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Abstract

Translation control is crucial during virus–host interaction. On one hand,

viruses completely rely on the protein synthesis machinery of host cells to

propagate and have evolved various mechanisms to redirect the host's ribo-

somes toward their viral mRNAs. On the other hand, the host rewires its trans-

lation program in an attempt to contain and suppress the virus early on during

infection; the antiviral program includes specific control on protein synthesis

to translate several antiviral mRNAs involved in quenching the infection. As

the infection progresses, host translation is in turn inhibited in order to limit

viral propagation. We have learnt of very diverse strategies that both parties

utilize to gain or retain control over the protein synthesis machinery. Yet novel

strategies continue to be discovered, attesting for the importance of mRNA

translation in virus–host interaction. This review focuses on recently described

translation strategies employed by both hosts and viruses. These discoveries

provide additional pieces in the understanding of the complex virus–host
translation landscape.
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1 | INTRODUCTION

1.1 | Basis of eukaryotic mRNA translation

A typical mammalian mRNA consists of a 7-methylguanosine cap (m7G) at the 50termini, a 50 untranslated region
(50UTR), a coding sequence (CDS) that starts with a start codon and ends with an in-frame stop codon, a 30 untranslated
region (30UTR), and a poly(A) tail (Sonenberg & Hinnebusch, 2009). Viral mRNAs follow the same arrangement princi-
ples but with some particularities (described below and reviewed in more details in Jan, Mohr, & Walsh, 2016). Despite
the distinctions, translation in mammalian cells for both host and virus mRNAs follows the same three fundamental
steps: initiation, elongation, and termination. If translation occurs via the canonical cap-dependent mechanism, initia-
tion begins with the recruitment of the eIF4F complex, which includes the cap-binding protein eIF4E, the scaffold pro-
tein eIF4G, the RNA helicase eIF4A, to the 50end of the mRNA via the eIF4E–m7G cap interaction. The eIF4F complex
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recruits the 43S preinitiation complex, consisting of eIF2-GTP.Met-tRNAi.40S ribosomal subunit, to the 50UTR. If the
mRNA is translated via cap-independent mechanisms, other translation factors can come into play to recruit the ribo-
some to the mRNA, often involving internal ribosome entry sites (IRES) (Mailliot & Martin, 2018). Either following
cap-dependent or -independent initiation, the subsequent steps follow the same principles. The 43S preinitiation com-
plex begins to scan the 50UTR with the help of eIF4A ATP-dependent helicase activity to resolve secondary structure.
Scanning stops when the 43S complex recognizes a start codon via anticodon-base pairing with Met-tRNAi. Although
the cognate AUG is the dominant start codon of choice, approximately 60% of mammalian translation initiation occurs
at noncognate start codons (which include CUG, GUG, or UUG) (Ingolia, Lareau, & Weissman, 2011), potentially using
other initiator tRNAs than Met-tRNAi (Kearse & Wilusz, 2017). The eIFs are then released and the 60S ribosomal sub-
unit is recruited to the 40S ribosomal subunit, forming an elongation competent 80S monosome (Jackson, Hellen, &
Pestova, 2010; Sonenberg & Hinnebusch, 2009). Elongation then begins with a continuous supply of aminoacyl-tRNA
to the A site of the 80S monosome by the eukaryotic elongation factor (eEF) 1A. Peptide bond formation between
amino acids in the P site and the A site is catalyzed, while the translocase eEF2 “rachet” the ribosome by one codon in
the 30 direction. The uncharged tRNA is then moved to the E site while the peptidyl-tRNA transfers to the P site, leav-
ing the A site unoccupied for the next cycle of elongation. When the ribosome reaches a stop codon (UAG, UGA, or
UAA), the eukaryotic release factors eRF1.eRF3.GTP is recruited to the A site instead of a charged tRNA to initiate ter-
mination. GTP hydrolysis catalyzed by eRF3 causes deacetylation of the peptidyl-tRNA bond, releasing the polypeptide
chain from the last tRNA followed by dissociation of the 80S ribosome (Dever & Green, 2012).

1.2 | Translation reprogramming during virus–host interaction

Protein synthesis is a complex cellular process that consumes a large portion of the cell energy expenditure and involves
a sophisticated signaling and effector gene network (Buttgereit & Brand, 1995; Jackson et al., 2010; Sonenberg &
Hinnebusch, 2009). Unlike for replication and transcription where viruses can encode their own genes to carry out
these functions, the synthesis of viral proteins completely relies on the host translation machinery and represents a
major interaction interface that is crucial for virus propagation. Viruses deploy a surprisingly diverse set of strategies to
redirect the translation machinery on viral RNAs and shutting down host translation. Simultaneously, the antiviral
response depends on the same machinery for translating antiviral transcripts while various translation control mecha-
nisms are also engaged by the host to limit viral infection (Bushell & Sarnow, 2002; Hoang, Graber, & Alain, 2018; Jan
et al., 2016; Walsh, Mathews, & Mohr, 2013). In this section, we will attempt to briefly summarize the specific transla-
tion strategies employed by host cells and viruses during infection and provide the readers with a nonexhaustive, repre-
sentative literature list for reference. For comprehensive discussions of established knowledge of translation control in
virus–host interaction, we invite the readers to peruse previous excellent reviews by Jan et al. (2016) or Walsh
et al. (2013).

