetized
with isoflurane and transcardially perfused with
ice-cold physiological saline followed by 10%
buffered formalin.
Thoracic organs were removed and successful

infection was verified with a fluorescent stere-
omicroscope (Nikon, SMZ25, Melville, NY) and
only animals with visible sympathetic chain ganglia
infection were further included in tissue dissection
and analysis. The BAT was removed and the entire
spinal cord was further cleared of excessive mus-
cle mass. A laminectomy was performed to allow
imaging of preganglionic intermediolateral (IML)
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Figure 1. Overview of experimental design, dissection technique, and whole body tissue clearing. (A) Flow diagram of experi-
mental design. (B and C) Ventral views of eviscerated, perfused TH:Tomato mouse (B), Dbh:Tomato mouse (C) using stereomi-
croscope. (D) Ventral view of eviscerated, perfused wild-type mouse 96 h post-PRV-GFP injection into the right iBAT pad using
stereomicroscope. Note labeling of right, but not left sympathetic chain ganglia. (E) Confocal microscope image of the whole
upper body of a mouse after iDISCO immunohistochemistry with TH and tissue clearing. Note labeling of the bilateral sympa-
thetic chain, neck nerves, and brain areas. TH, tyrosine hydroxylase; DBH, dopamine beta-hydroxylase; PRV, pseudorabies virus;
GFP, green fluorescent protein; SG, stellate ganglion; T1−T7, ganglia for thoracic levels 1−7.

neurons. The spinal cord was cut at the tho-
racic level T7/T8 to accommodate optimal imag-
ing capacities. The tissue was postfixed in formalin
overnight and transferred to PBS-azide (2% sodium
azide in PBS). All PRV-GFP–infected tissue was
dehydrated in methanol (20%, 40%, 60%, 80%, and
100%, 1 h each) and stored in 100% methanol
until further processing for staining and clearing as
described below.

Immunohistochemistry and tissue clearing
Immunohistochemical staining was performed
following the iDISCO method from Renier
et al. (https://idisco.info/idisco-protocol/update-
history/) with modifications. Briefly, after methanol
dehydration, tissues were treated with 5% H2O2 in
methanol (MeOH) overnight at 4 °C (1 volume 30%
H2O2/5 volumes methanol, ice-cold), followed by
washes in 100% methanol for 1 h and rehydrated in
a series of MeOH /PBS (80%, 60%, 40%, and 20%)

for 1 h each. Samples were further incubated in 1 x
PBS/0.2% Triton X-100 twice (PTx.2 solution) for
1 h each and permeabilized in 400 mL PTx.2, 11.5 g
glycine, 100 mL DMSO at 37 °C with shaking for
2 days. See Table S1 (online only) for a complete list
of antibodies used. After that, tissues were blocked
in 42 mL PTx.2, 3 mL donkey serum (Jackson
ImmunoResearch, West Grove, PA), and 5 mL
DMSO over 2.5 days at 37 °C with shaking. Then,
tissues were incubated with primary antibodies
(chicken anti-GFP [1:400], Abcam, Cambridge,
MA; rabbit anti-TH [1:400], Millipore, Burlington,
MA) in PBS with 20% Tween 20 and 10 mg/mL
heparin (PTwH)/5% DMSO/3% donkey serum
at 37 °C with shaking for at least 7 days. Follow-
ing primary staining, tissue samples were washed
in PtWH 4−5 times in 60-min increments and
then incubated in PtwH overnight. Samples were
then subjected to secondary staining in PTwH/3%
donkey serum for 1.5 weeks. Following primary
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staining, tissue samples were washed in PtwH 4−5
times 1 h or until the following day.
Samples were dehydrated in MeOH/H2O series,

incubated in 66% dichloromethane (DCM, Sigma-
Aldrich, St. Louis, MO)/33% MeOH at room tem-
perature, and then in 100% DCM for 15 min twice
with agitating on a rocker to rinse out any remaining
MeOH. Tissues were stored in dibenzyl ether (DBE,
Sigma-Aldrich) until imaging.

