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Abstract
Objectives To determine normal pericoronary adipose tissue mean attenuation (PCATMA) values for left the anterior descending
(LAD), left circumflex (LCX), and right coronary artery (RCA) in patients without plaques on coronary CT angiography (cCTA),
taking into account tube voltage influence.
Methods This retrospective study included 192 patients (76 (39.6%) men; median age 49 years (range, 19–79)) who underwent
cCTA with third-generation dual-source CT for the suspicion of CAD between 2015 and 2017. We selected patients without
plaque on cCTA. PCATMA was measured semi-automatically on cCTA images in the proximal segment of the three main
coronary arteries with 10 mm length. Paired t-testing was used to compare PCATMA between combinations of two coronary
arteries within each patient, and one-way ANOVA testing was used to compare PCATMA in different kV groups.
Results The overall mean ± standard deviation (SD) PCATMA was − 90.3 ± 11.1 HU. PCATMA in men was higher than that in
women: − 88.5 ± 10.5 HU versus − 91.5 ± 11.3 HU (p = 0.001). PCATMA of LAD, LCX, and RCAwas − 92.4 ± 11.6 HU, − 88.4 ±
9.9 HU, and − 90.2 ± 11.4 HU, respectively. Pairwise comparison of the arteries showed significant difference in PCATMA: LAD and
LCX (p < 0.001), LAD andRCA (p = 0.009), LCX andRCA (p = 0.033). PCATMA of the 70 kV, 80 kV, 90 kV, 100 kV, and 120 kV
groups was − 95.6 ± 9.6 HU, − 90.2 ± 11.5 HU, − 87.3 ± 9.9 HU, − 82.7 ± 6.2 HU, and − 79.3 ± 6.8 HU, respectively (p < 0.001).
Conclusions In patients without plaque on cCTA, PCATMA varied by tube voltage, with minor differences in PCATMA between
coronary arteries (LAD, LCX, RCA). PCATMA values need to be interpreted taking into account tube voltage setting.
Key Points
• In patients without plaque on cCTA, PCATMA differs slightly by coronary artery (LAD, LCX, RCA).
• Tube voltage of cCTA affects PCATMA measurement, with mean PCATMA increasing linearly with increasing kV.
• For longitudinal cCTA analysis of PCATMA , the use of equal kV setting is strongly recommended.

Keywords Computed tomography angiography . Adipose tissue . Coronary vessels/diagnostic imaging . Reproducibility of
results . Atherosclerosis
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Abbreviations
BMI Body mass index
CAD Coronary artery disease
cCTA Coronary computed tomography angiography
EAT Epicardial adipose tissue
ECG Electrocardiography
kV Kilovoltage
LAD Left anterior descending coronary artery
LCX Left circumflex coronary artery
PCATMA Pericoronary adipose tissue mean attenuation
RCA Right coronary artery
SD Standard deviation

Introduction

Coronary artery disease (CAD) is caused by atherosclerosis of
the coronary arteries. Prior studies showed that coronary in-
flammation plays an essential role in the development and
progression of atherosclerotic plaque [1–3]. An observational
study demonstrated that invasively determined inflammatory
changes of the coronary wall are present in early stages of
CAD [4]. In the CANTOS trial, anti-inflammatory therapy
reduced cardiovascular events, independent of lipid-lowering
therapies [5, 6]. Efforts have been made to find a reliable non-
invasive imaging parameter to detect coronary inflammation,
focusing on adipose tissue [7–10]. The amount of epicardial
adipose tissue (EAT) has been quantified [11–13], not only
based on coronary computed tomography angiography
(cCTA) but also based on coronary calcium scans or non-
gated chest CTs [14, 15].More recently, attention was focused
on pericoronary adipose tissue (PCAT). Although PCAT is
part of EAT, morphological and functional characteristics of
PCAT are different from those of EAT. PCAT is directly
affected by coronary inflammation, causing compositional
changes of PCAT, while EAT is mainly affected by systemic
conditions such as obesity [16]. A clinical pathology review
suggested PCAT to be an independent risk factor for cardio-
vascular disease [17]. Antonopoulos et al indirectly evaluated
coronary inflammation on cCTA around the RCA by measur-
ing the fat attenuation index, equivalent to PCAT mean atten-
uation (PCATMA) [16]. They found a correlation between
cCTA-derived PCATMA and adipocyte size or PCAT lipid
volume in ex vivo PCAT histology. Additionally, PCAT
and the coronary wall had a bidirectional communication,
where inflammatory processes in the coronary vessel wall
influenced PCAT composition via a paracrine pathway [16,
18]. In turn, PCAT influenced the coronary wall by secreted
bioactive inflammation molecules [19]. In the presence of
increased inflammation, higher CT attenuation of PCAT is
expected [16].