A number of signaling pathways impact upon translation control during viral infection. For instance, the PI3K-
AKT-mTORC1 pathway regulates cellular metabolism and is one of the main signaling axes that impact mRNA transla-
tion, most notably via its principal downstream effectors S6Ks, 4E-BPs, and LARP1 (Fonseca, Lahr, Damgaard, Alain,
& Berman, 2018; Saxton & Sabatini, 2017). The activation of mTORC1 was reported during the antiviral state induced
by type I interferon (Lekmine et al., 2003). Similarly, the early events of virus entry were shown to activate this pathway
(Kang et al., 2017; Soares et al., 2009; Zhu et al., 2011). mTORC1 in turn was shown to play an important role in trans-
lation of antiviral transcripts, and of crucial antiviral transcription factors (Alain et al., 2010; Cao et al., 2008; Colina
et al., 2008; Nehdi et al., 2014; Zakaria et al., 2018). Another translation arm of the antiviral response is the integrated
stress response (ISR), a stress-induced pathway that causes protein synthesis shutdown via phosphorylation of the
eIF2α by four kinases: heme-regulated inhibitor (HRI), general control non-derepressible 2 (GCN2), protein kinase R
(PKR), or PKR-like endoplasmic reticulum (ER) kinase (PERK). The formation of the ternary complex (TC) requires
eIF2-GTP that is recycled after translation initiation. Phosphorylation of the α subunit of eIF2 (P-eIF2α) inhibits the
recycling step, thus blocking translation initiation by exhausting the cellular pool of active eIF2-GTP. Stimuli from virus
infection are known to activate ISR kinases: structured viral genomic RNA of Sindbis virus activates GCN2 (Berlanga
et al., 2006), while the unfolded protein response during virus infection induces PERK (L. Zhang & Wang, 2012). Impor-
tantly, the kinase PKR is an interferon stimulated gene (ISG) that is upregulated by type I interferon and is a sensor of
double-stranded RNA or 50triphosphate RNA, nucleic acid products that characterize all virus replication (Dauber &
Wolff, 2009; Nallagatla et al., 2007).
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Viruses, in turn, have the capacity to alter the translation environment of the antiviral state. The mTORC1 is a pri-
mary target of virus manipulation, inhibited in an attempt to thwart host translation or activated to benefit viral protein
production. For example, the matrix protein M of VSV was shown to inhibit AKT phosphorylation (Connor &
Lyles, 2002), which in turn dampen host protein synthesis including interferon gene expression (Ahmed et al., 2003). In
contrast, various components of the PI3K-AKT-mTORC1 signaling have been reported to be activated by viral proteins
to benefit virus replication (Chuluunbaatar et al., 2010; Couty, Geras-Raaka, Weksler, & Gershengorn, 2001; Ehrhardt
et al., 2007; Frese et al., 2003; Hirata et al., 2014; Lu et al., 2004; Moorman et al., 2008; Portis & Longnecker, 2004;
Werden et al., 2009). The translation initiation complex, the crucial component of cap-dependent translation initiation,
is also targeted by viral proteins using numerous mechanisms, including protease degradation of translation initiation
factors, inhibition of complex formation, and redirection of these factors toward viral mRNAs (Hoang et al., 2018). The
ISR signaling pathway is no exception and is a frequent subject of virus hijacking to prevent ISR-mediated translation
shutdown. The various strategies range from deploying dsRNA-binding protein to shield viral dsRNA from detection by
PKR (Bierle, Semmens, & Geballe, 2013; Child, Hanson, Brown, Janzen, & Geballe, 2006; Hatada & Fukuda, 1992; Pop-
pers, Mulvey, Perez, Khoo, & Mohr, 2003; Rabouw et al., 2016; Romano et al., 1998; Yue & Shatkin, 1997), expressing
proteins that bind directly to ISR kinases to impair their function (Carroll, Elroy-Stein, Moss, & Jagus, 1993; Gale,
Korth, & Katze, 1998; Pavio, Romano, Graczyk, Feinstone, & Taylor, 2003; Van Opdenbosch, Van den Broeke, De
Regge, Tabares, & Favoreel, 2012) and enhancing eIF2α dephosphorylation to resolve translation shutdown by P-eIF2α
(B. He, Gross, & Roizman, 1997; Kazemi et al., 2004; F. Zhang, Moon, Childs, Goodbourn, & Dixon, 2010). The activa-
tion of certain aspects of the ISR might also be beneficial for virus replication, such as in the case of SARS-CoV (the
strain that caused the 2003 Severe Acute Respiratory Syndrome global outbreak) activating the unfolded protein

FIGURE 1 Emerging mechanisms of translation control during viral infection. (A) Transcription of viral mRNAs and alteration of the

tRNA pools during the antiviral state impact translation. Viral mRNAs often possess dissimilar codon usage than that of host mRNAs,

consequently altering the tRNA pools by their unique consumption of tRNAs. The antiviral state also changes the composition of the tRNA

pools. Ultimately, such altered tRNA pools might affect the elongation rate of a defined subset of mRNAs. (B) tRNA fragments impair

translation during viral infection. tRNA fragments abundance increases in infected cells. These fragments might in turn inhibit translation

via their interaction with translating ribosomes or via the RNA interference machinery. (C) m6A is a layer of translation control in virus–
host interaction. m6A machinery is activated during infection. m6A might enhance or disrupt translation depending on the effector proteins
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response via its 8ab protein. When expressing ectopically, 8ab promotes proteolysis of ATF6 to produce the active form
that translocates to the nucleus and regulates the transcription program of UPR (Sung, Chao, Jeng, Yang, & Lai, 2009).
Additionally, certain viruses can sustain translation in the suboptimal translation condition of the antiviral state via an
IRES, structured RNA sequences that are capable of recruiting ribosome to mRNA with the requirement of only a mini-
mal and incomplete set of eIF, mediating a mode of cap-independent translation initiation (Mailliot & Martin, 2018).

Despite the wealth of knowledge that the field accumulated over the last few decades, the translation landscape of
virus–host interaction still contains various uncharted territories that remain to be discovered. With the development of
novel techniques to examine previously poorly understood cellular phenomena, emerging aspects of this crucial virus–
host interaction have been revealed (Figure 1), many of them prove no less important in defining the fate of the infected
cell. In the following sections, we attempt to review the current state of understanding of the emerging aspects of virus–
host interactions.