Microscopy and image processing
Spine sample imaging utilizing both a Leica SP5
confocalmicroscope (Leica Biosystems Inc., Buffalo
Grove, IL) and a LaVision light sheet microscope
(LaVision BioTec, Bielefeld, Germany). Specimen
imaging in the organic solvent required immersion
of the microscope objective in it, which is a capa-
bility of the light sheet but not the confocal micro-
scope. Therefore, we used a handcrafted chamber
for the confocal microscope to allow safe specimen
access without damaging the equipment. Overview
3D image stacks were generated for the spine with a
dorsal view to reveal PRV labeling in the IML col-
umn. 3D image stacks with a ventral view revealed
thoracic and lumbar sympathetic chain ganglia and
the celiac ganglion. Images of tyrosine hydroxylase
(TH) and PRV labeling were collected for all sam-
ples. Higher magnification images were generated
(10×) for PRV-positive sympathetic chain ganglia
and the corresponding dorsal root ganglia (DRG),
as indicated in figures, as well as for PRV-positive
IML neurons. Note, even though confocal and light
sheet microscopy both have advantages and disad-
vantages, at this level of analysis we used both sys-
tems interchangeable and both systems were suffi-
cient to obtain single-cell resolution of PRV-labeled
postganglionic neurons.

Quantitative analyses of postganglionic
neurons
Among all investigated animalswith successful PRV
labeling, no evidence was found for pre- or post-
ganglionic PRV labeling beyond thoracic level T8
and T7, respectively. Thus, we performed the sys-
tematic analysis only for the rostral portion of the
spinal cord (the stellate ganglion to the sympathetic
chain ganglion T8).
Overview images (5× magnification/1.0 zoom

factor) showing the ventral (sympathetic chain gan-
glia) and dorsal (IML) view of the spinal cord were
aligned to determine the thoracic levels of sympa-

thetic chain ganglia and IML PRV labeling. We fur-
ther investigated 10× magnification images to ana-
lyze PRV-labeled portions in more detail. Individ-
ual sympathetic chain ganglia were further quan-
tified for the number of PRV-labeled neurons as
a measure of infection efficiency and consistency
for individual cases. 3D images included DRG for
each sympathetic chain ganglia level and allowed
evaluation for PRV labeling of sensory cell bodies.
Within sympathetic chain ganglia, we estimated cell
counts for PRV-positive neurons in z-stack images
manually with the Adobe R© Photoshop R© count tool
(Adobe Photoshop CS6, San Jose, CA), and an auto-
mated 3D analysis of cell counts utilizing the Imaris
9.2 spot counting feature (Bitplane AG, Concord,
MA).

Results

Whole body in situ imaging and dissection of
SNS components using TH:Tomato reporter
mice
In order to guide the dissection of the thoracic spec-
imen that would retain components of the SNS,
we wanted to capitalize on the powerful ability of
reporter gene expression. Most reporter lines are
well characterized for their expression profile in the
central nervous system, while reporter expression
in peripheral nerves remains unexplored.We found
that knock-in TH:Tomato mice and transgenic
Dbh:Tomato mice both showed strong fluorescence
in noradrenergic nerves. After formalin fixation
and removing the viscera, the bilateral sympathetic
chain ganglia could be identified using a fluores-
cent stereomicroscope with a long working dis-
tance (Fig. 1). Knock-in TH:Tomato mice (Fig. 1B)
showed stronger fluorescence compared to trans-
genic Dbh:Tomato mice (Fig. 1C), but both mouse
lines showed bright fluorescence, revealing sym-
pathetic chain ganglia and interconnecting nerve
strands even at lower magnification. In contrast,
our initial attempts using transgenic TH:Tomato
mice (B6.Cg-7630403G23RikTg(Th-cre)1Tmd/J, Stock#
008601) showed only sporadic fluorescent signal
with only one or two Tomato-positive cells per
thoracic sympathetic ganglia (data not shown).
Thus, in our hands, knock-in TH:Tomato mice
and transgenic Dbh:Tomato mice were most use-
ful to visualize sympathetic chain ganglia, and asso-
ciated nerves, and to clean ganglia of obscuring
tissues (e.g., ganglia adipose tissue). Sympathetic
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chain ganglia can be visualized without reporter
gene expression, but the celiac/mesenteric ganglia
complex is not visible without fluorescent label-
ing and abdominal chain ganglia are easily con-
fused regarding to their thoracic and lumbar lev-
els without fluorescent guidance specifically for the
untrained experimenter.

