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more than 4300 peptide cleavage sites, spanning both the prime
and non-prime sides of the scissile peptide bond allowing detailed
subsite cooperativity analysis. The proteomic cleavage data were
expanded by kinetic analysis using a set of 6 quenched-fluorescent
peptide substrates designed using these results. These datasets
represent one of the largest specificity profiling efforts with sub-
sequent structural follow up for any protease family and put the
spotlight on the specificity similarities and differences of the MMP
family. A detailed analysis of this data may be found in Eckhard
et al. (2015) [1]. The raw mass spectrometry data and the corre-
sponding metadata have been deposited in PRIDE/Proteo-
meXchange with the accession number PXD002265.

& 2016 Published by Elsevier Inc. This is an open access article
under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Biology

ore specific sub-
ject area
Proteolytic enzymes, metalloproteinases, substrate specificity profiling,
inhibitor design, drug discovery, matrix biology, extra cellular matrix (ECM).
ype of data
 Mass spectrometry raw-files; search engine output files; metadata; quen-
ched fluorescent peptide cleavage data; specificity profiling analysis (.xlsx).
ow data was
acquired
Liquid chromatography tandem mass spectrometry (LC-MS/MS): either
QSTAR XL or QSTAR Pulsar I (Applied Biosystems) mass spectrometer cou-
pled on-line to LC Packings capillary LC system (Dionex).
ata format
 RAW files: .wiff and .mzXML-files; .tandem and .pepxml post-database
search output files from X! Tandem [2].
xperimental
factors
(A) Human MMPs 1, 2, 3, 8, 9 and 13 were expressed and purified from CHO
or Timp2� /� MEF-conditioned medium [3–7]. Soluble MMP14 (A21-R513)
was purified from Pichia pastoris [3]. MMP7 was purchased from Enzo Life
Sciences and MMP12 was a kind gift from Novartis. ProMMP3 was activated
using chymotrypsin; all other proMMPs were activated using APMA. (B)
Proteome-derived peptide libraries were prepared from K562 cells in the
presence of protease inhibitors [8,9]. Proteins were denatured and cysteine
side-chains alkylated. After reaction clean-up, proteomes were digested with
trypsin or GluC giving orthogonal peptide libraries. Primary amines were
dimethylated, peptide libraries purified, and stored as 200 mg aliquots at
�80 °C.
xperimental
features
PICS cleavage assays [8,9] were performed by incubating peptide libraries
with MMP. Cleaved peptides with neo-N-termini were biotinylated and
affinity purified. Eluates were desalted and analyzed by LC–MS/MS. Spectra
were matched to peptides using X! Tandem [2] and statistically evaluated
with PeptideProphet [10,11]. Identified peptides represent prime-side clea-
vage products and complete cleavage sites were reconstructed using Web-
PICS [12].
ata source
location
Overall Laboratory, Centre for Blood Research, Department of Oral Biological
and Medical Sciences, Faculty of Dentistry, University of British Columbia,
Vancouver, BC, Canada. 49 °15044.5″N 123 °14041.8″W.
ata accessibility
 The mass spectrometry raw data have been deposited in PRIDE/Proteo-
meXchange with the accession number PXD002265.
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Value of the data

� Comprehensive specificity profiling data of nine matrix metalloproteinases using PICS proteomics.
� Largest compendium of matrix metalloproteinase P6–P60 cleavage sites, reporting more than 4300

cleaved peptides.
� Identified cleavage sites allow in-depth cooperativity analysis of specificity subsites.
� Quenched fluorescent peptide cleavage data corroborating the specificity profiles.
� These data can guide small molecule drug development and help in discrimination between direct

and indirect MMP targets.
1. Data

Matrix metalloproteinases (MMPs) regulate the structural matrix environment and extracellular
signaling by precise proteolytic cleavage. Unraveling complex in vivo proteolytic networks is chal-
lenging. Thus comprehensive specificity profiles of all proteases involved are needed to guide
interpretation.

The data in the ProteomeXchange archive (PXD002265) and accompanying data of the present
article provide a comprehensive resource for the individual assessment of the active site specificity of
nine representative members of the human matrix metalloproteinase (MMP) family. The in-depth
specificity comparison based on these proteomic data corroborated with kinetic analysis using a set of
6 quenched fluorescent peptides and in silico peptide docking was presented recently [1].

MMPs 1, 2, 3, 7, 8, 9, 12, 13 and 14 were all assayed by the high-throughput Proteomic Identifi-
cation of protease Cleavage Sites (PICS; or PICS proteomics) method [8,9] and using two orthogonal
human whole-proteome peptide libraries (generated with trypsin or GluC). These data were analyzed
using X! Tandem [2] for peptide-spectrum matching, and PeptideProphet [11] for statistical evalua-
tion. However, other search engines such as Mascot [13], MS-GFþ [14], Comet [15], or MS Amanda
[16] can be used to extend the number of matched spectra by combining the results using e.g.
iProphet [17] within the Trans Proteomic Pipeline [10] or PeptideShaker [18]. Here we provide
additional data to enable other researchers to (i) reinvestigate our analysis to identify additional
subsite cooperativity effects and so far unexplored specificity preferences, and (ii) reanalyze our raw-
data with entirely new concepts or ideas in mind, such as specificity-oriented protease evolution
[19,20], functional phylogeny [21], or substrate-driven mapping of the degradome [22].

A representative PICS workflow is depicted in Fig. 1, and a graphical representation of the various
MMP domain architectures is shown in Supplementary Fig S1. Specificity profiling results were
summarized as heat maps in Figs. 2 and 3 (trypsin generated libraries) and Supplementary Figs 2 and
3 (GluC-generated libraries). Supplementary Table S1 provides a general resource for the MMPs
analyzed, giving their domain boundaries and links to the major databases in protein and protease
research: UniProt [23], Pfam [24], MEROPS [25], and TopFIND [26–28]. Supplementary Table S2
depicts key residues and all secondary structure elements characterizing the different MMP catalytic
domains, and shows a structural overlay of all analyzed MMPs. Supplementary Tables 3 and 4 contain
the individual MMP specificity profiling results obtained from trypsin- and Glu-generated peptide
libraries, respectively. Identified thioacylated prime-side cleavage products (column A), the WebPICS
[12] results (columns C–I) including HeatMaps (www.gnuplot.info) and iceLogos [29], and the indi-
vidual subsite analysis (columns K–W) together with the amino acid distribution in the human
proteome (UniProt release 2013_10) used for calculating normalized abundances (columns Y–AA) are
shown. Additionally, a high resolution PICS workflow is shown on both index pages, and all original
WebPICS results are provided in the supplement as a combined zip-file. Supplementary Table S5
provides the data matrices underlying our subsite cooperativity analysis, in which we fixed certain
subsites (e.g. P3-Pro or P10-Leu) and analyzed the changes of the individual amino acid occurrences in
the other subsites (P6–P60). Supplementary Table S6 provides the raw data of our quenched fluor-
escent cleavage assays, including a graphical representation of two of the peptides (PLG↓L and PAN↓L)
and a high resolution table summarizing the results normalized to the standard MMP substrate PLG↓L
(originally referred to as QF-24) [30]. Detailed database search settings for PICS data analysis are given

