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Abstract: In the present study, the roots of valerian (Valeriana officinalis L.) and lovage (Levisticum
officinale Koch.) from the organic and low-input conventional cultivation systems were subjected to
the analysis of selected groups of phenolic compounds (phenolic acids, flavonoids) and antioxidant
activity. Plants were grown in two consecutive vegetation seasons in the experimental plots located
in western Poland. Phenolic acids and flavonoids were determined by high performance liquid
chromatography (HPLC/UV–Vis), while the antioxidant activity of the samples was measured with
the use of DPPH radical scavenging activity assay. The concentrations of phenolic acids (sum) and
flavonoids (sum) were found to be higher in the conventional lovage roots, as compared to the organ-
ically grown lovage roots, while in the case of valerian, no significant effects of the cultivation system
on the levels of the sums of these analyzed compounds were found. Furthermore, no significant
effect of the cultivation system on the antioxidant activity of herbs was observed. Additional efforts
could be invested in enhancing the potential of organic medicinal plants to consistently present the
expected high concentrations of health-promoting antioxidants, which could be effectively brought
through their post-harvest handling, storage and processing, and thus meet consumers’ expectations
at the stage when they reach the market.

Keywords: medicinal plants; herbs; lovage; valerian; organic; conventional; low input; phenolic
compounds; flavonoids; phenolic acids; antioxidant activity; HPLC

1. Introduction

Valerian (Valeriana officinalis L.) is a herb that belongs to the Valerianaceae family. This
perennial plant grows natively in Europe and Asia and is also cultivated in North America.
The Valerianaceae family consists of around 300 species. Valerian is mostly known for
its sedative properties and for centuries, it has been used as a medicinal plant. There
are various herbal remedies available on the market that contain dried root or extract
from the root of valerian. It is widely used in the treatment of insomnia, anxiety, stress
and nervous tension [1,2]; however, its usage is not limited to treating these disorders.
Compounds found in Valeriana officinalis have a broad spectrum of biological activities, such
as antioxidant, anti-inflammatory, antimicrobial, anxiolytic, antirheumatic, spasmolytic
and neuroprotective activities, among others [3,4].
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Although the health-promoting properties of valerian are considered to result from the
joint action of a great number of its constituents [5], major focus of the research carried out
to date has been given to the following two groups of phytochemicals: valepotriates (iridoid
molecules) and sesquiterpenes—volatile compounds present in the essential oil of valerian,
including mainly valerenal, valerenyl acetate, valerenic acid and valerenyl isovalerate [6,7].
Other previously studied bioactive components of valerian include choline, sterols and
several alkaloids (actinidine, valerianine, valerine, and chatinine) [8].

Lovage (Levisticum officinale Koch.) is a herbaceous perennial plant that belongs
to the Apiaceae family. It has been widely grown for centuries, due to its aromatic and
ornamental values, but also medicinal properties. Lovage roots and leaves have been
used for various medical purposes, due to their diuretic, apoptotic, antimycobacterial,
estrogenic and spasmolytic activities [9–11]. Nowadays, lovage is utilized in cosmetic,
food and beverages, perfumery and tobacco industries. It is also often used as a spice,
previously shown to impact the regulation of the digestion and activation of enzymes
that enhance nutrient absorption [11,12]. Lovage extractable oil, present in all parts of the
plant, contains mainly phthalides (ligustilide, butylphthalide, sedanolide) and terpenoids,
including n-butyl-phthalide, n-butylidene phthalide, sedanonic anhydride, D-terpineol,
carvacrol, eugenol and volatile (essential) oil. The latter was found to be rich in, i.e., angelic
acid and β-terpenol, but also coumarins, furocoumarins, including psoralins, rotoside,
sitosterols and resins [13].