Thus, PCAT could potentially be used as a non-invasive
proxy to assess coronary inflammation based on routine

cCTA imaging, and could offer valuable information for early
diagnosis, treatment, and prevention of CAD. Several studies
explored the diagnostic value of PCATMA in patients with
plaques [20–24]. However, studies including patients without
plaque so far mainly focused on the healthy RCA in small
cohorts of patients. Further standardization and validation, as
well as reference PCATMA values in all three main coronary
arteries without plaque, are needed before generalized clinical
implementation can be considered. Reference values of
PCATMA for healthy patients are necessary for the application
in diseased patients because based on the healthy reference
values clinicians may in the future be able to classify the
coronary arteries into healthy or vulnerable vessels, even be-
fore the presence of plaque. Additionally, clinical cCTA scans
are acquired at different tube voltages depending on patient
characteristics and CT systems. Differences in tube voltage
affect Hounsfield Unit (HU) values measured in different tis-
sues. However, so far, no study has actually studied the mag-
nitude of the effect of the tube voltage on PCAT. Potential
future cutoff values in PCAT need to be seen in perspective of
difference by tube voltage, and may need adjustment by kV
setting.

The objectives of this study were to explore PCATMA ref-
erence values of three main coronary arteries in patients with-
out plaque on cCTA, and to determine the influence of cCTA
tube voltages and vessel analyzed on PCATMA measurement.

Materials and methods

Study population

This retrospective, single-center observational study was
performed at the University Medical Center Groningen,
Groningen, The Netherlands. The study was compliant
with the Declaration of Helsinki. The study protocol
was approved by the institutional ethical review board,
and informed consent was waived. Patients were eligible
if they were suspected of coronary artery disease and
underwent routine cCTA between January 2015 and
November 2017. The cohort list was randomly screened
for patients meeting the inclusion criteria until the re-
quired sample size was reached; see sample size calcula-
tions in the statistical paragraph. Inclusion criteria were
(1) calcium score of 0 and (2) no coronary plaque on
cCTA. Exclusion criteria were (1) objection to the use
of data for scientific research; (2) poor cCTA image
quality; and (3) patients with anomalous coronary artery
origin from the aorta sinus that leads to inaccurate mea-
surements. A radiologist with 10 years of experience re-
evaluated all calcium scoring and cCTA scans. In case of
doubt, a radiologist with 14 years of experience per-
formed a second reading.
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cCTA scan and post-processing protocol

Third-generation dual-source CT was used (Somatom Force;
Siemens Healthineers). A non-enhanced electrocardiography
(ECG)-triggered CT acquisition was performed to obtain the
calcium score. cCTA was performed according to standard
clinical protocol. Patients received sublingual nitroglycerin
unless contra-indicated. In case of high heart rate (> 70–
73 beats/min), patients received an intravenous beta-blocker.
cCTA was acquired in high-pitch mode in case of regular
heart rate < 70 beats/min, in sequential mode in diastolic phase
if heart rate was > 70 beats/min, and in sequential mode with
broad ECG interval in case of arrhythmias. Tube voltage
ranged from 70 to 120 kV, depending on patient size, as sug-
gested by CarekV (kV optimization assistance). Contrast bo-
lus timing was determined after a test bolus. Iomeprol
(Iomeron 350; Bracco Altana Pharma) was injected with dose
and flow rate depending on patient characteristics and scan
mode. A dual bolus technique was used followed by a saline
flush. cCTA images were reconstructed with a slice thickness
of 0.6 mm. Post-processing and analysis of cCTA images
were performed using dedicated software (Aquarius
iNtuition, TeraRecon, Version 4.4.13).