http://www.gnuplot.info
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Fig. 1. Proteomic Identification of protease Cleavage Sites (PICS) workflow. PICS libraries are generated from cellular pro-
teomes, e.g. human cell cultures, and thus represent biological sequence diversity. Specific endoproteases such as trypsin, GluC,
or chymotrypsin are then used to digest proteomes into peptides amenable for mass spectrometry. Primary amines and thiols
are chemically protected and the peptide library is purified. Next, the proteome-derived peptide library is incubated with the
endoprotease of interest (e.g. MMP1). Prime side cleavage products (i.e. peptide fragments C-terminal of the cleavage site
depicted between P1 and P10) possess free and thus reactive N-termini that are subsequently tagged with cleavable biotin
allowing specific isolation with immobilized streptavidin. Following elution, prime-side cleavage products are identified by LC–
MS/MS, and the corresponding non-prime sequences are reconstructed bioinformatically, e.g. by using the free webservice
WebPICS (http://clipserve.clip.ubc.ca/pics/) [12].
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Fig. 2. Sequence specificity profiles of MMPs 1, 2, 3, 7, 8, 9, 12, 13, and 14 using trypsin-generated human peptide libraries.
Identified cleavage sites are summarized as heat maps showing relative amino acid occurrence. P6–P60 subsite positions are
shown on the x axes with the identified cleavage site between P1 and P10 . Plotted amino acids are indicated on the y axes with
single-letter codes. Please refer to Supplementary Fig S2 for corresponding results using GluC-generated peptide libraries.

U. Eckhard et al. / Data in Brief 7 (2016) 299–310 303
in Supplementary Table S7. Additionally, a combined zip-file of all WebPICS results can be found in
the supplement. All mass spectrometry raw data and corresponding metadata have been deposited in
the ProteomeXchange Consortium database (http://proteomecentral.proteomexchange.org) via the
PRIDE partner repository [51] with the PXD identifier /PXD002265S.

We previously used PICS to characterize a wide selection of different proteases, such as clostridial
collagenases [31], plant metalloproteinases [32], human type II transmembrane serine proteases
(TTSPs) [33], the archaeal protease LysargiNase [34], snake venom serine proteinases [35], human
coagulation factor Xa [12], and caspases 3 and 7 [8], proving both its versatility and robustness.
Importantly, PICS is designed for active site specificity profiling and not for the identification of native
substrates. For the latter task, the Overall lab developed TAILS (Terminal Amine Isotopic Labeling of
Substrates) [36,37], which we have successfully used e.g. for the identification of natural substrates of
dipeptidyl peptidases 8 and 9 [38], the human gelatinases MMP2 and 9 [39], membrane-type 6 matrix
metalloprotease MMP25 [40] and the meprins [41]. Over the last few years we have adapted TAILS for
the study of complex in vivo biological systems [42] and identification of N-terminal modifications
such as proteolytic processing that alter protein stability or function [43,44]. We have assessed the N-
terminome of various tissues and cells, such as skin [42], erythrocytes [43], platelets [45], and dental

http://proteomecentral.proteomexchange.org


Fig. 3. MMP sequence specificity profiles identified in trypsin-generated human peptide libraries and summarized as heat
maps showing fold-change over natural abundance. P6–P60 subsite positions are shown on the x axes with the identified
cleavage site between P1 and P10 . Plotted amino acids are indicated on the y axes with single-letter codes. Please refer to
Supplementary Fig S3 for corresponding results using GluC-generated peptide libraries.
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pulp [46]. In combination, TAILS N-terminomics and PICS proteomics allow an in depth character-
ization of any biological system and protease in an unbiased, proteomics-centered manner.

The following materials and methods section will enable other investigators and laboratories to
design similar experimental procedures to study matrix metalloproteinases or any other protease by
PICS proteomics. Please refer to our recent dental pulp proteomics and N-terminomics Data in Brief
article for more information on TAILS [47].
2. Experimental design, materials and methods

2.1. Expression and purification of human MMPs

2.1.1. Summary
MMPs 1, 2, 3, 8, 9 and 13 were expressed as zymogens using the pGW1HG vector (kindly provided

by British Biotech Pharmaceuticals, Oxford, UK), and purified from serum-free conditioned medium
from (i) Chinese hamster ovary (CHO) cells or (ii) murine embryonic Timp2� /�

fibroblasts (MEFs) [3–
7]. Soluble MMP14 lacking the C-terminal transmembrane and cytoplasmic domain (A21-R513) was
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purified from Pichia pastoris [3]. Purified proMMPs were aliquoted into single use aliquots of 10 μg,
flash-frozen with liquid nitrogen, and stored at �70 °C until use. For more expression and purifica-
tion details, see below. Active MMP7 was purchased from Enzo Life Sciences, and MMP12 was a kind
gift from Novartis Pharma AG (Basel, CH). ProMMP3 was activated using chymotrypsin. All others
proMMPs were activated using APMA.

2.1.2. ProMMP1
Chinese hamster ovary (CHO-K1) cells (American Type Culture Collection) were maintained in

Dulbecco's modified Eagle's medium (Invitrogen) supplemented with 10% cosmic calf serum (HyClone
Laboratories, Inc.) and non-essential amino acids (Invitrogen). Cells were transfected with pGW1HG-
MMP1 and selected with 25 μg/ml mycophenolic acid (Invitrogen). MMP1-expressing clones were
expanded to confluence in roller bottles (850 cm2, BD Biosciences), washed with phosphate-buffered
saline (PBS; 138 mm NaCl, 2.7 mm KCl, 20 mm Na2HPO4, 1.5 mm KH2PO4, pH 7.4), and incubated in
100 ml of serum-free CHO-S-SFM II medium (Invitrogen). Conditioned serum-free medium was col-
lected every 1–2 days for up to 8 days. ProMMP1 was purified from collected culture supernatants
using an (i) Orange-Sepharose column equilibrated in MES buffer (50 mM MES, pH 6.0, 5 mm CaCl2,
0.1 M NaCl, 0.025% sodium azide), and eluted with 1 M NaCl (in MES buffer). Elution fractions were
subsequently loaded on (ii) Zn2þ-chelating Sepharose Fast Flow resin (Amersham Biosciences), and
chromatographed with a linear imidazole gradient (0 to 0.5 M). Fractions containing proMMP1 were
pooled and dialyzed into HEPES buffer (50 mM HEPES pH 7.2, 5 mM CaCl2, 0.1 M NaCl).