2 | EMERGING TRANSLATION STRATEGIES DURING VIRUS–HOST
INTERACTION

2.1 | Codon usage and the tRNA pool of the antiviral state

During translation elongation, the ribosome incorporates individual amino acid to the elongating peptide chain from
the cytoplasmic pool of amino acyl-tRNA. Although it was generally assumed that the elongation rate in an organism is
constant, a ribosome in fact assimilates amino acid at varying rates depending on the codon, the type of amino acid,
and the availability of the corresponding amino acyl-tRNA. Suboptimal codon usage, depletion of certain amino acids,
or certain codons can slow the elongation rate via ribosome stalling (Darnell, Subramaniam, & O'Shea, 2018; Gardin
et al., 2014; Peil et al., 2013) (Figure 2). Consequently, translation efficiency is a selection pressure that shapes codon
usage bias toward the availability of the organism's tRNA pools, such that the codon corresponding to the most abun-
dant tRNAs will be used more frequently (Gingold & Pilpel, 2011) (Figure 1a). Recently, it has been revealed that the
tRNA pool is not just unique for each species, but is also dynamically altered between different cellular states (Darnell
et al., 2018; Gingold et al., 2014). Virus infection poses a unique challenge for the host tRNA pool: as the virus usurps
the host translation machinery, the variety of translating mRNAs degenerates dramatically from tens of thousands of
host mRNA species to only a few hundred of virus mRNAs. This environment theoretically imposes a selection pressure
for viral genes to conform to the host tRNA pool and thus the host codon usage bias, especially between highly
expressed viral genes and the most abundantly expressed tRNAs. Such selection pressure appears to be very strong in
shaping bacteriophage codon usage (Carbone, 2008; Lucks, Nelson, Kudla, & Plotkin, 2008; Sharp, Rogers, &
McConnell, 1985), while affecting that of avian and mammalian viruses to a lesser extent (Bahir, Fromer, Prat, &
Linial, 2009). Intriguingly, it was reported that HIV and HSV genes employ suboptimal codon usage for human cells
(Bradel-Tretheway, Zhen, & Dewhurst, 2003; Ngumbela et al., 2008). Therefore, although it has been clear that viruses

FIGURE 2 Various scenarios of stalled elongation. (a) Normal elongating ribosomes. (b) Ribosome stalling due to depletion of certain

amino acids or tRNAs. (c) Suboptimal codon usage that requires rare tRNAs for decoding may also cause ribosome stalling. (d) Certain

amino acid motifs, such as di-proline (XPPX) depicted here, can also cause ribosome stalling
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have adapted their codon usage to that of their hosts, dissimilarities remain, which raises the following question: are
there specific tRNA pools that are manifested during the host's antiviral state, and conversely do specific viruses actively
shape the tRNA pools to suit their replication while thwarting host translation?

The altered tRNA pools in infected cells can be initiated by the activation of the antiviral state with interferon. The
earliest evidence of antiviral state-specific tRNA pools came from a study in 1976 that reported inhibition of protein
synthesis in cell extracts from interferon-treated cells, which was overcome by adding crude tRNA preparations (Sen
et al., 1976). Additionally, by measuring the incorporation rate of individual amino acid to purified total endogenous
tRNA, the authors revealed that interferon treatment impaired amino acylation of a subset of amino acid to tRNAs,
most significantly that of leucine, lysine, and serine, proposing that tRNAs corresponding to these amino acids are
inactivated. The antiviral state-specific tRNA pool hypothesis was further corroborated by a study that tracked the
codon adaptation of the influenza virus gene PB1 (Smith, Chen, Wilke, & Krug, 2018). Influenza A viruses can
exchange gene segments between subtypes; these subtypes in turn are endemic in different host species. The gene frag-
ment encoding the polymerase PB1 was introduced into the human H3N2 influenza viruses in 1968 and since has been
proposed to be subjected to selection pressure to conform to human tRNA pools, such adaptation was tracked using
PB1 sequence from H3N2 isolates collected over the years. Surprisingly, the author found that as the H3N2 strain con-
tinued to circulate seasonally, PB1 codon usage gradually diverged from that of human as evaluated by codon adapta-
tion index (CAI). More astonishingly, H3N2 expressing PB1 gene with codon usage mimicking that of recent strain
with low CAI to human replicated better in A549 cell treated with interferon, but not in untreated A549 cells, compared
to H3N2 expressing an earlier version of PB1 with a higher CAI to human. To inquire whether interferon treatment
induces a different tRNA pool in human cells, the authors performed high-throughput sequencing of tRNA pools and
found that expression of certain tRNAs decreased in response to interferon, and the decrease in PB1 CAI to human was
inversely correlated with an increase in PB1 codon usage bias adapting to this specific tRNA pool. It is noteworthy to
mention that attempts to optimize PB1 codon usage to the interferon-specific tRNA pool resulted in interferon resis-
tance but a decrease in overall fitness of the new virus, suggesting that other selection pressures are also at play for
codon selection. The mechanisms of how interferon could induce changes in the tRNA pool remain an open question.
Of the two main classes of interferon, type I and type II IFN, type I IFN has a more prominent antiviral property and
activates various transcription programs, primarily via the JAK/STAT signaling pathway (Ivashkiv & Donlin, 2014;
Platanias, 2005). These transcription programs upregulate the expression of hundreds to thousands of antiviral genes,
termed ISGs (Schoggins & Rice, 2011). Some of these ISGs are RNAses (Isg20 (Espert et al., 2003), Slfn11 (Valdez
et al., 2019)) or related to RNAse (Oas1/2/3 (Kristiansen, Gad, Eskildsen-Larsen, Despres, & Hartmann, 2011)), of
which genes belong to the Schlafen family were shown to be able to degrade tRNAs (M. Li et al., 2018; J. Y. Yang
et al., 2018). Thus, it is reasonable to speculate that degrading tRNA via the activation of tRNA-specific RNAses by
interferon is a plausible mechanism that shapes the tRNA pool of interferon-treated cells.

Simultaneously with the presence of interferon, the tRNA pool of infected cells can also be actively altered by the
virus productive infection. Despite the restricted coding capacity owned by their relatively small genomes, some viruses
have been reported to encode tRNA genes and this phenomenon has been reported extensively in bacteriophage and
cyanophage (Albers & Czech, 2016). In the specific case of the chlorella virus CVK2, viral tRNAs have been reported to
be amino-acylated, strengthening the notion that they contribute to protein synthesis in infected host cells (Nishida,
Kawasaki, Fujie, Usami, & Yamada, 1999). In the case of mammalian viruses, tRNA genes were previously reported in
the genome of murine gamma herpes virus 68 (Virgin et al., 1997). Alternatively, virus infection can favor the usage of
specific tRNAs for protein synthesis without affecting total tRNA pools (Pavon-Eternod et al., 2013). Although the exact
mechanism to select tRNA is not known, certain viruses such as vaccinia virus form virus factories, subcellular entities
where viral proteins are translated (David et al., 2011). It is possible that these virus factories can recruit selective
tRNAs to its active translation site, potentially skewing cellular tRNA pools in the process. However, very little is
known about the role of viral tRNA genes or virus-mediated modulation of host tRNA pools, and further investigation
is required to obtain a clearer picture of their importance in virus–host interaction.