It should be pointed out that next to the compounds’ characteristic for these two
species, both valerian and lovage contain numerous bioactive compounds that show antiox-
idant properties, such as phenolics and, among them, phenolic acids and flavonoids [8,14].
Many studies confirm that these groups of compounds have high antioxidant potential
and anticarcinogenic, antibacterial, antiviral, anti-atherosclerotic and anti-inflammatory
effects [15]. A high content of phenolic compounds in the diet has been considered as an
important factor in the prevention of many non-communicable diseases related to free
radical activity, such as cancers, cardiovascular disease, Parkinson’s disease, Alzheimer’s
disease, atherosclerosis and many others [16–18].

In plants, phenolic compounds belong to the secondary metabolites involved in
defense mechanisms. Their synthesis has been shown to be associated, among others, with
pests’ pressure, exposure to UV light, bacterial and fungal infections and nutrients’ (i.e.,
nitrogen) availability during cultivation [18,19].

Nowadays, significant attention is given to organically produced plant-based foods.
Their extensive production methods have been previously shown to result in several better
quality and safety parameters compared to conventional, industrialized production [20].
Organic cultivation strategies rely on natural fertilizers and crop protection methods, as
well as diverse crop rotations [21,22]. Even though several aspects of organic agriculture in
relation to its environmental sustainability are still undergoing scientific discussion [23],
environmental benefits of the organic systems have been broadly described in a number of
research reports [24,25]. Many studies have also shown that crops grown in organic and
other extensive agronomic systems are characterized by significantly higher concentrations
of phenolic compounds and higher antioxidant activity than those grown with conventional
practices [20,26,27], which is often linked to the limited availability of easily assimilable
nitrogen and/or higher pressure of pests and diseases in organic cultivation [28,29].

Although organic cultivation of plants used for medicinal purposes should undoubt-
edly be an aspiration, the quality of medicinal plants from organic production is a relatively
niche subject of research. A number of available studies that compare the concentrations of
certain biologically active substances in medicinal plants from organic and conventional
production is very limited, and, to the best of the authors’ knowledge, none of them focused
on valerian (Valeriana officinalis L.) and/or lovage (Levisticum officinale Koch.) roots. The
aim of this study was, therefore, to compare the content of two selected groups of phenolic
compounds, phenolic acids and flavonoids, and the antioxidant activity of valerian and
lovage grown in the organic and conventional cultivation system.
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2. Materials and Methods
2.1. Research Material

The research material consisted of roots of valerian (Valeriana officinalis L.) cv. Polka
and lovage (Levisticum officinale Koch.) cv. Amor cultivated in two consecutive seasons,
according to the organic farming standards [21] and in the low-input conventional system,
in the experimental plots of the Institute of Natural Fibres and Medicinal Plants located
in Plewiska, western Poland (N 52◦21′, E 16◦48′). The experiment was established on the
loamy soil of medium fertility, as a randomized-block design, on plots of 10 m2 area each,
in three replications. All organic plots had been subjected to identical tillage and crop
rotation schemes (oats with spring vetch–yellow lupine–rye with winter vetch) prior to the
experiment. A moderate intensity of management, in line with good agricultural practice,
was applied, meeting the high organic standards for medicinal plants. Manual weeding
was used to control weeds. Neither pest nor disease protection was applied.

The conventional field was subjected to crop rotation schemes, including maize–maize–
wheat. During the experiment, conventional plots were fertilized with mineral fertilizers,
in doses corresponding to 40 kg N, 50 kg P (P2O5) and 60 kg K (K2O). Phosphorus and
potassium fertilizers were applied in autumn, while nitrogen fertilizer was applied in two
doses—one at the beginning of the vegetation season (April) and the second in June/July.
No chemical crop protection was used.

The seeds of valerian and lovage used to establish the experiment were obtained
from the conservation breeding program carried out at the Institute of Natural Fibres and
Medicinal Plants (Poznań, Poland). The seedlings of both plants were planted in May, with
45 cm spaces between rows, and 22.5 cm distance between plants in the row. The random
samples were collected in autumn, by hand, from the area of approx. 1.0 m2 of each plot.