2.1.3. ProMMP2
TIMP-2-free human proMMP2 was expressed in ras/myc-transformed Timp2�/�

fibroblasts. Cells
were grown in Dulbecco's modified Eagle's medium with 10% cosmic calf serum (HyClone Labora-
tories Inc), transfected with MMP2-pGW1HG, and selected by using 25 μg/ml mycophenolic acid.
Serum-free conditioned mediumwas harvested from roller bottles and proMMP2 was purified at 4 °C
in MES buffer by (i) gelatin-Sepharose (Amersham Biosciences) chromatography. After elution with
10% dimethyl sulfoxide in HEPES buffer, samples were dialyzed into MES buffer, and loaded in tandem
onto (ii) lentil lectin-Sepharose (Sigma) to remove MMP9 and fibronectin, and (iii) a 1 ml gelatin-
Sepharose column to capture proMMP2. After elution using 10% dimethyl sulfoxide (gelatin-
Sepharose column only), fractions containing proMMP2 were pooled and dialyzed into MES buffer.

2.1.4. ProMMP3
Recombinant C-terminally FLAG-tagged human proMMP3 was expressed from pGW1HG in CHO-

K1 cells and purified from supernatants in MES buffer using a (i) Green-agarose (Sigma) column. After
elution with 1 M NaCl, eluates were loaded on a (ii) Zn2þ-chelating column (Amersham Biosciences)
and chromatographed with an imidazole gradient. Fractions containing proMMP3 were pooled,
dialyzed into Tris-buffered saline (TBS; 50 mM Tris, 150 mM NaCl, pH 7.4), and subsequently loaded
onto an (iii) anti-FLAG-agarose column (Sigma). After elution with 100 mM glycine, pH 3.5, fractions
were immediately adjusted to pH 7–8 using 1 M Tris pH 8.0, and fractions containing proMMP3 were
pooled and dialyzed into HEPES buffer.

2.1.5. ProMMP8
CHO-K1 cells were transfected with pGW1HG-MMP8 and selected using 25 μg/ml mycophenolic

acid (Invitrogen); conditioned medium was collected from roller bottles. To remove gelatinases
(MMP2 and MMP9), culture supernatants were chromatographed over (i) gelatin-Sepharose 4B resin
(Amersham Biosciences) connected in tandem with (ii) a Red-Sepharose CL-6B column (Amersham
Biosciences). MMP8 was eluted from Red-Sepharose with 1 M NaCl in TBS, and (iii) loaded on a
column of Zn2þ-chelating Sepharose resin (Amersham Biosciences). Fractions containing MMP-8
were pooled and chromatographed over (iv) lentil lectin-agarose-Sepharose 4B (Sigma-Aldrich) and
eluted with 100 mm α-D-methylmannopyranoside (Sigma) in TBS. Purified proMMP8 was buffer
exchanged into collagenase assay buffer (50 mM Tris, 200 mM NaCl, 5 mM CaCl2, 0.05% Brij-35, pH
7.4) using a PD-10 Sephadex G-25 column (Amersham Biosciences).
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2.1.6. ProMMP9
Human MMP9 was expressed from pGW1HG in CHO-K1 cells with 25 μg/ml mycophenolic acid for

selection. ProMMP9 was captured from conditioned medium on a gelatin-Sepharose column
(Amersham Biosciences) in MES buffer, and eluted after extensive washing in MES buffer supple-
mented with 10% dimethyl sulfoxide. ProMMP-9 was dialyzed into HEPES buffer.

2.1.7. ProMMP13
Recombinant C-terminally FLAG-tagged human MMP13 was expressed in CHO-K1 cells from

pGW1HG and purified from culture supernatants using a (i) green-agarose column (Sigma). After
extensive washing with MES buffer, bound protein was eluted using 1 M NaCl, and fractions con-
taining MMP-13 were dialyzed into TBS. MMP13 was then purified to homogeneity using an (ii) anti-
FLAG-agarose column (Sigma). After elution with 100 mM glycine (pH 3.5), fractions were immedi-
ately adjusted to pH 7–8 using 1 M Tris pH 8.0. ProMMP13 was dialyzed into HEPES buffer.

2.1.8. ProMMP14
Soluble MT1-MMP with a FLAG tag in place of the transmembrane and cytoplasmic domains was

cloned into pPIC9 (Invitrogen) and expressed in Pichia GS115 cells (Invitrogen). Cells were grown in
500 ml baffled flasks. After 24 h, 0.5% methanol was added to induce recombinant protein expression.
Culture medium was diluted in MES buffer and MT1-MMP was purified using a red agarose column
(Sigma). After extensive washing with MES buffer, protein was eluted with 1 M NaCl, and fractions
containing proMMP14 were pooled and dialyzed into HEPES buffer.
3. PICS peptide library preparation.

Human whole proteome-derived peptide libraries for MMP specificity profiling were prepared as
described in great detail in Nature Protocols [9]: in brief, cell pellets were collected from human
lymphoblast cell K562 cultures and lysed in 20 mM HEPES (pH 7.5) supplemented with 0.1% (w/v)
SDS and protease inhibitors to prevent unwanted proteolysis (1�Roche cOmplete plus 1 mM PMSF
and 10 mM EDTA). Cell debris was removed by centrifugation (26,000g, 1 h, 4 °C); soluble proteins
were denatured using guanidine hydrochloride (4 M), and cysteine side-chains were reduced with
20 mM DTT (1 h, 37 °C). Free sulfhydryl groups were protected with 40 mM iodoacetamide (3 h,
20 °C) to avoid peptide crosslinking and reactions were stopped by adding more DTT (5 mM, 15 min,
20 °C). Reaction clean-up was performed using chloroform/methanol precipitation as described
elsewhere [48], pellets were air-dried and re-suspended in 100 mM HEPES, 5 mM CaCl2, pH 7.5, and
digested with TPCK-treated trypsin or GluC (Staphylococcus aureus protease V8, Worthington) at a
protease to proteome ratio of 1:100 (w/w) overnight at 37 °C. Note, another protease often used for
PICS library preparation is chymotrypsin. After inactivation of trypsin/GluC with 1 mM PMSF (30 min,
20 °C), undigested protein aggregates were removed by centrifugation (20,000g, 10 min, 4 °C). Pri-
mary amines of peptide N-termini (α-amines) and lysine side chains (ε-amines) were blocked by
reductive dimethylation with 30 mM formaldehyde (CH2O) and 15 mM sodium cyanoborohydride
(NaCNBH3, Sterogene) at 20 °C for 16 h overnight (pH 6–7). To ensure completeness of amine
blocking, another 15 mM formaldehyde and 15 mM sodium cyanoborohydride were added and
incubated for additional two hours. Samples were desalted by size exclusion chromatography using
Sephadex G-10 columns (10 mM potassium phosphate buffer, pH 2.7, 10% (v/v) methanol), and after
methanol removal by vacuum concentration (SpeedVac, Thermo), peptides were purified by reversed-
phase chromatography on an ÄKTA™ high-performance liquid chromatography system (Äkta
Explorer, GE Healthcare) using a RESOURCE RPC column (GE Healthcare); wash buffer contained 0.3%
(v/v) formic acid, and samples were eluted in 80% (v/v) acetonitrile, both in HPLC-grade H2O. These
PICS peptide libraries were concentrated by rotary evaporation under vacuum, re-suspended in water,
and stored in 200–400 mg aliquots of 5–15 mg/ml at �80 °C until use. Peptide concentration was
estimated using the bicinchoninic assay (BCA, Pierce). All reagents were purchased from Sigma-
Aldrich unless otherwise specified.
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4. PICS cleavage site specificity assay.