PCATMA measurement

PCATMA was measured in the main coronary arteries (LAD,
LCX, and RCA). PCATMA measurements were based on the
conceptual framework as proposed by Antonopoulos et al [16].
The workstation automatically reconstructed three-dimensional
volume-rendered and curved multi-planar reformat images,
which were manually corrected by the radiologist in case of
identification errors. The following steps were performed
(Fig. 1): (a) Start and end points of the PCATMA measurement
were selected. For LAD and RCA, the start point was 10 mm
distally from the origin to avoid overlap with the LCX mea-
surement and influence of the aortic wall, respectively. For
LCX, the vessel origin was selected as the start point.
Because of LCX anatomy, there is limited adipose tissue
around the LCX after 10 mm. We adjusted the measurement
length to 10 mm for all coronary arteries in order to minimize
interference of side branch intersections, which costs less time
than the 40 mm in the original study [16]. (b) A 1-mm gap was
left around the artery lumen and themeasurement circle in order
to prevent blooming artifacts from high contrast concentration.
(c) The mean HU value of adipose tissue was measured in a
concentric circle from 1 to 2 mm around the coronary lumen
(1 mm thickness). Compared with prior studies, we reduced
measurement width from the average vessel diameter of about
3 to 1 mm in order to avoid interference from the myocardium
and veins. (d) The software automatically calculates the mean
CT attenuation and volume for voxels within the target thresh-
old of − 190 to – 30 HU [16].

EAT measurements

The heart was manually segmented.Within this segmentation,
an HU range from − 190 to − 30 was set to select relevant
tissue. The volume value of the EAT was automatically ob-
tained by the software.

PCAT measurement methodology variation

In order to evaluate whether measurement length influences
PCATMA measurements, PCATMA was measured with
40 mm and 10 mm lengths in 60 randomly selected cCTA
scans. In twenty randomly selected cCTAs, intra- and inter-
observer agreements were determined. For intra-observer
agreement, PCATMA was measured again by the same reader
after at least 4 weeks to avoid image recognition. For inter-
observer agreement, a second independent reader measured
PCATMA after sufficient training.

Statistical methods

The sample size was calculated using paired sample t-testing
with GPOWER software (Faul, Erdfelder, Lang, & Buchner,
version 3.1.9.2). For sample size calculation, we used results
from two prior PCATMA studies [16, 25], with the following
parameters: mean and SD of PCATMA (− 75.1 ± 8.6 HU and
− 77.0 ± 8.5 HU); correlation between groups 0.5. The effect
size was calculated to be 0.2222108. With α = 0.05, power =
0.8, and two-tailed analysis, the needed sample size was 161.
We added 20%, yielding a total sample size of 192, to de-
crease type I and type II error ratios.

Normality testing for continuous variables was performed
with the Shapiro-Wilk test. Continuous variables were repre-
sented as mean ± SD. Categorical variables were recorded as
numbers (n) and frequencies (%). Associations of age, sex,
and BMI with PCATMA were tested using multivariable re-
gression analysis. PCATMA values by sex were compared
using unpaired sample t-testing. PCATMA comparisons be-
tween combinations of two coronary arteries were made using
paired sample t-testing; values between three coronary arteries
were compared using repeated ANOVA testing. In order to
determine the effects of tube voltage on PCATMA, patients
were grouped according to tube voltage as follows: 70, 80,
90, 100, 120 kV. For PCATMA and EAT volume comparison
of multiple kV groups, one-way ANOVA testing was used.
Post hoc pairwise comparisons of PCATMA were performed
between each two kV groups. p values < 0.05 were considered
statistically significant. For multi-paired t-testing a Bonferroni
correction was applied, adjusting the p value accordingly.
SPSS (SPSS, version 25; IBM) was used for statistical
analysis.

6840 Eur Radiol  (2020) 30:6838–6846



Results

Study population characteristics

In total, 206 patients without CAD on cCTA images were
selected for analysis. Fourteen patients were excluded for var-
ious reasons: anomalous origin of coronary artery (n = 6), in-
sufficient image quality (n = 5), incomplete coronary image
coverage (n = 1), pacemaker artifact (n = 1), and streak artifact
(n = 1) (Fig. 2). The final study population consisted of 192
patients (76 [39.6%] men; mean age 50.5 years [range, 19–
79 years]) and 576 coronary arteries. Overall, 72 patients
(37.5%) underwent cCTA at 70 kV, 53 (27.6%) at 80 kV,
39 (20.3%) at 90 kV, and 28 (14.6%) at 100 to 120 kV
(Table 1).

PCATMA of healthy coronary arteries on cCTA

Overall mean PCATMA value was − 90.3 ± 11.1 HU. Mean
PCATMA of men and women was − 88.5 ± 10.5 HU and −
91.5 ± 11.3 HU (p = 0.001), respectively. In multivariable

linear regression analysis, kV, age, and gender were signifi-
cantly associated with PCATMA (p < 0.05) while BMI was not
(p = 0.235). Mean PCATMA of LAD, LCX, and RCA was −
92.4 ± 11.6 HU, − 88.4 ± 9.9 HU, and − 90.2 ± 11.4 HU, re-
spectively (p < 0.001). There were significant differences be-
tween all combinations of coronary arteries: PCATMA-LAD

and PCATMA-LCX (p < 0.001), PCATMA-LAD and PCATMA-

RCA (p = 0.009), PCATMA-LCX and PCATMA-RCA (p = 0.033)
(Fig. 3).