Clearing of large tissue blocks reveals 3D
anatomy of sympathetic chain and other
components of the SNS
Earlier work in embryos or newborn mice has used
whole body clearing techniques to visualize sympa-
thetic chain ganglia; however, this technique has not
been adapted to substantially larger adult mice with
excessive muscle and adipose tissue mass. How-
ever, recent histological advances have promoted
tissue clearance for a larger specimen like the brain
and human embryos,31 suggesting that these tech-
niques might also be suitable to visualize sympa-
thetic chain ganglia in adult animals. We generated
tissue blocks that contained specific components of
the SNS of adult mice and subjected them to amod-
ified iDISCO clearing protocol with immunohisto-
chemistry for TH and other markers. This revealed
for the first time in adult mice the undisturbed
three-dimensional structure of the bilateral sympa-
thetic chain and intercostal nerves, as well as adren-
ergic nerves and neurons in the neck and brain
(Fig. 1E and Supplementary Video S1, online only).
Specifically, using classical or light sheet confocal
microscopy, the individual anatomy of the stellate
to T13 and lumbar sympathetic chain ganglia and
interconnecting nerve strandswere revealed in their
three-dimensional space on a background of rib
and vertebral column structure, which did not com-
pletely clear.

PRV mapping of iBAT-innervating neurons in
sympathetic chain ganglia and spinal cord
PRV has been widely used to identify autonomic
nervous system (ANS) innervation of peripheral tis-
sues and is the retrograde tracer of choice.32 We
injected GFP-conjugated PRV unilaterally into the
right iBAT pad. Our focus was on first- and second-
order neurons only (pre- and postganglionic neu-
rons), so that the survival time after virus injections
was kept short with 3−4 days.
Labeling in the stellate ganglia and upper tho-

racic sympathetic chain ganglia on the ipsilateral
injection side could be seen in fixed and eviscer-

ated whole animal preparations using a fluores-
cence stereomicroscope (Fig. 1C), which guided
dissection as above. After iDISCO clearance with
the immunohistochemical enhancement of viral
GFP and TH, much more details became visible
with classical and light sheet confocal microscopy
(Figs. 2 and 3). Specifically, there was strong label-
ing not only in the caudal portion of the stellate gan-
glion, but also in the thoracic chain ganglia from T1
(typically fused to the stellate ganglion) to T5, and in
some cases scattered labeling up to T7. Labeling was
limited to the ipsilateral side of the injection, even
though we observed rare cases of bilateral labeling,
likely due to accidental injection into the adjacent
and merged left iBAT section. Labeling in the T5 to
T7 ganglia became increasingly sparse.
Higher magnification images clearly revealed

individual PRV-infected neurons among nonin-
fected TH-positive neurons (Fig. 3). In addition,
PRV-labeled nerve fibers within intercostal nerves
and ganglia connecting nerve strands could be dis-
cerned on the background of TH-positive nerves.
Importantly, injection of the same viral dose in

mice with prior surgical iBAT denervation (Fig. 4A
and B), or dribbling it over the surface of iBAT (data
not shown), did not result in any discernible label-
ing in any sympathetic chain ganglia. TH labeling
also revealed the location of the DRG as well as the
paravertebral ganglia and we inspected these gan-
glia for PRV-labeled neurons. We found no indi-
cation of PRV labeling in paravertebral abdominal
ganglia, such as the celiac (Fig. 4C) and splanch-
nic nerves, even though a few iBAT projecting DRG
neurons were identified with PRV labeling (Fig.
4D−G).

Quantitative analysis of nine successful PRV
injections revealed that about half of PRV-labeled
neurons were located in the fused stellate/T1 gan-
glion and the other half was distributed over T2−T5
(Fig. 5 and Table S2, online only). However, the
number of labeled neurons in the stellate/T1 gan-
glia variedwidely, indicating either a biological vari-
ation or incomplete labeling.
To map the preganglionic neurons in the spinal

cord that innervate iBAT, light sheet microscopy
was performed on cleared tissue blocks from seven
mice containing the spinal cord and the sympathetic
chain (Fig. 6A). PRV labeling in the IML column
of the spinal cord was found between rostrocaudal
levels T2–T8 (Fig. 6B). None of these seven mice
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Figure 2. Ventral overview of sympathetic postganglionic ganglia innervating iBAT in themouse as shown by two examples with
unilateral PRV injections in the right iBAT pad (A and B). Confocal microscope images of tyrosine hydroxylase (TH) (A and B),
PRV with GFP expression (PRV-GFP) (A’ and B’) and merged images (A” and B”) from iDISCO-processed whole tissue blocks.
Note retrograde labeling of the right stellate/T1 ganglion, as well as T2−T4 in example A and T2−T6 in example B.

showed preganglionic labeled neurons at the level of
the stellate/T1 ganglia or beyond T9, all seven mice
showed labeling at levels T2−T6, and labeling from
T7 to T8 was found in a subset of animals. Thus, the
representation of preganglionic neurons innervat-
ing iBAT is slightly shifted to more caudal levels as
compared to the corresponding postganglionic neu-
rons (Fig. 6C).