The collected raw materials were dried in natural conditions in the Institute of Natural
Fibres and Medicinal Plants to reach 90.0 ± 2.0% of dry weight, and then transferred to the
laboratory of the Department of Functional and Organic Food at the Warsaw University of
Life Sciences (Warsaw, Poland). Before the analyses, the material was freeze-dried using a
Labconco 2.5 freeze-dryer (Labconco Corporation, Kansas City, MO, USA) at a temperature
of −40 °C and a pressure of 0.100 mBa, and ground in a laboratory mill A-11 (IKA®-Werke
GmbH & Co. KG, Staufen im Breisgau, Germany). Ground samples were transferred into
vials and kept at −80 °C.

2.2. Phenolic Compound Extraction and Identification

Phenolic acids and flavonoids in the valerian and lovage samples were analyzed by
high performance liquid chromatography (HPLC), using the Shimadzu HPLC system (USA
Manufacturing Inc., Canby, OR, USA) with two LC-20AD pumps, a SIL-20AC autosampler,
a CMB-20A system controller, a CTD-20AC oven, an ultraviolet–visible SPD-20AV detector
and a Fusion-RP 80A column (250 mm × 4.60 mm, particle size: 4 µm) [30]. Freeze-dried
powder was used to prepare the extract in 80% methanol. After 10 min in the ultrasonic
bath (30 ◦C, 5500 Hz), the samples underwent centrifugation (5 min, 3180× g, 2 ◦C), and
1-mL aliquots of supernatant were transferred to HPLC vials. Water with acetonitrile (10%
in Phase A and 55% in Phase B) were used as a gradient solvent in the HPLC analysis.
The analysis lasted 36 min. The following gradient program was applied: 0–21.00 min:
95% Solvent A and 5% Solvent B; 21.01–25.00 min: 50% Solvent A and 50% Solvent B;
25.01–27.00 min: 20% Solvent A and 80% Solvent B; 27.01–32.00 min: 20% Solvent A and
80% Solvent B; and 32.01–36.00 min: 95% Solvent A and 5% Solvent B, with the flow
rate of 1 mL min−1. The wavelengths of 270 and 360 nm were used for phenolic acid
and flavonoid detection, respectively, and the column temperature was set at 30 ◦C. For
individual phenolic acid and flavonoid identification, the Sigma-Aldrich and Fluka (Poznań,
Poland) external standards with purities of 95.00–99.99% were used.
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2.3. Antioxidant Activity

The antioxidant activity of the samples was measured with the use of DPPH radical
scavenging activity assay [31]. It is based on the use of the stable free radical 2,2-diphenyl-
1-picrylhydrazyl (DPPH), which is reduced in the presence of an antioxidant compound
that acts as a hydrogen donor in the chemical reaction. The free radical DPPH is reduced
to DPPH-H, which results in decolorization. The DPPH has a purple color and shows
maximum absorbance at 517 nm. After reduction, it loses its color and becomes yellow
and consequently, the absorbance decreases. Loss of color intensity is proportional to the
amount of free radical unpaired electrons captured by the antioxidant. The larger the
decrease in absorbance, the greater the antioxidant power.

Samples were weighted into the cuvettes, solvent was added, and the samples were
placed in an ultrasonic bath for 15 min. Each sample was then shaken on vortex for 2 min
and centrifuged for 8 min. Samples prepared as described above were pipetted onto the
microplate, according to the ratio of 100 µL:200 µL between the extract and DPPH radical
solution. The microplate was kept in a dark place for 15 min to incubate. After incubation
of the samples, absorbance was measured in the spectrophotometer at 515 nm. For each
measurement, a calibration curve for ascorbic acid standard was prepared, in order to verify
if the samples’ absorbance results were in the range of the calibration points. To compare the
different standards, the calibration curve for quercetin was also prepared. Both calibration
curves were then used to calculate the final results, which were expressed as equivalents of
the standards (ascorbic acid equivalents—AAE, quercetin equivalents—QE). The results
were also presented as radical scavenging activity (RSA) [%], calculated on the basis of the
following equation: RSA = (A0 − As)/A0 × 100%, where A0 is the absorbance of DPPH
radical solution and As is the absorbance of the solution containing the sample extract.