Influence of tube voltage on PCATMA

Mean PCATMA showed a positive linear association with
tube voltage (Fig. 4). Mean (SD) PCATMA of the 70 kV,
80 kV, 90 kV, 100 kV, and 120 kV groups was − 95.6 ±
9.6 HU, − 90.2 ± 11.5 HU, − 87.3 ± 9.9 HU, − 82.7 ±
6.2 HU, and − 79.3 ± 6.8 HU, respectively (p < 0.001).
Post hoc pairwise comparisons of the kV groups demon-
strated significant differences between each two groups ex-
cept for the 80 kV and 90 kV (p = 0.222), and 100 kV and
120 kV groups (p = 0.267).

Fig. 1 Measurement steps of
PCATMA (cCTA at 70 kV in a 56-
year-old male patient). (a)
Measurement ranges (red
rectangles) are marked on the VR
image, the 10-mm reference line
is the blue line. (b) A gap of 1 mm
is determined around the border
of the coronary lumen. (c) CT
density is measured for a
concentric ring from 1 to 2 mm
around the coronary lumen (1 mm
thickness). (d) The software
automatically calculates the mean
CT attenuation and volume for
voxels within the target threshold
of − 190 to – 30 HU. PCATMA is
pericoronary adipose tissue mean
attenuation; LAD is left anterior
descending coronary artery; LCX
is left circumflex coronary artery;
RCA is right coronary artery; VR
is volume rendering; cCTA is
coronary computed tomography
angiography
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Tube voltage and EAT volume

Mean EAT volume showed a positive linear association with
tube voltage (Fig. 5). Mean (SD) EAT volume of the 70 kV,
80 kV, 90 kV, 100 kV, and 120 kV groups was 107.6 ±

49.7 cm3, 145.5 ± 60.1 cm3, 172.8 ± 63.6 cm3, 183.7 ±
63.2 cm3, and 199.5 ± 78.1 cm3, respectively (p < 0.001).

PCAT measurement methodology variation

PCATMA of LAD, LCX, and RCA for 40-mm measurement
length was − 95.6 ± 9.7 HU, − 88.7 ± 10.0 HU, and − 92.9 ±

Fig. 2 Flowchart of patient
inclusion. CAD is coronary artery
disease; cCTA is coronary
computed tomography
angiography

Table 1 Patients’ baseline characteristics. Body mass index
information was available for 108 patients. kV is tube voltage, SD is
standard deviation, cCTA is coronary computed tomography angiography

Variables Overall (n = 192)

Age, years, mean ± SD 50.5 ± 11.5

Men, n (%) 76 (39.6%)

Body mass index, mean ± SD 26.4 ± 5.0

Risk factor, n (%)

Diabetes mellitus 13 (6.8%)

Hypertension 70 (36.5%)

Hyperlipidemia 34 (17.7%)

Former smoker 38 (19.8%)

Current smoker 37 (19.3%)

Family history of coronary artery disease 68 (35.4%)

Indication for cCTA, n (%)

Typical angina 15 (7.8%)

Atypical angina 100 (52.1%)

Non-anginal chest pain 14 (7.3%)

Dyspnea/dyspnea’ effort 12 (6.3%)

Other 51(26.6%)

Tube voltage, n (%)

70 kV 72 (37.5%)

80 kV 53 (27.6%)

90 kV 39 (20.3%)

100–120 kV 28 (14.6%)

Fig. 3 PCATMA values for the main coronary arteries. PCATMA is
pericoronary adipose tissue mean attenuation; LAD is left anterior
descending coronary artery; LCX is left circumflex coronary artery;
RCA is right coronary artery
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8.3 HU, respectively, compared with − 94.5 ± 11.0 HU, −
90.0 ± 8.7 HU, and − 91.6 ± 9.7 HU for 10-mm measurement
length (p = 0.124, 0.118, 0.116, respectively) (Supplementary
Material Table S1 and Fig. S1). There was excellent correla-
tion within and between readers for repeated PCATMA

measurements (0.974–0.982), with minimal bias but with
some variability between readings (upper and lower limits of
agreement 3.9 HU and − 3.3 HUwithin-reader, 4.6 HU, and −
4.1 HU between-readers) (Supplementary Material Table S2
and Fig. S2).