MMP cleavage assays were performed by incubation of 200–400 mg human whole-proteome
peptide library with active recombinant MMP at a protease to peptide library ratio of 1:100 (w/w) in
50 mM HEPES, 150 mM NaCl, 5 mM CaCl2 at pH 7.4, overnight, and stopped by heat inactivation at
70 °C for 30 min. Prime-side cleavage products generated by MMP cleavage were subsequently iso-
lated by positive enrichment using the biotin handle. In short, cleaved peptides with a free primary
amine at the N-terminus generated by MMP activity were biotinylated by incubation with 0.5 mM
Sulfo-NHS-SS-Biotin, an amine-reactive biotin with a redox-sensitive and thus cleavable disulfide
linker (Thermo Scientific) for 2 h at 20 °C. Biotinylated prime-side cleavage products were separated
from uncleaved peptides by affinity purification, incubating with 300 μl Streptavidin Sepharose slurry
(GE Healthcare) for 2 h with mild agitation. After extensive washing (50 mM HEPES, pH 7.2), bioti-
nylated peptides were eluted with 20 mM DTT (2 h, 20 °C), desalted using reversed-phase solid phase
extraction (Sep-Pak C18, Waters) with binding and washing in 0.1% (v/v) formic acid and elution in
80% (v/v) acetonitrile, both in HPLC-grade H2O. Eluates were vacuum dried to near dryness using a
SpeedVac concentrator (Thermo), brought to 10 μl with 0.1% formic acid, and stored at �80 °C until
LC–MS/MS analysis.
5. LC–MS/MS, peptide spectrum matching, and data analysis

LC-MS/MS analysis was performed using an LC Packings capillary LC system (Dionex) coupled
online to a quadrupole time-of-flight mass spectrometer operated either by the UBC Center for Blood
Research Mass Spectrometry Suite (QSTAR XL; Applied Biosystems), or by the UBC Proteomics Core
Facility (QSTAR Pulsar I, Applied Biosystems). Samples were diluted in 0.3% (v/v) formic acid and
loaded onto a column packed with Magic C18 resin (Michrom Bioresources). Peptides were eluted
using a 2–80% (v/v) acetonitrile gradient in 0.1% (v/v) formic acid over 95 min. MS/MS data were
acquired automatically, using Analyst QS software, v1.1 (Applied Biosystems) for data-dependent
acquisition based on a 1 s MS survey scan from 350 m/z to 1500 m/z, followed by up to 3 MS/MS scans
of 2 s each. Single charged ions were excluded because in ESI mode, peptides typically carry multiple
charges. Centroids were calculated for the acquired data that was converted to mzXML format using
msConvert [49]. Peptides were identified from the human UniProtKB/SwissProt database containing
canonical and isoform protein sequences (downloaded October 2013) using the search engine X!
Tandem [2] in conjunction with PeptideProphet [11], both implemented in the Trans Proteomic
Pipeline v4.3 [10], at an estimated false discovery rate (FDR) of 1%. Search parameters included a mass
tolerance of 200 ppm for parental ions and 0.2 Da (Da) for fragment ions, allowing up to two missed
cleavages. The following fixed peptide modifications were set: carbamidomethylation of cysteine side
chains (þ57.02 Da) and dimethylation of lysine Ɛ-amines (þ28.03 Da); methionine oxidation
(þ15.99 Da). N-terminal dimethylation (þ28.03 Da) and thioacylation (þ88.00 Da) were set as
variables. Note, N-terminally thioacylated peptides identified by LC–MS/MS represent prime-side
cleavage products of the proteases of interest. The complete cleavage sites were reconstructed
bioinformatically using the open web-based program WebPICS [12], available at http://clipserve.clip.
ubc.ca/pics/, which generates a non-redundant list of identified cleavage sites by matching each prime
side peptide sequence to the human IPI database (v3.69, 174784 entries; EMBL-EBI, UK) and extracting
the non-prime cleavage side sequence up to the next cleavage site of the enzyme used for library
generation, i.e. to the next N-terminal Asp or Glu for GluC-libraries, or the next N-terminal Arg or Lys
in the case of trypsin-generated libraries. Subsite positions with ambiguous information coming e.g.
from different protein isoforms are omitted and replaced by X for further analysis. Identified cleavage
sites can be summarized as heat maps, by using e.g. Gnuplot (www.gnuplot.info), or iceLogos (http://
iomics.ugent.be/icelogoserver/index.html) [29]

http://clipserve.clip.ubc.ca/pics/
http://clipserve.clip.ubc.ca/pics/
http://www.gnuplot.info
http://iomics.ugent.be/icelogoserver/index.html
http://iomics.ugent.be/icelogoserver/index.html
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6. Quenched fluorescence protease activity assay

Synthetic quenched fluorescent (QF) peptides were purchased from ChinaPeptides Co. Ltd.
(Shanghai, China), dissolved in DMSO and protected from light. Working stocks (100 μM) were pre-
pared in DMSO using the molar extinction coefficient of the conjugated quencher (DNP; (2,4)-dini-
trophenyl) of 6.985 cm�1mM�1 at 400 nm [50]. MMP zymogens (MMP1, MMP2, MMP8, MMP9,
MMP14) were activated in 100 mM Tris, pH 7.5, 100 mM NaCl, 10 mM CaCl2, and 0.05% Brij-35, using
1 mM APMA (para-aminophenylmercuric acetate) at 37 °C for 30 min. Chymotrypsin was used to
activate MMP3 at a ratio of 1:100 (w/w) for 30 min at 37 °C, and was subsequently inactivated using
1 mM PMSF. MMP7, MMP12, and MMP13 were typically auto-activated during purification. Quenched
fluorescent peptide assays were performed immediately after MMP activation in the presence of
protease inhibitor cocktail (HALT™, Life Technologies, no EDTA added) using a multi-wavelength
fluorescence scanner (POLARstar OPTIMA, BMG Labtech). Each MMP (1–10 nM) was incubated with
1 mM QF-peptide in 100 mL of 100 mM Tris, pH 7.5, 100 mM NaCl, 10 mM CaCl2, and 0.05% Brij-35, and
the increase in fluorescence was measured at 45 s intervals for 1 h at 37 °C. The excitation and
emission wavelengths were set to 320 and 405 nm, respectively, and all measurements were per-
formed in duplicate. Experiments were repeated three times with independent substrate and MMP
preparations on consecutive days.
Acknowledgments