Despite emerging evidence presented above, we should be cautious in formulating the hypothesis that optimizing
translation efficiency is the only direction of the virus codon evolution as suboptimal codon bias persist in many viral
genes. Codon usage of a gene can also regulate other gene expression in trans, most likely via competing for aa-tRNAs
from the common pools. For instance, it has been reported that codon optimization of the late gene (adenovirus genes
can be classified as early or late genes based on the temporal dynamic of their expression in the virus life cycle)
encoding the fiber protein of adenovirus impaired expression of the more codon-optimized hexon structural protein
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and ultimately hampered virus replication (Villanueva, Martí-Solano, & Fillat, 2016). Similarly, another study by Chen
et al. proposed that virus codon usage bias might differ from that of host to avoid delay in decoding time due to over-
consumption and depletion of similar tRNAs (F. Chen et al., 2020). Using ribosome profiling data from various studies
to calculate relative codon decoding time of ribosomes (Gardin et al., 2014), the authors found that translation of highly
expressed viral genes delayed the decoding time, and such delay correlated with the rarity of host tRNA supply. The
authors then ectopically expressed 37 synonymous-codon altered versions of a reporter gene ranging from poorly to
highly codon-optimized under a strong expression promoter, together with another reporter gene expressed under a
weak promoter. This aimed to recapitulate the effect of highly expressed viral genes (the highly transcribed reporter) of
various codon adaptation level on host cells general translation (the poorly transcribed reporter). Interestingly, synony-
mous codon adaptation to host cells resulted in elevated expression of the highly transcribed reporter gene at the
expense of the expression of the poorly transcribed reporter gene. Thus, this report supports the model in which high
codon adaptation of a few very highly expressed mRNAs might be detrimental for translation of the rest of the mRNAs,
probably via depletion of the commonly used tRNAs. Together, these reports propose another direction for adaptation
of virus codon usage: the whole genome or certain genes might actively be selected to a suboptimal codon usage to
avoid depletion of abundantly used tRNAs and subsequently be exposed to translation constraints. Interestingly, as
viruses or host actively shutoff protein synthesis, it would be interesting to investigate if suboptimal codon usage can be
a viral strategy toward the goal of overloading host translation machinery with suboptimally adapted mRNAs to quickly
deplete rare tRNAs. Overall, the data so far paint a complex picture wherein viral genes are under selection pressure to
optimize their codons toward a distinct antiviral-state tRNA pool, yet at least a subset of viral genes might preserve a
certain degree of dissimilarity in codon usage to avoid directly competing for tRNAs with other viral or host genes. Fur-
ther understanding of this aspect of virus–host interaction might benefit transgene design for viral vector or engineering
a better cancer-specific oncolytic virus that suits a cancer-optimized codon usage.

2.2 | Small tRNA fragments: Stress response element exploited by viruses

Small noncoding RNAs are RNA fragments that are typically <50 nt and inferred to provide a layer of posttranscrip-
tional control. Recently, a group of small noncoding RNA called small tRNA fragments was described, which is the
products of cleaved tRNAs in stress condition in various organisms (H. Fu et al., 2009; S. R. Lee & Collins, 2005; Y. S.
Lee, Shibata, Malhotra, & Dutta, 2009; Thompson, Lu, Green, & Parker, 2008; Yamasaki, Ivanov, Hu, & Ander-
son, 2009). Although the nomenclature has yet to be unified, these small tRNA fragments can be classified loosely into
two classes depending on the cleavage position on the tRNA. The first class is called tRNA halves (tiRNA), which are
29–50 nt in length, the products of cleavage at the anticodon loop of the tRNA resulting in the 50 tRNA fragment
(50tiRNA) and the 30 tRNA fragment (30tiRNA) (Thompson & Parker, 2009). In mammalian cells, the endonuclease
angiogenin (ANG) was found to be responsible for tRNA cleaving to produce tiRNA under various stress condition (H.
Fu et al., 2009; Yamasaki et al., 2009). The second class of small tRNA fragments are tRNA-derived fragments (tRFs),
shorter fragments with a length ranging from 14–30 nt. Unbiased short RNA sequencing has discovered this class of
RNA fragments that mapped to tRNA loci (Y. S. Lee et al., 2009). Subsequent studies corroborate the existence of this
novel small RNA class as a functional cellular biomolecule as evidenced by their importance in cell proliferation (Cole
et al., 2009; Couvillion, Sachidanandam, & Collins, 2010; Z. Li et al., 2012). tRFs can be further divided into tRF-5, tRF-
3, and tRF-1. tRF-5 contains the region from 50end of tRNA to the D-loop or the region between the D-loop and the
anticodon loop, with three specific size ranges of 14–16 nt, 22–24 nt, and 28–30 nt (Kumar, Anaya, Mudunuri, &
Dutta, 2014; Y. S. Lee et al., 2009). tRF-3 fragment contains the acceptor arms to the TψC loop and are between 18 and
22 nt in length (Y. S. Lee et al., 2009). tRF1 fragments are originated from the 30end of the primary tRNA transcript,
with their 50end situated after the 30end of the mature tRNA (Y. S. Lee et al., 2009).