2.4. Statistical Analyses

All statistical analyses were performed in the R statistical environment [32]. In order
to investigate the effect of the cultivation year and the production system on the measured
composition parameters, two-way ANOVAs were derived from a linear mixed-effects
model [33], which included the cultivation year and production system as the main factors,
and the field location as a random factor. The normality of the residuals of all models was
tested with the use of QQ-plots. The significance of the differences between the production
system × cultivation year interaction means was additionally tested using Tukey contrasts
in the general linear hypothesis testing (glht) function of the multcomp package in R [34]. A
principal component analysis (PCA) was also performed to explore the possible differences
and similarities in the composition of lovage and valerian samples grown in (a) different
production systems and (b) in different cultivation years. The PCA was performed with the
‘prcomp’ function, and the plots were generated using the ‘ggbiplot’ package. Additionally,
Pearson’s product-moment correlation analyses were carried out using the ‘cor’ function
to identify potential linear associations between the concentrations of the individual and
groups of the analyzed compounds in the lovage and valerian samples. The outcomes of
the correlation analyses were visualized using the ‘corrplot’ package in R.

3. Results and Discussion
3.1. Phenolic Acid, Flavonoid and Antioxidant Activity of Lovage and Valerian Roots

In the present study, concentrations of five phenolic acids and five flavonoid com-
pounds were quantified in the tested lovage and valerian root samples. The chemical
structures of the identified compounds are presented in Figure 1 (phenolic acids) and
Figure 2 (flavonoids).
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Figure 2. The chemical structures of flavonoids identified in the lovage and valerian root samples.

Tables 1 and 2 and Figures 3–5 show the concentrations of the tested phenolic acids and
flavonoids in the lovage and valerian roots, depending on the cultivation system and year
of the experiment. The two-factor ANOVA detected the significant effect of the cultivation
system on phenolic (sum) and phenolic acid (sum) concentrations in lovage (p < 0.001), with
significantly higher concentrations of these groups of compounds in the conventional roots,
compared to the organically cultivated roots (Table 1). A high consistency of this trend in
both years of the experiment was also observed (Figure 3). At the same time, valerian roots
did not differ in the content of phenolics (sum), phenolic acids (sum) or flavonoids (sum)
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depending on the cultivation system (organic vs. conventional), but a significant effect of
year was observed, with higher contents of phenolics (sum), and specifically phenolic acids
(sum), in the first year compared to the second year of the experiment (Table 2).
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Figure 4. The content of each of the phenolic acids (a–d) and flavonoids (e–h) identified in lovage
roots grown in two consecutive years in the organic and conventional system. Data are presented
as means with standard errors. Within each figure plot, bars marked with different letters are
significantly different at the 5% level of probability.
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When comparing the two herbs, valerian root appeared to be significantly richer in
phenolic acids (225.14–274.13 mg/100 g f.w. vs. 81.1–82.78 mg/100 g f.w. in lovage),
and consequently in phenolics (sum), while lovage roots contained significantly more
flavonoids (43.16–48.53 mg/100 g f.w. vs. 36.09–37.26 mg/100 g f.w. in valerian).

When looking into the individual phenolic acid concentrations in the roots of both
herbs, the following significant effects of the cultivation system were detected: lovage
roots grown in the organic system contained more ferulic and caffeic acid and less chloro-
genic and gallic acid compared to the conventionally grown lovage (Table 1, Figure 4),
while valerian roots grown in the organic system contained more gallic and caffeic acid
and less chlorogenic and p-coumaric acid than those grown in the conventional system
(Table 2, Figure 5). When comparing samples from the two years of the experiment, lovage
root samples from both years contained similar levels of individual phenolic acids (Table 1),
while valerian roots from the first year were significantly richer in chlorogenic and gallic
acid than in the following year (Table 2).