C.M.O. holds a Canada Research Chair in Metalloproteinase Proteomics and Systems Biology. J.H.C
and A.E.S were supported by graduate fellowships from Natural Sciences and Engineering Research
Council of Canada (NSERC), Canadian Institutes of Health Research (CIHR), and Michael Smith
Foundation for Health Research (MSFHR). A.P. and G.M. were co-funded by post-doctoral fellowships
from the UBC Center for Blood Research. P.F.L. was supported by a Feodor Lynen Research Fellowship
of the Alexander von Humboldt Foundation, and O.S. and U.a.d.K were supported by fellowships from
the German Research Foundation (DFG). The German Academic Exchange Service (DAAD) and the
MSFHR supported P.F.H. U.E. and A.D. were supported by a post-doctoral fellowship from MSFHR, and
C.L.B. was supported by postdoctoral fellowships of the Swiss National Science Foundation and the
Novartis Jubilee Foundation. This work was supported by project grants from CIHR (MOP-11433,
MOP-37937, and MOP-111055), and infrastructure grants from both the MSFHR and the Canada
Foundations for Innovation (CFI). We thank the Pride Team (http://www.ebi.ac.uk/services/teams/
pride), especially Tobias Ternent and Attila Csordas, for excellent assistance with MS data deposition,
Jason Rogalski, Wei Chen, and Suzanne Perry from the University of British Columbia Proteomics Core
Facility (PCF) and the UBC Centre for Blood Research Mass Spectrometry Suite for LC–MS/MS mea-
surements, and all current and former members of the Overall Lab for their continuous support and
inspiring discussions.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2016.02.036.
References

[1] U. Eckhard, P.F. Huesgen, O. Schilling, C.L. Bellac, G.S. Butler, J.H. Cox, et al., Active site specificity of the matrix metallo-
proteinase family: proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic
peptide cleavage analyses, Matrix Biol.: J. Int. Soc. Matrix Biol. (2015), http://dx.doi.org/10.1016/j.matbio.2015.09.003.

[2] R. Craig, R.C. Beavis, TANDEM: matching proteins with tandem mass spectra, Bioinformatics 20 (2004) 1466–1467. http:
//dx.doi.org/10.1093/bioinformatics/bth092.

http://www.ebi.ac.uk/services/teams/pride
http://www.ebi.ac.uk/services/teams/pride
http://dx.doi.org/10.1016/j.dib.2016.02.036
http://dx.doi.org/10.1016/j.dib.2016.02.036
http://dx.doi.org/10.1016/j.matbio.2015.09.003
http://dx.doi.org/10.1016/j.matbio.2015.09.003
http://dx.doi.org/10.1016/j.matbio.2015.09.003
http://dx.doi.org/10.1093/bioinformatics/bth092
http://dx.doi.org/10.1093/bioinformatics/bth092
http://dx.doi.org/10.1093/bioinformatics/bth092
http://dx.doi.org/10.1093/bioinformatics/bth092


U. Eckhard et al. / Data in Brief 7 (2016) 299–310 309
[3] C.J. Morrison, C.M. Overall, TIMP independence of matrix metalloproteinase (MMP)-2 activation by membrane type 2
(MT2)-MMP is determined by contributions of both the MT2-MMP catalytic and hemopexin C domains, J. Biol. Chem. 281
(2006) 26528–26539. http://dx.doi.org/10.1074/jbc.M603331200.

[4] G.S. Butler, E.M. Tam, C.M. Overall, The canonical methionine 392 of matrix metalloproteinase 2 (gelatinase A) is not
required for catalytic efficiency or structural integrity: probing the role of the methionine-turn in the metzincin metal-
loprotease superfamily, J. Biol. Chem. 279 (2004) 15615–15620. http://dx.doi.org/10.1074/jbc.M312727200.

[5] G.R. Pelman, C.J. Morrison, C.M. Overall, Pivotal molecular determinants of peptidic and collagen triple helicase activities
reside in the S30 subsite of matrix metalloproteinase 8 (MMP-8): the role of hydrogen bonding potential of ASN188 and
TYR189 and the connecting cis bond, J. Biol. Chem. 280 (2005) 2370–2377. http://dx.doi.org/10.1074/jbc.M409603200.

[6] C. Morrison, S. Mancini, J. Cipollone, R. Kappelhoff, C. Roskelley, C. Overall, Microarray and proteomic analysis of breast
cancer cell and osteoblast co-cultures: role of osteoblast matrix metalloproteinase (MMP)-13 in bone metastasis, J. Biol.
Chem. 286 (2011) 34271–34285. http://dx.doi.org/10.1074/jbc.M111.222513.

[7] Z. Wang, R. Juttermann, P.D. Soloway, TIMP-2 is required for efficient activation of proMMP-2 in vivo, J. Biol. Chem. 275
(2000) 26411–26415. http://dx.doi.org/10.1074/jbc.M001270200.

[8] O. Schilling, C.M. Overall, Proteome-derived, database-searchable peptide libraries for identifying protease cleavage sites,
Nat. Biotechnol. 26 (2008) 685–694. http://dx.doi.org/10.1038/nbt1408.

[9] O. Schilling, P.F. Huesgen, O. Barré, U. Auf dem Keller, C.M. Overall, Characterization of the prime and non-prime active site
specificities of proteases by proteome-derived peptide libraries and tandem mass spectrometry, Nat. Protoc. 6 (2011)
111–120. http://dx.doi.org/10.1038/nprot.2010.178.

[10] E.W. Deutsch, L. Mendoza, D. Shteynberg, J. Slagel, Z. Sun, R.L. Moritz, Trans-Proteomic Pipeline, a standardized data
processing pipeline for large-scale reproducible proteomics informatics, Proteom. Clin. Appl. (2015), http://dx.doi.org/
10.1002/prca.201400164.

[11] A. Keller, A.I. Nesvizhskii, E. Kolker, R. Aebersold, Empirical statistical model to estimate the accuracy of peptide identi-
fications made by MS/MS and database search, Anal. Chem. 74 (2002) 5383–5392.

[12] O. Schilling, U. auf dem Keller, C.M. Overall, Factor Xa subsite mapping by proteome-derived peptide libraries improved
using WebPICS, a resource for proteomic identification of cleavage sites, Biol. Chem. 392 (2011) 1031–1037. http://dx.doi.
org/10.1515/BC.2011.158.

[13] D.N. Perkins, D.J. Pappin, D.M. Creasy, J.S. Cottrell, Probability-based protein identification by searching sequence data-
bases using mass spectrometry data, Electrophoresis 20 (1999) 3551–3567. http://dx.doi.org/10.1002/(SICI)1522-2683
(19991201)20:18o3551, AID-ELPS355143.0.CO;2-2.

[14] S. Kim, P.A. Pevzner, MS-GFþ makes progress towards a universal database search tool for proteomics, Nat. Commun. 5
(2014) 5277. http://dx.doi.org/10.1038/ncomms6277.