Discussion

In this study, we investigated the PCATMA values of healthy
coronary arteries and the influence of tube voltage. Our main
results showed that the tube voltage of cCTA significantly
influenced PCATMA values in patients without CAD, and that
PCATMA differed slightly between the LAD, LCX, and RCA.

Although the presence of obstructive disease on cCTA is
associated with worse outcomes, manymyocardial infarctions
originate from coronary segments without prior obstructive
disease. Thus, the focus has shifted to the identification of
segments at future risk of developing potentially vulnerable
plaque [26]. Studies on PCATMA in diseased populations
showed significant differences between diseased and non-
diseased coronary arteries, and between flow-limiting and
non-flow limiting stenosis [24]. Although results were statis-
tically significant, these studies show, similar to the current
study, limited absolute differences in PCAT values (± 5 HU).
However, these studies show an increased accuracy for the
prediction of hemodynamic significance of a lesion, especially
in combination with other factors such as stenosis diameter.
Further understanding of the PCAT parameter and the influ-
ence of scan protocol settings on this biomarker and its vari-
ability can help to determine limits of reliability around
PCATMA values when comparing patients.

One of the main results of this study is that the use of
different kV levels has considerable impact on PCATMA

values. In clinical practice, cCTA acquisitions are acquired
with varying kV levels. Higher kV voltages will inherently
lead to higher PCATMA and EAT attenuation, unrelated to a
pathophysiological process. Prior studies investigating the use
of PCATMA used cCTA images obtained at 100 kV and/or
120 kV [16, 20, 21, 25]. However, lower kV acquisitions are
becoming increasingly popular in order to reduce radiation
and contrast medium volume. Recent results from the
PROTECTION VI Study showed that low kV settings for
cCTA (< 100 kV) are already applied in 14% of patients and
this is only expected to increase [27, 28]. Our results showed
significant differences between all kV levels except between
80 and 90 kV, and between 100 and 120 kV. The lack of
difference in PCATMA between 100 and 120 kV is also
reflected by the similar PCATMA results from previous studies
investigating only those two levels. The differences in
PCATMA between the other kV levels indicate that a kV-
specific PCATMA cutoff should be used to discriminate
healthy from diseased patients and perform accurate risk

Fig. 4 PCATMA values in patient groups based on cCTA tube voltage
setting. PCATMA is pericoronary adipose tissue mean attenuation; kV is
kilovoltage; HU is Hounsfield Units; cCTA is coronary computed
tomography angiography

Fig. 5 EAT volume in patient groups based on cCTA tube voltage
setting. EAT is epicardial adipose tissue; kV is kilovoltage; CM is
centimeter; cCTA is coronary computed tomography angiography
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assessment. Determination of this cutoff fell outside the scope
of this research. The current study provides reference values
of PCATMA by kV setting in normal coronary arteries; future
studies should investigate the PCATMA by kV in coronary
arteries with plaque and/or stenosis, and evaluate the optimal
cutoff values. To construct a kV correction factor, ideally the
same patients would have to undergo repeated cCTA at dif-
ferent kV levels. The results also showed a positive relation
between kV and EAT volume. This is likely mostly due to the
fact that patients with higher BMI (and more intrathoracic fat)
were usually scanned with higher kV to get better image qual-
ity. In view of the influence of kV on PCATMA analysis, it is
recommended that for the longitudinal follow-up and compar-
ison of cCTA-based PCATMA values, the cCTA is performed
at equal tube voltage setting.

The majority of PCATMA studies about relationship with
CAD focused on analysis of the RCA alone, while the LAD
and LCX could provide additional information and increase
the accuracy of outcome prediction [16, 21]. Our study fo-
cused on PCATMA measurements in all three coronary arter-
ies, showing that PCATMA was slightly but significantly dif-
ferent between the LAD, LCX, and RCA. This difference
could be caused by differences in anatomy and surrounding
tissues, indicating that PCATMA values and corresponding
cutoff values based on RCA measurements cannot be directly
transferred to the other coronary arteries. Our study results
showed that LAD had slightly but significantly lower
PCATMA compared with the RCA and LCX. As is known
in literature, atherosclerosis development also differs between
the coronary arteries. The LAD is subject to atherosclerosis
more often and at an earlier stage in comparison with RCA
and LCX [29–31]. The fact that LAD had a lower PCATMA is
an important hypothesis-generating finding. This finding sug-
gests that PCATMA could be related to vessel vulnerability for
atherosclerosis. This hypothesis should be further investigated
in pathophysiological and prospective clinical studies.