Discussion and conclusions

Brown fat thermogenesis is an evolutionarily con-
servedmechanism tomaintain body temperature in
mammals and has the potential to convert surplus
energy into heat for better energy balance control
in an environment of plenty.15,33 In addition, BAT
may be the source of factors and hormones that
play important roles in metabolic health.30,34–36
Because sympathetic drive is required for optimal
BAT function,37,38 identification of the sympa-
thetic pre- and postganglionic neurons selectively
innervating BAT is important. Here, we combine
classical pseudorabies retrograde tracing with
transgenic mouse models, whole tissue clearing,
and confocal light sheet microscopy to show the
specific distribution of sympathetic postganglionic
neurons innervating the iBAT in the mouse. We
identified suitable reporter mice to guide initial dis-
section of large tissue blocks containing the critical

components, which greatly increases confidence in
anatomical dissection and sectioning techniques.
We further adapt iDSICO methods to immunohis-
tochemically stain and perform tissue clearance of
the entire spinal cord and sympathetic chain in the
adult mouse. This approach is able to visualize the
entire SNS and its major components undisturbed
in situ, and greatly facilitates the unbiased and
transparent evaluation of pre- and postganglionic
contribution to iBAT innervation. Contrary to
findings in the rat39,40 and Siberian hamster,41 we
find iBAT-innervating sympathetic postganglionic
neurons not just in the stellate ganglion but also
in the T2−T5 sympathetic chain ganglia. Interest-
ingly, within the stellate ganglion, the rostral pole
is suspiciously void of neurons innervating iBAT.
The rostral pole is known to harbor postganglionic
neurons that innervate the heart.42,43 In contrast,
the more caudal portions of the stellate ganglia
together with the T1, T2, T3, T4, and T5 chain
ganglia are densely packed with iBAT-innervating
neurons. Future studies will further investigate how
the sympathetic nerves leaving these individual
ganglia relate to the organization of end-organ
iBAT innervation.
Importantly, we did not find any iBAT-

innervating postganglionic neurons in the lower
sympathetic chain ganglia as reported for the
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Figure 3. Postganglionic sympathetic neurons innervating iBAT in the mouse. (A and B) Light sheet microscope images of two
examples of retrogradely PRV-labeled postganglionic sympathetic neurons in the fused right stellate/T1 ganglion after unilateral
PRV injections into the right iBAT pad. Inset shows retrogradely PRV-labeled (green) and unlabeled (red) neurons at higher
magnification (asterisks depict examples of colocalized neurons). (C–H) Confocal microscope images of individual sympathetic
chain ganglia at thoracic levels T2−T7 in the same mouse for which the stellate ganglion is shown in (B). Note strong labeling in
T2−T4 andmuch weaker labeling in T5 and T6 ganglia. TH, tyrosine hydroxylase; PRV, pseudorabies virus; SG, stellate ganglion;
T1−T7, ganglia for thoracic levels 1−7.

Siberian hamster.44 This is consistent with the
overall development of sympathetic innervation
that clearly dissociates the origin of sympathetic
innervation in anterior (thorax and forelimbs),
posterior (hind limb), and abdominal (situ) sites,45
and classic views of autonomic innervation.39 A few
PRV-labeled neurons were found in DRG, and it is
not clear whether these are true sympathetic effer-
ent neurons or inadvertently anterograde labeled
dorsal root afferents. Given the very small number
of these neurons, they are not likely to be of major
physiological importance.
Our analysis of preganglionic neurons in the

spinal cord is in general agreement with studies
in the rat39,46 and Siberian hamster,44 which all
report the stellate ganglion as a major contribution
to the sympathetic innervation of the iBAT. How-

ever, our data highlight the regional distribution of
PRV labeling within the stellate ganglion and the
lack of PRV labeling in the dorsal pole. Further-
more, we clarify that thoracic ganglia from the stel-
late until T5 significantly contribute to iBAT inner-
vation, with scattered PRV labeling in T6/T7 and
no contribution was observed below T8 chain gan-
glia, contrary to a report by Nguyen et al.44 We also
clarified that the prevertebral celiac ganglion did not
innervate iBAT, which has been recently suggested
as the main innervation site of adipose tissue.47 Our
study is also the first to investigate systematically the
anatomical extent of preganglionic iBAT innervat-
ing neurons in the IML (levels T2–T6).
Our study demonstrates the usefulness and