The fact that small tRNA fragments are induced during stress suggests that this class of small RNAs might be
involved in some aspects of the cellular ISR, which include alteration of protein synthesis. Indeed, it has been found
that the partially cleaved product of tRNA with RNAse A can inhibit protein synthesis in yeast and plant (S. Zhang,
Sun, & Kragler, 2009). Similarly, Yamasaki et al. showed that transfection of tiRNAs derived from angiogenin cleavage
inhibits translation in mammalian cells (Yamasaki et al., 2009). These observations allow speculations for a role of
small tRNA fragments in translation inhibition. Yet only a small fraction of the tRNA pools are cleaved, thus their
levels do not seem to be sufficiently altered to affect the rate of translation elongation (Yamasaki et al., 2009). A
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subsequent study that analyzed the effect of both 50 and 30tiRNA on translation using luciferase translation reporter
assay revealed that only a subset of tiRNA was capable of inhibiting translation of capped and uncapped mRNA,
including 50tiRNA from Ala-tRNA(GGC), Gly-tRNA(GCC), Gly-tRNA(CCC), and Cys-tRNA(GCA) as well as 30tiRNA
from Pro-tRNA (Ivanov, Emara, Villen, Gygi, & Anderson, 2011). Among them, 50tiRNA-Ala was the most potent
translation inhibitor and was further showed to displace eIF4G and eIF4A from capped and uncapped Renilla lucif-
erase mRNA when added to an in vitro transcription assay in rabbit reticulocyte lysate. This study attributed the
translation repression effect of tiRNA to the terminal oligoguanine (TOG) motif found at the 50end of tRNAAla and
tRNACys; mutating this motif ablates the translation inhibition capacity of 50tiRNA-Ala and 50tiRNA-Cys, while
introducing this motif into 50tiRNA-Met renders this tiRNA the capacity to inhibit translation. The shorter tRFs were
also shown to be capable of inhibiting translation, although in a mechanistically distinct manner than that of tiRNA.
Various tRFs have been shown to associate with Argonaut proteins (Haussecker et al., 2010; Maute et al., 2013;
Yeung et al., 2009) and were found to repress the expression of transcripts in a sequence-specific manner (Maute
et al., 2013). Thus, tRFs might silence gene expression using the RNAi machinery. Intriguingly, data from virus
infection discussed in the following paragraph also argue that the same machinery can be employed by tiRNA to
inhibit translation. A study of ribosome-associated small RNA (RNome) in the archaeon Haloferax volcanii also
observed that tRNA fragments can directly bind to ribosomes, which infer another potential mechanism where tRFs
directly interfere with ribosome assembly or translation initiation/elongation (Gebetsberger, Zywicki, Künzi, &
Polacek, 2012). Whether such an interaction with ribosomes occurs in mammalian cells, as well as the exact outcome
of such an interaction on ribosome function and protein synthesis, are exciting questions open for future
investigations.

As small tRNA fragments are induced during various stress conditions, their roles in the landscape of virus–host
interaction are becoming clearer (Figure 1b). A number of studies have uncovered the involvement of tRNA fragments
in virus infection and host response. Wang et al. reported that respiratory syncytial virus (RSV) infection significantly
upregulated the level of 50tiRNA in infected cells (Q. Wang et al., 2013). One of the highly induced 50tiRNAs, 50tiRNA-
GluCTC, can silence luciferase reporter expression that contains a reverse complementary sequence of this tiRNA in
the 30UTR. Importantly, treating the cells with an anti-50tiRNA-GluCTC impaired RSV replication, suggesting that the
induction of this tRNA fragment is beneficial for RSV infection. In a follow-up study from the same group, Deng et al.
used biotinylated synthetic 50tiRNA-GluCTC as a bait to search for enriched mRNAs that interact with this tRNA frag-
ment. Combining with the list of genes with decreased abundance upon RSV infection, the author came up with poten-
tial targets of 50tiRNA-GluCTC (Deng et al., 2015). One of the candidate genes, APOER2, contains two short regions of
8 and 9 nt that are reverse-complement with 50tiRNA-GluCTC. Importantly, while RSV infection was found to decrease
APOER2 mRNAs abundance, treating infected cells with anti-50tiRNA-GluCTC rescued this inhibition. Together, these
two studies provide evidence that tRNA fragments are an integrated component of the virus–host interaction. While
the tRNA fragments investigated in these studies seem to be proviral, as other cellular biomolecules such as miRNA
and protein were found to be capable of both proviral and antiviral functions, it is likely that other tRNA fragments
could also have antiviral function. Accordingly, other 50tiRNA fragments that have been shown elsewhere to inhibit
cap-dependent translation via displacing of components of the eIF4F complex (Ivanov et al., 2011) were also found to
be upregulated in RSV-infected cells (Q. Wang et al., 2013). Thus, the induction of tRNA fragments by RSV or other
viruses could also contribute to a global host-shutoff of protein synthesis, and the implication of this for virus infection
is certainly an important subject for further investigations.

As mounting evidence suggests that tRNA fragments can accumulate during viral infection, the mechanisms behind
such induction remain currently unaddressed. Although ANG was shown to be the main nuclease that generates tRNA
fragments (H. Fu et al., 2009; Yamasaki et al., 2009), ANG expression decreases during interferon treatment, a condition
directly linked to virus infection (McNab et al., 2013; Mehraj et al., 2013; Rock et al., 2005), suggesting that other endo-
nucleases might contribute to tRNA fragment genesis during virus infection. Aside from ANG, there are a subset of
ISGs that function as RNAses and might produce tRNA fragments from tRNA cleavages. For example, the gene Slfn11
discussed above is an ISG (Valdez et al., 2019) that can also cleave type II tRNA (M. Li et al., 2018). The schlafen family
was recently described to be a family of endonuclease that preferably targets tRNA, degrading from the 30end and pro-
ducing intact 50 fragments. Thus, it is reasonable to speculate that the schlafen family, together with other undiscovered
tRNA endonucleases, may contribute to the generation of tRNA fragments during specific virus infection (J. Y. Yang
et al., 2018). This might also be another mechanism of schlafen-mediated translation inhibition on top of the reported
mechanism of tRNA depletion.
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2.3 | m6A methylation: An important epi-transcriptomic modification

Methylation of RNA was first described in 1974 to be a common posttranscriptional modification for ribonucleotide
(Desrosiers, Friderici, & Rottman, 1974; Wei, Gershowitz, & Moss, 1975). Methylation was reported to occur on 0.2% of
all total nucleotide in poly(A) RNAs, of which methylation of adenosine (m6A) accounts for 50% of all methylation
(Wei et al., 1975). Despite its relatively high occurrence, m6A only emerged recently as an important layer of genomic
regulation in mammalian cells (C. He, 2010; Nilsen, 2014), corresponding with the development of techniques to survey
genome-wide m6A methylation (Dominissini et al., 2012; Meyer et al., 2012). Since then, this modification has been
reported to be involved in various physiological aspects including stress responses (Zhou et al., 2015), stem cell repro-
gramming (T. Chen et al., 2015), circadian rhythm (Fustin et al., 2013), oocyte maturation (Ivanova et al., 2017), and
cancer (Pan, Ma, Liu, Li, & Shu, 2018). Mechanistically, m6A was shown to affect splicing (Dominissini et al., 2012),
cap-dependent translation initiation (Meyer et al., 2015), miRNA processing (Alarcón, Lee, Goodarzi, Halberg, &
Tavazoie, 2015), and mRNA stability (Xiao Wang et al., 2014).