To analyze all three coronary arteries, an adjusted measure-
ment method was used in our study. Previously, a measure-
ment length of 40 mm was used [16, 21, 25] which was fea-
sible for the RCA because it has fewer side branches and
proximal variations than the LAD and LCX. To avoid influ-
ence of side branches, measurement length was reduced from
40 to 10 mm in this study. Results from our sub-study dem-
onstrated no differences in PCATMA between our 10-mm
methods and 40-mm method. PCATMA measurement width
around the coronary could potentially affect measurement ac-
curacy. Prior studies measured PCATMA using approximately
3 mm thickness (or equal to vessel diameter) around the cor-
onary vessels [16, 20, 21, 25]. However, contrast enhance-
ment of the lumen has been found to influence the HU values
in the voxels adjacent to the luminal border [32]. To take this
into account, we applied a 1-mm gap around the vessel wall.
Thus, our study measured PCATMA using a more constrictive

measurement width, making it more suitable for LAD and
LCX measurements, and potentially more sensitive to inflam-
matory changes. Manual PCAT measurements using the
method described here can be performed in a similar time span
compared with manual EAT measurements. Fully automated
software, as mentioned by some researchers [21], allows for
PCATMA evaluation within 30 s, increasing the time efficien-
cy of PCATMA analysis and enabling use in clinical practice.

While PCATMA and EAT both are measures of adipose
tissue, they represent different processes [16]. PCATMA quan-
tifies fat at the per-vessel level or per-lesion level as an indicator
of coronary inflammation, while EAT provides a measure of
the volume of the entire epicardial fat system as a marker for
paracrine effects of fat. Thus, PCATMA may provide a more
specific, focal assessment of coronary risk and vulnerability.
PCATMA was shown to have additional diagnostic value with
more precision and specificity compared with EAT measure-
ments [33]. Studies found that PCATMA and FFR were related
at the per-vessel level [20] and that PCATMA of RCA was able
to assist in risk stratification of cardiovascular mortality [25].
The combined use of PCATMA, total plaque volume, and di-
ameter stenosis has shown high diagnostic accuracy for predic-
tion of hemodynamically significant coronary stenosis [24].
Interestingly, Goeller et al [21] found that changes in attenua-
tion of adipose tissue in the pericoronary space were related to
changes in plaque burden. These results suggest that these ef-
fects are associated with changes in PCAT specifically rather
than adipose tissue in general.

Besides differences between kV levels and coronary arter-
ies, our results show a slight but important difference in
PCATMA between men and women that could not be ex-
plained by differences in kV distribution. Men are known to
get CAD more frequently than women and at an earlier age
[31]. The PCATMA difference between men and women fol-
lows the same trend. This finding deserves further exploration
in a study with comprehensive cardiovascular risk factor as-
sessment and more diverse range of coronary atherosclerosis.
Sex-related differences in PCATMA could be caused by sev-
eral factors. Men have a higher amount of EAT than women
[34, 35], related to cardiovascular risk. There are sex-related
differences in the regulation mechanism of pericardial
adipokines [36] and in the physiological mechanism of adi-
pose tissue [37]. Additionally, it could be that differences in
sex-related hormones, higher low-density lipoprotein in male
patients, and differences in risk factors impact PCATMA in
men and women [38].

Limitations

This was a single-center retrospective study of patients with a
clinical indication for cCTA. There was no follow-up, since a
normal cCTA result led to discharge from the cardiology out-
patient clinic. Some of the patients might have been at higher
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risk to develop CAD, reflected in already altered PCATMA

values while there was no plaque development yet. There
could be factors other than tube voltage affecting PCATMA

measurements such as obesity or diabetes, inflammatory pro-
cesses, or specific medication. Further work is needed to ex-
plore all potentially influencing factors. With regard to the
measurement itself, the anatomical variation of LCX com-
pared with LAD and RCAwas relatively large and could have
affected the PCATMA measurement. However, with our ad-
justed measurement protocol, we found excellent correlation
between repeated measurements within and between readers
with limited bias, indicating the validity of the PCATMA

measurement.

Conclusion

In conclusion, our results showed that PCATMA varied con-
siderably by tube voltage in patients without plaque on cCTA,
with minor differences in PCATMA between coronary arteries
(LAD, LCX, RCA). cCTA kV setting needs to be taken into
account when interpreting PCATMA values.
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