points out some caveats of genetically alteredmouse
models for the analysis of ANS functional anatomy
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Figure 4. Controls for nonspecific labeling. (A and B) Light sheet microscope images of the fused right stellate/T1 ganglion
showing the absence of PRV-labeled neurons (green) in mouse with PRV injections into surgically denervated right iBAT pad.
(A’) Same ganglion with TH fluorescence (red) to show the outline of the ganglion. The sympathetic innervation (TH labeling) is
degraded in the denervated iBAT pad, in contrast to the intact iBAT pad (B). (C) Light sheet microscope image of a mouse with
successful PRV labeling in sympathetic chain ganglia shows a complete absence of PRV labeling in the celiac ganglion (CG). (D–
G) Confocal microscope images of a mouse with successful PRV labeling in sympathetic chain ganglia show sparse PRV labeling
(green dots) in T3-DRG (D), T4-DRG (E), T5-DRG (F), and T6-DRG (G). TH, tyrosine hydroxylase; PRV, pseudorabies virus; SG,
stellate ganglion; DRG, dorsal root ganglion; T1−T7, ganglia for thoracic levels 1−7.
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Figure 5. Quantitative distribution of sympathetic postgan-
glionic neurons innervating iBAT in the mouse. Mean ± SEM
of number of retrogradely labeled neurons inmice (n= 9) uni-
laterally injected with PRV into the left iBAT pad. Note that
about half the retrogradely labeled neurons are located in the
fused stellate/T1 ganglion and the other half is distributed over
T1−T5 ganglia.

that should be very helpful for other studies. The
TH-IRES-Cre knock-in and the transgenic Dbh-
Cre mice were both useful reporter driver in the
SNS, while the transgenic TH-Cre mouse resulted
only in sporadic cell bodies with reporter expres-
sion throughout the thoracic chain ganglia, which
requires consideration when choosing Cre-driver
lines for studies in peripheral sympathetic nerves.
However, with appropriate Cre-driver lines, the red
fluorescent signal in the reporter mice was strong
enough to guide dissection of any component of
the SNS in fresh or formalin perfused prepara-
tions under a fluorescent stereomicroscope. Other
methods that have been used in the past are IP
injections of Fluoro-GoldTM,48 which label all neu-
rons of the peripheral nervous system (sympathetic,
parasympathetic, and sensory) in rats andmice,48,49
but genetic approaches hold promise for a better
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Figure 6. Location of sympathetic preganglionic neurons innervating iBAT and schematic diagram of sympathetic outflow pat-
tern to iBAT in the mouse. (A and A’) Light sheet microscope image through spinal cord showing the location of preganglionic
neurons (green) on the right side of the intermediolateral column (A), andmerged image of PRV andTH (A’) in amouse with uni-
lateral injection of PRV into the left iBAT pad. (B) Semiquantitative assessment of location of postganglionic neurons in the spinal
cord relative to the rostrocaudal level. Note the caudal-ward shift in representation with no preganglionic neurons at the level of
the fused stellate/T1, T2, and T9 sympathetic chain ganglion. (C) Schematic diagram depicting the organization of sympathetic
outflow to iBAT in the mouse. IML, intermediolateral column of the spinal cord.

distinction of sympathetic, parasympathetic, sen-
sory, and enteric nervous system components and
do not require dissection under harmful UV light.
Our study also highlights that immunohisto-

chemical staining and tissue clearance protocols
are successful in adult animals with excellent res-
olution for the peripheral nervous system and
greatly enhance the rigor and transparency of
analyzed anatomical levels. With the ascent of
neural modulation devices and therapies,50–53 it
will be important to provide detailed, complete,
and specific functional maps of peripheral nervous
systems. To this end, analysis of large tissue blocks
allowing complete spatial representation of all
nerves and ganglia vis-à-vis specific target organs
will be indispensable. The methodology described
here should enable high-resolution 3D imaging
of sympathetic and parasympathetic innervation
of other important target organs, such as white

adipose tissue, gut, pancreas, liver, kidneys, spleen,
the urogenital tract, and the respiratory system.
One potential limitation of using mice and other

small mammals asmodels to gain basic information
on the functional anatomy of the ANS is the pos-
sibility of significant differences to humans. Specif-
ically, comparisons of SNS innervation of BAT
between rodents and humans are complicated by
the fact that in humans it appears to be located and
distributed quite differently than in rodents. Instead
of the prominent iBAT pad in rodents, the most
important accumulation of BAT in humans is supr-
aclavicular, with additional depots in the neck and
along the spinal cord vertebrae.3,4 Even though the
different distribution will likely not affect the func-
tional importance of BAT per se, future studies in
mice to modulate sympathetic iBAT function are
important approaches to understanding metabolic
dynamics in humans.
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In conclusion, using transgenic TH-IRES-Cre
mice, whole tissue clearing, and confocal/light sheet
microscopy, we provide a complete map of SNS
innervation of themouse iBAT depot that shows the
location of postganglionic sympathetic neurons not
confined to the stellate ganglia, but also the first sev-
eral sympathetic chain ganglia.