[15] J.K. Eng, T.A. Jahan, M.R. Hoopmann, Comet: an open-source MS/MS sequence database search tool, Proteomics. 13 (2013)
22–24. http://dx.doi.org/10.1002/pmic.201200439.

[16] V. Dorfer, P. Pichler, T. Stranzl, J. Stadlmann, T. Taus, S. Winkler, et al., MS Amanda, a universal identification algorithm
optimized for high accuracy tandem mass spectra, J. Proteome Res. 13 (2014) 3679–3684. http://dx.doi.org/10.1021/
pr500202e.

[17] D. Shteynberg, E.W. Deutsch, H. Lam, J.K. Eng, Z. Sun, N. Tasman, et al., iProphet: multi-level integrative analysis of shotgun
proteomic data improves peptide and protein identification rates and error estimates, Mol. Cell. Proteom. (2011), http:
//dx.doi.org/10.1074/mcp.M111.007690.

[18] M. Vaudel, J.M. Burkhart, R.P. Zahedi, E. Oveland, F.S. Berven, A. Sickmann, et al., PeptideShaker enables reanalysis of MS-
derived proteomics data sets, Nat. Biotechnol. 33 (2015) 22–24. http://dx.doi.org/10.1038/nbt.3109.

[19] J.E. Fuchs, S. von Grafenstein, R.G. Huber, M.A. Margreiter, G.M. Spitzer, H.G. Wallnoefer, et al., Cleavage entropy as
quantitative measure of protease specificity, Plos Comput. Biol. 9 (2013) e1003007. http://dx.doi.org/10.1371/journal.
pcbi.1003007.

[20] J.J. Perona, C.S. Craik, Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold, J.
Biol. Chem. 272 (1997) 29987–29990.

[21] B.I. Ratnikov, P. Cieplak, K. Gramatikoff, J. Pierce, A. Eroshkin, Y. Igarashi, et al., Basis for substrate recognition and dis-
tinction by matrix metalloproteinases, Proc. Natl. Acad. Sci. USA 111 (2014) E4148–E4155. http://dx.doi.org/10.1073/
pnas.1406134111.

[22] J.E. Fuchs, S. von Grafenstein, R.G. Huber, C. Kramer, K.R. Liedl, Substrate-driven mapping of the degradome by comparison
of sequence logos, Plos Comput. Biol. 9 (2013) e1003353. http://dx.doi.org/10.1371/journal.pcbi.1003353.

[23] UniProt Consortium, UniProt: a hub for protein information, Nucleic Acids Res. 43 (2015) D204–D212. http://dx.doi.org/
10.1093/nar/gku989.

[24] R.D. Finn, A. Bateman, J. Clements, P. Coggill, R.Y. Eberhardt, S.R. Eddy, et al., Pfam: the protein families database, Nucleic
Acids Res. 42 (2014) D222–D230. http://dx.doi.org/10.1093/nar/gkt1223.

[25] N.D. Rawlings, M. Waller, A.J. Barrett, A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and
inhibitors, Nucleic Acids Res. 42 (2014) D503–D509. http://dx.doi.org/10.1093/nar/gkt953.

[26] P.F. Lange, C.M. Overall, TopFIND, a knowledgebase linking protein termini with function, Nat. Methods 8 (2011) 703–704.
http://dx.doi.org/10.1038/nmeth.1669.

[27] P.F. Lange, P.F. Huesgen, C.M. Overall, TopFIND 2.0–linking protein termini with proteolytic processing and modifications
altering protein function, Nucleic Acids Res. 40 (2012) D351–D361. http://dx.doi.org/10.1093/nar/gkr1025.

[28] N. Fortelny, S. Yang, P. Pavlidis, P.F. Lange, C.M. Overall, Proteome TopFIND 3.0 with TopFINDer and PathFINDer: database
and analysis tools for the association of protein termini to pre- and post-translational events, Nucleic Acids Res. 43 (2015)
D290–D297. http://dx.doi.org/10.1093/nar/gku1012.

[29] N. Colaert, K. Helsens, L. Martens, J. Vandekerckhove, K. Gevaert, Improved visualization of protein consensus sequences
by iceLogo, Nat. Methods 6 (2009) 786–787. http://dx.doi.org/10.1038/nmeth1109-786.

[30] C.G. Knight, F. Willenbrock, G. Murphy, A novel coumarin-labelled peptide for sensitive continuous assays of the matrix
metalloproteinases, FEBS Lett. 296 (1992) 263–266.

http://dx.doi.org/10.1074/jbc.M603331200
http://dx.doi.org/10.1074/jbc.M603331200
http://dx.doi.org/10.1074/jbc.M603331200
http://dx.doi.org/10.1074/jbc.M312727200
http://dx.doi.org/10.1074/jbc.M312727200
http://dx.doi.org/10.1074/jbc.M312727200
http://dx.doi.org/10.1074/jbc.M409603200
http://dx.doi.org/10.1074/jbc.M409603200
http://dx.doi.org/10.1074/jbc.M409603200
http://dx.doi.org/10.1074/jbc.M111.222513
http://dx.doi.org/10.1074/jbc.M111.222513
http://dx.doi.org/10.1074/jbc.M111.222513
http://dx.doi.org/10.1074/jbc.M001270200
http://dx.doi.org/10.1074/jbc.M001270200
http://dx.doi.org/10.1074/jbc.M001270200
http://dx.doi.org/10.1038/nbt1408
http://dx.doi.org/10.1038/nbt1408
http://dx.doi.org/10.1038/nbt1408
http://dx.doi.org/10.1038/nprot.2010.178
http://dx.doi.org/10.1038/nprot.2010.178
http://dx.doi.org/10.1038/nprot.2010.178
http://dx.doi.org/10.1002/prca.201400164
http://dx.doi.org/10.1002/prca.201400164
http://dx.doi.org/10.1002/prca.201400164
http://dx.doi.org/10.1002/prca.201400164
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref11
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref11
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref11
http://dx.doi.org/10.1515/BC.2011.158
http://dx.doi.org/10.1515/BC.2011.158
http://dx.doi.org/10.1515/BC.2011.158
http://dx.doi.org/10.1515/BC.2011.158
http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18&lt;3551
http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18&lt;3551
http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18&lt;3551
http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18&lt;3551
http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18&lt;3551
http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20:18&lt;3551
http://dx.doi.org/10.1038/ncomms6277
http://dx.doi.org/10.1038/ncomms6277
http://dx.doi.org/10.1038/ncomms6277
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1021/pr500202e
http://dx.doi.org/10.1021/pr500202e
http://dx.doi.org/10.1021/pr500202e
http://dx.doi.org/10.1021/pr500202e
http://dx.doi.org/10.1074/mcp.M111.007690
http://dx.doi.org/10.1074/mcp.M111.007690
http://dx.doi.org/10.1074/mcp.M111.007690
http://dx.doi.org/10.1074/mcp.M111.007690
http://dx.doi.org/10.1038/nbt.3109
http://dx.doi.org/10.1038/nbt.3109
http://dx.doi.org/10.1038/nbt.3109
http://dx.doi.org/10.1371/journal.pcbi.1003007
http://dx.doi.org/10.1371/journal.pcbi.1003007
http://dx.doi.org/10.1371/journal.pcbi.1003007
http://dx.doi.org/10.1371/journal.pcbi.1003007
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref20
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref20
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref20
http://dx.doi.org/10.1073/pnas.1406134111
http://dx.doi.org/10.1073/pnas.1406134111
http://dx.doi.org/10.1073/pnas.1406134111
http://dx.doi.org/10.1073/pnas.1406134111
http://dx.doi.org/10.1371/journal.pcbi.1003353
http://dx.doi.org/10.1371/journal.pcbi.1003353
http://dx.doi.org/10.1371/journal.pcbi.1003353
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1093/nar/gkt1223
http://dx.doi.org/10.1093/nar/gkt1223
http://dx.doi.org/10.1093/nar/gkt1223
http://dx.doi.org/10.1093/nar/gkt953
http://dx.doi.org/10.1093/nar/gkt953
http://dx.doi.org/10.1093/nar/gkt953
http://dx.doi.org/10.1038/nmeth.1669
http://dx.doi.org/10.1038/nmeth.1669
http://dx.doi.org/10.1038/nmeth.1669
http://dx.doi.org/10.1093/nar/gkr1025
http://dx.doi.org/10.1093/nar/gkr1025
http://dx.doi.org/10.1093/nar/gkr1025
http://dx.doi.org/10.1093/nar/gku1012
http://dx.doi.org/10.1093/nar/gku1012
http://dx.doi.org/10.1093/nar/gku1012
http://dx.doi.org/10.1038/nmeth1109-786
http://dx.doi.org/10.1038/nmeth1109-786
http://dx.doi.org/10.1038/nmeth1109-786
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref30
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref30
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref30