The mechanisms that regulate m6A modification and function involve “writers” (m6A methyltransferases),
“erasers” (m6A demethyltransferases), and “readers” (effectors that bind to m6A). Methylation of adenine on mRNA is
not random, and it was reported that the motif RRACH (R = purine, H = A, C, or U) is the m6A consensus sequence,
and methylation preferentially occurs on the CDS and 30UTR, particularly concentrating near the stop codon region
(Dominissini et al., 2012; Meyer et al., 2012). The methyltransferase complex METTL3-METTL14, together with the
accessory proteins WTAP, KIAA1429, RBM15, and ZC3H13 form a protein complex that adds a methyl group to adeno-
sine residues of nuclear pre-mRNAs (Guo, Tang, Li, Perrimon, & Yan, 2018; Knuckles et al., 2018; Kobayashi et al., 2018;
Patil et al., 2016; Schwartz et al., 2014; Wen et al., 2018; Yao et al., 2018). Demethylation of m6A was reported to be car-
ried out by FTO or ALKHB5 (G. Jia et al., 2011; G. Zheng et al., 2013). The function of m6A modification on target
mRNAs depends on various “readers,” effector proteins that are recruited by m6A. The YT521-B homology (YTH) fam-
ily, its members include YTHDF1, YTHDF2, YTHDF3, YTHDC1, and YTHDC2, is the most well-studied group of
reader proteins that regulates the effect of m6A (Dominissini et al., 2012; Shi et al., 2017; Xiao Wang et al., 2014, 2015).
Binding of some reader proteins enhances translation efficiency, such as the case for YTHDF1 and YTHDF3 (Shi
et al., 2017; Xiao Wang et al., 2015). More specifically, YTHDF1 was reported to enhance ribosome loading on its target
mRNAs via interaction with the translation initiation factors eIF3A and eIF3B (Xiao Wang et al., 2015). In contrast,
binding of YTHDF2 to target mRNAs promotes degradation via relocalization to mRNA decay sites such as P-bodies
(Xiao Wang et al., 2014). In another case, nuclear export of target mRNAs was enhanced by YTHDC1 via facilitation of
interaction with the splicing factor SRSF3 and nuclear export adaptor NX1 (Roundtree et al., 2017). It is likely that
other readers will be discovered in the near future that would have a diverse mode of action on mRNA translation and
stability.

m6A is an important process in virus–host interaction (Figure 1c). m6A modification on viral mRNAs was first
reported over three decades ago for RNA viruses (Kane & Beemon, 1985; Krug, Morgan, & Shatkin, 1976; Stoltzfus &
Dimock, 1976; Thomason, Brian, Velicer, & Rottman, 1976) and more recently for DNA viruses (Hesser, Karijolich,
Dominissini, He, & Glaunsinger, 2018; Tsai, Courtney, & Cullen, 2018; Ye, Chen, & Nilsen, 2017). Methylation of aden-
osine on viral mRNAs was shown to have complex effects on virus replication from positive to negative, and was
recently reviewed elsewhere (Dang et al., 2019). Regarding the effect of m6A on translation of viral mRNAs, it was
reported that mutation of one methylated adenosine residue on HIV-1 RNA (A7883) results in impaired nuclear export,
suggesting one mechanism by which m6A might affect viral mRNA translation (Lichinchi et al., 2016). However, con-
sidering that m6A has a wide range of effect on mRNA translation, it is highly possible that there are multiple mecha-
nisms influencing viral protein synthesis that remain to be discovered. In addition to m6A modification to viral genes,
translation control during host antiviral response can also be modulated via m6A. Indeed, increased N6 methylation
might be a response to virus infection, as evidenced in HCMV and HIV-1 infection (Lichinchi et al., 2016; Winkler
et al., 2019). Interestingly, this upregulation has so far been shown to be negative for the antiviral response, as inter-
feron-β mRNA was found to be m6A-methylated and this modification results in destabilization of this mRNA in an
METTL3-YTHDF2-dependent manner (Winkler et al., 2019). Similarly, the RNA helicase DDX46 was reported to pro-
mote demethylation of MAVS, TRAF3, and TRAF6 mRNAs, which encode important signaling proteins for the ant-
iviral response, and this demethylation inhibits their nuclear exports and impairs translation, ultimately decreasing
interferon production (Q. Zheng, Hou, Zhou, Li, & Cao, 2017). In another study, VSV infection was shown to stimulate
initially, then to decrease m6A modification in mouse peritoneal macrophage (Y. Liu et al., 2019). Demethylations are
important for VSV replication, which is partially attributed to the activity of ALKBH5. This demethyltransferase

8 of 19 HOANG ET AL.



enzyme was in turn shown to remove m6A modification on α-ketoglutarate dehydrogenase (OGDH) mRNAs, an impor-
tant enzyme of the itaconate metabolic pathway that is required for VSV replication, resulted in increased stability and
expression of OGDH mRNAs. However, the current knowledge of m6A in antiviral response does not exclude the possi-
bility that this modification may also serve as a positive contributor for translation of antiviral genes, possibly
depending on the specific interaction of individual mRNAs with different readers, an area that should be subject of fur-
ther investigation.