Acknowledgment

This research was supported by the National Insti-
tutes of Health Grant OT2OD023864-01 (SPARC,
H.M.).

Supporting information

Additional supporting informationmay be found in
the online version of this article.

Table S1. Detailed information on mouse models,
pseudorabies virus, and antibody used.

Table S2. Individual data for automated cell counts
of PRV-GFP–labeled neurons in sympathetic chain
ganglia using IMARIS software.

Supplementary Video S1. 3D confocal image of an
iDISCO cleared thorax showing sympathetic neu-
rons (tyrosin hydroxylase (TH), red) and pseudora-
bies virus retrogradely labeled from the right inter-
scapular brown adipose tissue (PRV-GFP, green).

Competing interests

The authors declare no competing interests.

References
1. Huttunen, P., J. Hirvonen & V. Kinnula. 1981. The occur-

rence of brown adipose tissue in outdoor workers. Eur. J.
Appl. Physiol. Occup. Physiol. 46: 339–345.

2. Rothwell, N.J. & M.J. Stock. 1979. A role for brown adipose
tissue in diet-induced thermogenesis. Nature 281: 31–35.

3. Cohade, C., M. Osman, H.K. Pannu, et al. 2003. Uptake in
supraclavicular area fat (“USA-Fat”): description on 18F-
FDG PET/CT. J. Nucl. Med. 44: 170–176.

4. Saito, M., Y. Okamatsu-Ogura, M. Matsushita, et al. 2009.
High incidence of metabolically active brown adipose tissue
in healthy adult humans: effects of cold exposure and adi-
posity. Diabetes 58: 1526–1531.

5. Nedergaard, J., T. Bengtsson&B.Cannon. 2007.Unexpected
evidence for active brown adipose tissue in adult humans.
Am. J. Physiol. Endocrinol. Metab. 293: E444–E452.

6. Cypess, A.M., S. Lehman, G. Williams, et al. 2009. Identi-
fication and importance of brown adipose tissue in adult
humans. N. Engl. J. Med. 360: 1509–1517.

7. Virtanen, K.A., M.E. Lidell, J. Orava, et al. 2009. Functional
brown adipose tissue in healthy adults. N. Engl. J. Med. 360:
1518–1525.

8. van Marken Lichtenbelt, W.D., J.W. Vanhommerig, N.M.
Smulders, et al. 2009. Cold-activated brown adipose tissue
in healthy men. N. Engl. J. Med. 360: 1500–1508.

9. Lee, P., M.M. Swarbrick &K.K. Ho. 2013. Brown adipose tis-
sue in adult humans: a metabolic renaissance. Endocr. Rev.
34: 413–438.

10. Virtanen, K.A., W.D. van Marken Lichtenbelt & P. Nuutila.
2013. Brown adipose tissue functions in humans. Biochim.
Biophys. Acta 1831: 1004–1008.

11. Au-Yong, I.T., N. Thorn, R. Ganatra, et al. 2009. Brown adi-
pose tissue and seasonal variation in humans. Diabetes 58:
2583–2587.

12. Chen, K.Y., R.J. Brychta, J.D. Linderman, et al. 2013. Brown
fat activation mediates cold-induced thermogenesis in adult
humans in response to a mild decrease in ambient tempera-
ture. J. Clin. Endocrinol. Metab. 98: E1218–E1223.

13. Cohade, C., K.A. Mourtzikos & R.L. Wahl. 2003. “USA-
fat”: prevalence is related to ambient outdoor temperature-
evaluation with 18F-FDG PET/CT. J. Nucl. Med. 44: 1267–
1270.

14. Vosselman, M.J., B. Brans, A.A. van der Lans, et al. 2013.
Brown adipose tissue activity after a high-calorie meal in
humans. Am. J. Clin. Nutr. 98: 57–64.

15. Rothwell, N.J. & M.J. Stock. 1983. Luxuskonsumption, diet-
induced thermogenesis and brown fat: the case in favour.
Clin. Sci. (Lond.) 64: 19–23.