U. Eckhard et al. / Data in Brief 7 (2016) 299–310310
[31] U. Eckhard, P.F. Huesgen, H. Brandstetter, C.M. Overall, Proteomic protease specificity profiling of clostridial collagenases
reveals their intrinsic nature as dedicated degraders of collagen, J. Proteom. 100 (2014) 102–114. http://dx.doi.org/10.1016/
j.jprot.2013.10.004.

[32] G. Marino, P.F. Huesgen, U. Eckhard, C.M. Overall, W.P. Schröder, C. Funk, Family-wide characterization of matrix metal-
loproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity, Biochem. J.
457 (2014) 335–346. http://dx.doi.org/10.1042/BJ20130196.

[33] O. Barré, A. Dufour, U. Eckhard, R. Kappelhoff, F. Béliveau, R. Leduc, et al., Cleavage specificity analysis of six type II
transmembrane serine proteases (TTSPs) using PICS with proteome-derived peptide libraries, Plos One 9 (2014) e105984.
http://dx.doi.org/10.1371/journal.pone.0105984.

[34] P.F. Huesgen, P.F. Lange, L.D. Rogers, N. Solis, U. Eckhard, O. Kleifeld, et al., LysargiNase mirrors trypsin for protein C-
terminal and methylation-site identification, Nat. Methods 12 (2015) 55–58. http://dx.doi.org/10.1038/nmeth.3177.

[35] A. Zelanis, P.F. Huesgen, A.K. Oliveira, A.K. Tashima, S.M.T. Serrano, C.M. Overall, Snake venom serine proteinases specificity
mapping by proteomic identification of cleavage sites, J. Proteom. 113 (2015) 260–267. http://dx.doi.org/10.1016/j.
jprot.2014.10.002.

[36] O. Kleifeld, A. Doucet, U. auf dem Keller, A. Prudova, O. Schilling, R.K. Kainthan, et al., Isotopic labeling of terminal amines
in complex samples identifies protein N-termini and protease cleavage products, Nat. Biotechnol. 28 (2010) 281–288.
http://dx.doi.org/10.1038/nbt.1611.

[37] O. Kleifeld, A. Doucet, A. Prudova, U. auf dem Keller, M. Gioia, J.N. Kizhakkedathu, et al., Identifying and quantifying
proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates, Nat. Protoc. 6 (2011)
1578–1611. http://dx.doi.org/10.1038/nprot.2011.382.

[38] C.H. Wilson, D. Indarto, A. Doucet, L.D. Pogson, M.R. Pitman, K. McNicholas, et al., Identifying natural substrates for
dipeptidyl peptidases 8 and 9 using terminal amine isotopic labeling of substrates (TAILS) reveals in vivo roles in cellular
homeostasis and energy metabolism, J. Biol. Chem. 288 (2013) 13936–13949. http://dx.doi.org/10.1074/jbc.M112.445841.

[39] A. Prudova, U. auf dem Keller, G.S. Butler, C.M. Overall, Multiplex N-terminome analysis of MMP-2 and MMP-9 substrate
degradomes by iTRAQ-TAILS quantitative proteomics, Mol. Cell. Proteom. 9 (2010) 894–911. http://dx.doi.org/10.1074/mcp.
M000050-MCP201.

[40] A.E. Starr, C.L. Bellac, A. Dufour, V. Goebeler, C.M. Overall, Biochemical characterization and N-terminomics analysis of
leukolysin, the membrane-type 6 matrix metalloprotease (MMP25): chemokine and vimentin cleavages enhance cell
migration and macrophage phagocytic activities, J. Biol. Chem. 287 (2012) 13382–13395. http://dx.doi.org/10.1074/jbc.
M111.314179.

[41] C. Becker-Pauly, O. Barré, O. Schilling, U. Auf dem Keller, A. Ohler, C. Broder, et al., Proteomic analyses reveal an acidic
prime side specificity for the astacin metalloprotease family reflected by physiological substrates, Mol. Cell. Proteom.
(2011), http://dx.doi.org/10.1074/mcp.M111.009233.

[42] U. auf dem Keller, A. Prudova, U. Eckhard, B. Fingleton, C.M. Overall, Systems-level analysis of proteolytic events in
increased vascular permeability and complement activation in skin inflammation, Sci. Signal. 6 (2013) rs2.. http://dx.doi.
org/10.1126/scisignal.2003512.

[43] P.F. Lange, P.F. Huesgen, K. Nguyen, C.M. Overall, Annotating N termini for the human proteome project: N termini and Nα-
acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte
proteome, J. Proteome Res. 13 (2014) 2028–2044. http://dx.doi.org/10.1021/pr401191w.

[44] G. Marino, U. Eckhard, C.M. Overall, Protein Termini and Their Modifications Revealed by Positional Proteomics, ACS Chem.
Biol. 10 (2015) 1754–1764. http://dx.doi.org/10.1021/acschembio.5b00189.

[45] A. Prudova, K. Serrano, U. Eckhard, N. Fortelny, D.V. Devine, C.M. Overall, TAILS N-terminomics of human platelets reveals
pervasive metalloproteinase-dependent proteolytic processing in storage, Blood 124 (2014) e49–e60. http://dx.doi.org/
10.1182/blood-2014-04-569640.