2.4 | Other potential mechanisms of translation control during virus–host interaction

Aside from the above discussed mechanisms, separated reports indicate that there are other mechanisms at play in the
competition for the translation machinery by both the host and the virus during infection. Although additional studies
are required before robust models can be formulated, we feel that it is important to mention these intriguing observa-
tions in order to fully capture our current understanding of the translation landscape in virus–host interaction.

2.4.1 | Spatial rearrangement of translation activity

mRNA translation can be regulated by spatial distribution of mRNAs (Martin & Ephrussi, 2009). Intriguingly, there is
evidence of spatial redistribution of translation activity in infected cells, possibly due to active relocalization of transla-
tion factors including those involved in translation initiation and elongation. One line of evidence surrounds the forma-
tion of virus factories, active replication sites for viruses that are enriched in host membranes, ribosomes, and proteins,
as well as viral nucleic acids and proteins (Netherton & Wileman, 2011). Using the ribopuromycylation method to visu-
alize subcellular translation activity, it has been reported that the virus factory of vaccinia virus and reovirus possess
elevated translation activity compared to the surrounding cytoplasm (David et al., 2011; Desmet, Anguish, & Par-
ker, 2014). This advantage of increased translation was attributed to selective enrichment of tRNA-amino acyl synthe-
tases in the case of vaccinia virus (David et al., 2011) or translation initiation, elongation, termination factor, and
ribosomal proteins in the case of reovirus (Desmet et al., 2014).

There are also subcellular locales that house nontranslating mRNAs, namely stress granules (SGs) for stalled
mRNAs and processing bodies (PBs) for decaying mRNAs (Anderson & Kedersha, 2006). Of these granules, SG has
been reported to be induced during virus infection, suggesting its involvement in virus–host interaction (Ruggieri
et al., 2012; White, Cardenas, Marissen, & Lloyd, 2007). The formation of SG begins with stalled translation initiation
on mRNA at the 50UTR that causes ribosome run-off and exposes the downstream region of the mRNA to various SG-
associated RNA-binding proteins TIA1, TIAR, and G3BP1 that subsequently aggregate to form RNA granules (Gilks
et al., 2004; Matsuki et al., 2013; Tourrière et al., 2003). Such a mechanism of aggregation based on nucleation on naked
single-stranded RNAs, together with the seclusion of various translation initiation factors in the stalled translation initi-
ation complex, proposes that SG formation might inhibit translation and replication of virus when the cytoplasm is
overloaded with abnormal amounts of viral RNA. Intriguingly, viruses seem to evolve mechanisms to suppress SG for-
mation. Okonski and Samuel have shown that SG formation was induced by measles virus (MeV) infection in a PKR-
dependent manner (Okonski & Samuel, 2013). However, MeV with a C protein knockout was a more efficient inducer
of SG formation than wild-type MeV. It was determined that the intact C protein would lead to a decrease in PKR
expression, which would subsequently allow for SG formation (Jiang, Qin, & Chen, 2016). Similar function has been
attributed to the influenza NS1 protein and vaccinia virus E3L protein (Khaperskyy, Hatchette, & McCormick, 2012;
Simpson-Holley et al., 2011). The exact mechanism as well as the implication of SG suppression by viral proteins
remains to be elucidated; nevertheless, this regulation might indicate a method to ensure that the host translation
remains functional for the virus' replication.

2.4.2 | Modification or exploitation of host translation machinery to favor virus
translation

Mammalian mRNAs can contain cis-elements that modulate their translation activity in specific conditions. One exam-
ple is the 50 terminal oligo pyrimidine (50TOP) motif that is situated at the 50end of mRNAs of genes encoding protein
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components of the translation machinery (Meyuhas & Kahan, 2015). TOP mRNAs are suppressed during stress condi-
tions, largely regulated via the mTORC1 signaling pathway through its effector LARP1 (Fonseca et al., 2015; Thoreen
et al., 2012). Intriguingly, mRNAs of certain viruses also contain cis-elements that enhance their translations via inter-
action with host RNA-binding proteins, in some case in an infected cells-specific manner. One example of a viral
mRNA cis-element that enhances translation was reported in MeV on its nucleocapsid mRNA. It was observed that dur-
ing a pathogenic MeV infection, the host cell undergoes global translation shutdown attributed to eIF2α phosphoryla-
tion (Inoue, Tsukiyama-Kohara, Yoneda, Sato, & Kai, 2009; Sato et al., 2007). Intriguingly, the mRNA of the
nucleocapsid coding gene of MeV possesses a short stem-loop structure at its N-50 terminus residues 1–15 (Inoue
et al., 2011) that recruit the La/SSB (La) autoantigen protein, a well-described human translation factor (Intine,
Tenenbaum, Sakulich, Keene, & Maraia, 2003). This in turn promotes the selective translation of N mRNA during a
translational shutdown in MeV-infected cells, which is crucial for MeV production since it has been previously shown
that the accumulation of N protein within an infected cell is required for efficient viral genome replication (Lamb &
Parks, 2013). It is noteworthy to mention that LARP1, the RNA-binding protein that represses TOP mRNA translation,
also belongs to the La protein family and similarly interacts with its target mRNAs via the 50 terminal region of the
50UTR, albeit conferring an opposite effect on translation (Fonseca et al., 2018). Considering that LARP1 was found to
be a positive modulator of extracellular hepatitis C virus infection and dengue virus replication (Plissonnier et al., 2019;
Suzuki et al., 2016), the role of the La protein family in virus translation might be an interesting subject for further
investigation.

Another curious example of viral cis-element is the poly(A) leader sequences that are found on mRNAs of vaccinia
virus late genes. Vaccinia genes are often described as early or late depending on when they are transcribed during the
viral life cycle. Early genes are turned on immediately following entry and include virulence factors that take over the
host cell (Assarsson et al., 2008), transcription factors for late genes (Rosales, Sutter, & Moss, 1994), decapping enzymes
(S.-W. Liu, Wyatt, Orandle, Minai, & Moss, 2014), and genes with unknown function. Later in the viral life cycle,
expression of late viral gene products is accompanied by their nontemplated 50 polyadenylation (Z. Yang, Bruno, Mar-
tens, Porcella, & Moss, 2011). First reported three decades ago, these nontemplated poly(A) sequences are added to the
50end of mRNAs of late vaccinia virus genes, likely due to slipping of vaccinia polymerase at a poly-T motif in the pro-
moter regions (Ahn & Moss, 1989; Ink & Pickup, 1990; Schwer, Visca, Vos, & Stunnenberg, 1987). These poly(A)
leaders promote translation in vaccinia-infected cells in a noncanonical cap-dependent manner that require most of the
translation initiation components, but without the essential eIF3 and eIF4F (Dhungel, Cao, & Yang, 2017; Shirokikh &
Spirin, 2008). The virus-specific enhancement is attributed to the activity of vaccinia virus kinase B1 that phosphory-
lates the host small ribosomal protein RACK1, which enhances ribosome recruitment to poly(A) leader mRNAs (Jha
et al., 2017).