16. Giordano, A., A. Frontini, M. Castellucci, et al. 2004. Pres-
ence and distribution of cholinergic nerves in rat mediasti-
nal brown adipose tissue. J. Histochem. Cytochem. 52: 923–
930.

17. Lidell, M.E., M.J. Betz, O. Dahlqvist Leinhard, et al. 2013.
Evidence for two types of brown adipose tissue in humans.
Nat. Med. 19: 631–634.

18. Cypess, A.M., A.P.White, C.Vernochet, et al. 2013. Anatom-
ical localization, gene expression profiling and functional
characterization of adult human neck brown fat. Nat. Med.
19: 635–639.

19. Andrews, P.L., N.J. Rothwell & M.J. Stock. 1985. Influence
of subdiaphragmatic vagotomy and brown fat sympathec-
tomy on thermogenesis in rats. Am. J. Physiol. 249: E239–
E243.

20. Bartness, T.J. & G.N. Wade. 1984. Effects of interscapu-
lar brown adipose tissue denervation on body weight and
energy metabolism in ovariectomized and estradiol-treated
rats. Behav. Neurosci. 98: 674–685.

21. Festuccia,W.T., P.G. Blanchard, D. Richard, et al. 2010. Basal
adrenergic tone is required for maximal stimulation of rat
brown adipose tissue UCP1 expression by chronic PPAR-
gamma activation. Am. J. Physiol. Regul. Integr. Comp. Phys-
iol. 299: R159–R167.

22. Geloen, A., A.J. Collet & L.J. Bukowiecki. 1992. Role of sym-
pathetic innervation in brown adipocyte proliferation. Am.
J. Physiol. 263: R1176–R1181.

23. Granneman, J.G. & R.G. Campbell. 1984. Effects of sucrose
feeding and denervation on lipogenesis in brown adipose
tissue.Metabolism 33: 257–261.

24. Himms-Hagen, J., J. Cui & S. Lynn Sigurdson. 1990. Sym-
pathetic and sensory nerves in control of growth of brown
adipose tissue: effects of denervation and of capsaicin. Neu-
rochem. Int. 17: 271–279.

12 Ann. N.Y. Acad. Sci. 1454 (2019) 3–13 © 2019 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.



François et al. SNS innervation of iBAT

25. Pulinilkunnil, T., H.He,D.Kong, et al. 2011. Adrenergic reg-
ulation of AMP-activated protein kinase in brown adipose
tissue in vivo. J. Biol. Chem. 286: 8798–8809.

26. Takahashi, A., T. Shimazu & Y. Maruyama. 1992. Impor-
tance of sympathetic nerves for the stimulatory effect of cold
exposure on glucose utilization in brown adipose tissue. Jpn.
J. Physiol. 42: 653–664.

27. Tsukazaki, K., H. Nikami, Y. Shimizu, et al. 1995. Chronic
administration of beta-adrenergic agonists can mimic the
stimulative effect of cold exposure on protein synthesis in
rat brown adipose tissue. J. Biochem. 117: 96–100.

28. Iwami, M., F. Alkayed, T. Shiina, et al. 2013. Activation of
brown adipose tissue thermogenesis by electrical stimula-
tion to the dorsal surface of the tissue in rats. Biomed. Res.
34: 173–178.

29. Bartness, T.J., Y.B. Shrestha, C.H. Vaughan, et al. 2010. Sen-
sory and sympathetic nervous system control of white adi-
pose tissue lipolysis.Mol. Cell. Endocrinol. 318: 34–43.

30. Zhang, Y., I.A. Kerman, A. Laque, et al. 2011. Leptin-
receptor-expressing neurons in the dorsomedial hypothala-
mus and median preoptic area regulate sympathetic brown
adipose tissue circuits. J. Neurosci. 31: 1873–1884.

31. Renier, N., Z. Wu, D.J. Simon, et al. 2014. iDISCO: a sim-
ple, rapid method to immunolabel large tissue samples for
volume imaging. Cell 159: 896–910.

32. Card, J.P. & L.W. Enquist. 2014. Transneuronal circuit anal-
ysis with pseudorabies viruses. Curr. Protoc. Neurosci. 68:
1.5.1–1.5.39.

33. Cannon, B. & J. Nedergaard. 2010. Metabolic consequences
of the presence or absence of the thermogenic capacity of
brown adipose tissue in mice (and probably in humans). Int.
J. Obes. (Lond.) 34(Suppl. 1): S7–S16.