[46] U. Eckhard, G. Marino, S.R. Abbey, G. Tharmarajah, I. Matthew, C.M. Overall, The human dental pulp proteome and N-
terminome: levering the unexplored potential of semitryptic peptides enriched by TAILS to identify missing proteins in
the human proteome project in underexplored tissues, J. Proteome Res. 14 (2015) 3568–3582. http://dx.doi.org/10.1021/
acs.jproteome.5b00579.

[47] U. Eckhard, G. Marino, S.R. Abbey, I. Matthew, C.M. Overall, TAILS N-terminomic and proteomic datasets of healthy human
dental pulp, Data Brief. 5 (2015) 542–548. http://dx.doi.org/10.1016/j.dib.2015.10.003.

[48] D. Wessel, U.I. Flügge, A method for the quantitative recovery of protein in dilute solution in the presence of detergents
and lipids, Anal. Biochem. 138 (1984) 141–143.

[49] M.C. Chambers, B. Maclean, R. Burke, D. Amodei, D.L. Ruderman, S. Neumann, et al., A cross-platform toolkit for mass
spectrometry and proteomics, Nat. Biotechnol. 30 (2012) 918–920. http://dx.doi.org/10.1038/nbt.2377.

[50] M. Abel, K. Iversen, A. Planas, U. Christensen, Pre-steady-state kinetics of Bacillus licheniformis 1,3-1,4-beta-glucanase:
evidence for a regulatory binding site, Biochem. J. 371 (2003) 997–1003. http://dx.doi.org/10.1042/BJ20021504.

[51] J.A. Vizcaíno, R.G. Côté, A. Csordas, J.A. Dianes, A. Fabregat, J.M. Foster, et al., The PRoteomics IDEntifications (PRIDE)
database and associated tools: status in 2013, Nucleic Acids Res. 41 (2013) D1063–1069. http://dx.doi.org/10.1093/nar/
gks1262.

http://dx.doi.org/10.1016/j.jprot.2013.10.004
http://dx.doi.org/10.1016/j.jprot.2013.10.004
http://dx.doi.org/10.1016/j.jprot.2013.10.004
http://dx.doi.org/10.1016/j.jprot.2013.10.004
http://dx.doi.org/10.1042/BJ20130196
http://dx.doi.org/10.1042/BJ20130196
http://dx.doi.org/10.1042/BJ20130196
http://dx.doi.org/10.1371/journal.pone.0105984
http://dx.doi.org/10.1371/journal.pone.0105984
http://dx.doi.org/10.1371/journal.pone.0105984
http://dx.doi.org/10.1038/nmeth.3177
http://dx.doi.org/10.1038/nmeth.3177
http://dx.doi.org/10.1038/nmeth.3177
http://dx.doi.org/10.1016/j.jprot.2014.10.002
http://dx.doi.org/10.1016/j.jprot.2014.10.002
http://dx.doi.org/10.1016/j.jprot.2014.10.002
http://dx.doi.org/10.1016/j.jprot.2014.10.002
http://dx.doi.org/10.1038/nbt.1611
http://dx.doi.org/10.1038/nbt.1611
http://dx.doi.org/10.1038/nbt.1611
http://dx.doi.org/10.1038/nprot.2011.382
http://dx.doi.org/10.1038/nprot.2011.382
http://dx.doi.org/10.1038/nprot.2011.382
http://dx.doi.org/10.1074/jbc.M112.445841
http://dx.doi.org/10.1074/jbc.M112.445841
http://dx.doi.org/10.1074/jbc.M112.445841
http://dx.doi.org/10.1074/mcp.M000050-MCP201
http://dx.doi.org/10.1074/mcp.M000050-MCP201
http://dx.doi.org/10.1074/mcp.M000050-MCP201
http://dx.doi.org/10.1074/mcp.M000050-MCP201
http://dx.doi.org/10.1074/jbc.M111.314179
http://dx.doi.org/10.1074/jbc.M111.314179
http://dx.doi.org/10.1074/jbc.M111.314179
http://dx.doi.org/10.1074/jbc.M111.314179
http://dx.doi.org/10.1074/mcp.M111.009233
http://dx.doi.org/10.1074/mcp.M111.009233
http://dx.doi.org/10.1074/mcp.M111.009233
http://dx.doi.org/10.1126/scisignal.2003512
http://dx.doi.org/10.1126/scisignal.2003512
http://dx.doi.org/10.1126/scisignal.2003512
http://dx.doi.org/10.1126/scisignal.2003512
http://dx.doi.org/10.1021/pr401191w
http://dx.doi.org/10.1021/pr401191w
http://dx.doi.org/10.1021/pr401191w
http://dx.doi.org/10.1021/acschembio.5b00189
http://dx.doi.org/10.1021/acschembio.5b00189
http://dx.doi.org/10.1021/acschembio.5b00189
http://dx.doi.org/10.1182/blood-2014-04-569640
http://dx.doi.org/10.1182/blood-2014-04-569640
http://dx.doi.org/10.1182/blood-2014-04-569640
http://dx.doi.org/10.1182/blood-2014-04-569640
http://dx.doi.org/10.1021/acs.jproteome.5b00579
http://dx.doi.org/10.1021/acs.jproteome.5b00579
http://dx.doi.org/10.1021/acs.jproteome.5b00579
http://dx.doi.org/10.1021/acs.jproteome.5b00579
http://dx.doi.org/10.1016/j.dib.2015.10.003
http://dx.doi.org/10.1016/j.dib.2015.10.003
http://dx.doi.org/10.1016/j.dib.2015.10.003
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref48
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref48
http://refhub.elsevier.com/S2352-3409(16)30058-0/sbref48
http://dx.doi.org/10.1038/nbt.2377
http://dx.doi.org/10.1038/nbt.2377
http://dx.doi.org/10.1038/nbt.2377
http://dx.doi.org/10.1042/BJ20021504
http://dx.doi.org/10.1042/BJ20021504
http://dx.doi.org/10.1042/BJ20021504
http://dx.doi.org/10.1093/nar/gks1262
http://dx.doi.org/10.1093/nar/gks1262
http://dx.doi.org/10.1093/nar/gks1262
http://dx.doi.org/10.1093/nar/gks1262

	Active site specificity profiling datasets of matrix metalloproteinases (MMPs) 1, 2, 3, 7, 8, 9, 12, 13 and 14
	Data
	Experimental design, materials and methods
	Expression and purification of human MMPs
	Summary
	ProMMP1
	ProMMP2
	ProMMP3
	ProMMP8
	ProMMP9
	ProMMP13
	ProMMP14


	PICS peptide library preparation.
	PICS cleavage site specificity assay.
	LC–MS/MS, peptide spectrum matching, and data analysis
	Quenched fluorescence protease activity assay
	Acknowledgments
	Supplementary material
	References