In addition to modifying translation of viral mRNAs, the untranslated regions might also contribute to regulation of
host mRNA expression in the antiviral state. It is well known that the 50 and 30 untranslated regions of mRNAs are rich
in cis-elements that regulate their translation (Hinnebusch, Ivanov, & Sonenberg, 2016; Mayr, 2017). Recent studies
reported that these untranslated regions are dynamically regulated in various contexts via alternative transcription start
site (for 50UTR) or alternative polyadenylation and termination (for 30UTR) that consequently modulate gene expres-
sion via altered translation efficiency (Cheng et al., 2018; Floor & Doudna, 2016; Mayr & Bartel, 2009; Xi Wang, Hou,
Quedenau, & Chen, 2016). Curiously, VSV infection has also been reported to cause widespread shortening of host
mRNA 30UTR via alternative polyadenylation (X. Jia et al., 2017). The shortening events occurred more frequently in
genes functioning in antiviral and interferon signaling suggest that such 30UTR shortening is an integrated antiviral
response, potentially to enhance the translation efficiency of the antiviral mRNAs via removal of miRNA-binding site
(Y. Fu et al., 2018; Mayr & Bartel, 2009). Our group has also reported that virus infection causes an alternative 50UTR
event that enhances the translation of the ciliopathy gene INPP5E, the expression of which inhibits HSV and VSV infec-
tion (Hoang et al., 2019). The canonical 50UTR of INPP5E mRNA contains multiple uORFs, which strongly inhibits
translation of its CDS. Virus infection induces the expression of an alternative, shorter 50UTR that lacks an intron con-
taining three of the repressive uORFs, thus de-repress the translation of INPP5E in infected conditions. Curiously, the
SARS-CoV-2 receptor ACE2 is also an ISG (Ziegler et al., 2020) and gene information from NCBI indicates that ACE2 is
translated from two transcript variants NM_001371415.1 and NM_021804.3; both possess the same CDS that encode
the same protein but the latter harbors a longer 50UTR with an intron. Thus, it will be intriguing to investigate if the
antiviral state alters the transcript ratio of ACE2 or the splicing of the long 50UTR. Altogether, these data suggest that
the global transcript variants are regulated by the antiviral state, which then affects the translational output of antiviral
genes.
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3 | CONCLUSION AND PERSPECTIVE

The field of translation control has accumulated extensive insight into the mechanisms of host cell- and virus-mediated
translation regulation during infection and the antiviral state, as well as the outcomes of these regulations on the ant-
iviral response and virus propagation. Our understanding so far emphasizes on the translation initiation step with vari-
ous strategies outlined in Section 1 of this review, corroborating the importance of initiation in translation control in
mammalian cells. However, emerging evidence suggests that there is much to learn about this interface of virus–host
interaction. With the extension of our collective capacity to probe into more aspects of translational control such as
tRNA pools, posttranscriptional modification, and translation rate, novel layers of regulation are slowly revealed, pro-
viding a more complex picture of translational regulation where almost every component of the host protein synthesis
machinery can be altered. The advance of the tRNA fragments field adds one previously poorly understood noncoding
RNA species, besides miRNA, as a player in translation control, including during virus–host interaction. Much remains
to be explored regarding the biogenesis, mechanism of action, and outcome of tRNA fragments in the cells; yet consid-
ering the abundance of these tRNA products, such endeavors guarantee interesting discoveries. Recent studies regard-
ing the tRNA pools also suggest a divergence from the constant tRNA pools model and suggest that modulation of
tRNA abundance might play a role in host defense, while some antiviral-specific tRNA pools might play a role in shap-
ing virus codon usage. Additionally, as tRNA fragments are generated from cleaved tRNAs, it is likely that the product
of degradation of certain tRNAs also regulate translation, delivering a one-two punch to the cell protein synthesis. Last
but not least, the revealed effect of posttranscriptional mRNA modification on mRNA translation as well as its wide-
spread occurrence on viral RNAs, of which m6A is the representative phenomenon, warrants further investigation.

As we advance our knowledge on this complex virus–host translation landscape, we are expanding our fundamental
understanding of how one of the most ancient self-replicating organic systems can coexist successfully in a parasitic
relationship with the most sophisticated organisms, including us humans. No less important than the fundamental
understanding of this interaction, such knowledge will benefit a substantial number of medical applications that are
virus-based, ranging from vaccine development, viral vectors to anticancer oncolytic viruses. For instance, in vaccine
development, the method of recombinant viral vector vaccine relies on the expression of an antigen from a safe viral
vector backbone, and is used to develop successful vaccines or other vaccines currently in clinical trials against various
highly pathogenic viruses including SARS-CoV-2. As discussed in Section 2.1 of this review, the synonymous codon
usage of the foreign antigen might need to be harmonized with the viral vector or a specific host tRNA pool to maxi-
mize the yield/efficacy depending on the specific application. Another example can be made in the engineering of anti-
cancer oncolytic viruses where human transgenes are frequently incorporated into the virus genome to enhance
immunotherapeutic efficacy (Seymour & Fisher, 2016). The expression of therapeutic transgene as well as the overall
fitness of the engineered oncolytic viruses will be enhanced if various translation regulation aspects, including but not
limited to proper codon optimization and incorporation of virus-specific untranslated regions, are considered during
the optimization process. Clearly these examples are just a minuscule representation of the vast number of potential
improvements that translation control can contribute toward, and this will only continue to increase with the expan-
sion of knowledge in this field.
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