34. Nedergaard, J., T. Bengtsson & B. Cannon. 2011. New pow-
ers of brown fat: fighting the metabolic syndrome. Cell
Metab. 13: 238–240.

35. Cypess, A.M., C.R. Haft, M.R. Laughlin, et al. 2014. Brown
fat in humans: consensus points and experimental guide-
lines. Cell Metab. 20: 408–415.

36. Kong, X., T. Yao, P. Zhou, et al. 2018. Brown adipose tissue
controls skeletal muscle function via the secretion of myo-
statin. Cell Metab. 28: 631–643.e3.

37. Dulloo, A.G. & D.S. Miller. 1984. Energy balance follow-
ing sympathetic denervation of brown adipose tissue. Can.
J. Physiol. Pharmacol. 62: 235–240.

38. Denjean, F., J. Lachuer, A. Geloen, et al. 1999. Differential
regulation of uncoupling protein-1, -2 and -3 gene expres-
sion by sympathetic innervation in brown adipose tissue of
thermoneutral or cold-exposed rats. FEBS Lett. 444: 181–
185.

39. Wiedmann, N.M., A. Stefanidis & B.J. Oldfield. 2017. Char-
acterization of the central neural projections to brown,

white, and beige adipose tissue. FASEB J. 31: 4879–
4890.

40. Stefanidis, A., N.M.Wiedmann, S. Tyagi, et al. 2018. Insights
into the neurochemical signature of the Innervation of Beige
Fat.Mol. Metab. 11: 47–58.

41. Bamshad, M., C.K. Song & T.J. Bartness. 1999. CNS origins
of the sympathetic nervous systemoutflow to brown adipose
tissue. Am. J. Physiol. 276: R1569–R1578.

42. Hopkins, D.A. & J.A. Armour. 1984. Localization of sym-
pathetic postganglionic and parasympathetic preganglionic
neurons which innervate different regions of the dog heart.
J. Comp. Neurol. 229: 186–198.

43. Buckley, U., K. Yamakawa, T. Takamiya, et al. 2016. Targeted
stellate decentralization: implications for sympathetic con-
trol of ventricular electrophysiology.Heart Rhythm 13: 282–
288.

44. Nguyen, N.L., C.L. Barr, V. Ryu, et al. 2017. Separate and
shared sympathetic outflow to white and brown fat coor-
dinately regulates thermoregulation and beige adipocyte
recruitment.Am. J. Physiol. Regul. Integr. Comp. Physiol. 312:
R132–R145.

45. Glebova, N.O. & D.D. Ginty. 2005. Growth and survival sig-
nals controlling sympathetic nervous system development.
Annu. Rev. Neurosci. 28: 191–222.

46. Nakamura, K., K.Matsumura, T. Hubschle, et al. 2004. Iden-
tification of sympathetic premotor neurons in medullary
raphe regions mediating fever and other thermoregulatory
functions. J. Neurosci. 24: 5370–5380.

47. Jiang, H., X. Ding, Y. Cao, et al. 2017. Dense intra-adipose
sympathetic arborizations are essential for cold-induced
beiging of mouse white adipose tissue. Cell Metab. 26: 686–
692.e3.

48. Powley, T.L. & H.R. Berthoud. 1991. A fluorescent labeling
strategy for staining the enteric nervous system. J. Neurosci.
Methods 36: 9–15.

49. Berthoud, H.R. & T.L. Powley. 1996. Interaction between
parasympathetic and sympathetic nerves in prevertebral
ganglia: morphological evidence for vagal efferent innerva-
tion of ganglion cells in the rat.Microsc. Res. Tech. 35: 80–86.

50. Lee, S. & A. Abd-Elsayed. 2016. Some non-FDA approved
uses for neuromodulation in treating autonomic nervous
system disorders: a discussion of the preliminary support.
Neuromodulation 19: 791–803.

51. Gofeld, M. 2014. New horizons in neuromodulation. Curr.
Pain Headache Rep. 18: 397.

52. Guiraud, D., D. Andreu, S. Bonnet, et al. 2016. Vagus nerve
stimulation: state of the art of stimulation and recording
strategies to address autonomic function neuromodulation.
J. Neural Eng. 13: 041002.

53. Hou, Y., Q. Zhou & S.S. Po. 2016. Neuromodulation for car-
diac arrhythmia. Heart Rhythm 13: 584–592.

13Ann. N.Y. Acad. Sci. 1454 (2019) 3–13 © 2019 The Authors. Annals of the New York Academy of Sciences
published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.