Quercetin-3-O-rutinoside and quercetin-3-O-glucoside were the main detected flavonoid
compounds in the tested herbs (Tables 1 and 2). Other flavonoids found in lower con-
centrations in the tested samples included quercetin and kaempferol (in both lovage and
valerian) and myricetin (in valerian). The ANOVA detected a significant effect of the culti-
vation system on the concentration of quercetin-3-O-glucoside and kaempferol in lovage
(significantly higher in conventionally grown roots) and quercetin (significantly higher in
organically grown roots of both herbs). These differences were consistent in both years of
the experiment (Figures 4 and 5).
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Table 1. The effects of the production system and cultivation year on phenolic (sum), phenolic acid and flavonoid concentrations in dried roots of lovage.

Phenolics
(Sum)

Phenolic
Acids (Sum)

Chlorogenic
Acid

Ferulic
Acid

Gallic
Acid

Caffeic
Acid

Flavonoids
(Sum)

Quercetin-3-O-
Rutinoside

Quercetin-3-O-
Glucoside Quercetin Kaempferol

mg/100 g f.w.

System (SYS)
Conventional 130 ± 3 1 82.3 ± 2.4 42.7 ± 1.6 17.3 ± 1.4 21.9 ± 2.7 0.481 ± 0.03 48.0 ± 1.5 14.1 ± 0.1 19.3 ± 1.5 2.48 ± 0.19 12.1 ± 1.0

Organic 111 ± 2 69.9 ± 2.2 32.6 ± 2.5 23.4 ± 0.7 13.3 ± 0.9 0.648 ± 0.06 41.1 ± 1.1 14.2 ± 0.1 13.1 ± 0.5 4.91 ± 0.39 8.9 ± 0.6
Year (YR)

Year 1 122 ± 3 76.5 ± 2.5 37.9 ± 2.3 20.4 ± 1.2 17.6 ± 2.1 0.565 ± 0.05 45.0 ± 1.4 14.4 ± 0.0 16.4 ± 1.2 3.68 ± 0.37 10.5 ± 0.8
Year 2 120 ± 3 75.7 ± 2.6 37.4 ± 2.3 20.2 ± 1.2 17.5 ± 2.1 0.564 ± 0.05 44.1 ± 1.5 13.8 ± 0.1 16.1 ± 1.2 3.71 ± 0.37 10.5 ± 0.8

ANOVA p-values
SYS 0.000 2 0.000 0.000 0.000 0.003 0.016 0.000 0.482 0.000 0.000 0.006
YR 0.641 0.788 0.866 0.858 0.963 0.998 0.610 0.000 0.818 0.947 0.979

SYS × YR 0.965 0.979 0.996 0.995 0.984 0.976 0.963 0.781 0.960 0.990 0.989

1 Data are presented as means ± standard errors; 2 significant ANOVA p-values (p < 0.05) are marked in bold.

Table 2. The effects of the production system and cultivation year on phenolics (sum), phenolic acids and flavonoids concentrations in dried roots of valerian.

Phenolics
(Sum)

Phenolic
Acids (Sum)

Chlorogenic
Acid

Gallic
Acid

Caffeic
Acid

p-Coumaric
Acid

Flavonoids
(Sum)

Quercetin-3-O-
Rutinoside

Quercetin-3-
O-Glucoside Quercetin Kaempfe-Rol Myricetin

mg/100 g f.w.

System (SYS)
Conventional 274 ± 6 1 238 ± 6 134 ± 5 41.8 ± 0.9 42.3 ± 1.6 19.7 ± 2.4 36.2 ± 0.3 16.9 ± 0.3 13.6 ± 0.3 0.71 ± 0.06 2.19 ± 0.10 2.84 ± 0.21

Organic 291 ± 14 253 ± 14 114 ± 4 70.7 ± 5.9 54.1 ± 4.6 13.6 ± 1.4 37.9 ± 1.1 16.5 ± 0.3 14.2 ± 0.7 1.56 ± 0.15 2.18 ± 0.11 3.51 ± 0.45
Year (YR)

Year 1 298 ± 11 261 ± 11 135 ± 5 61.4 ± 5.3 48.3 ± 3.6 16.4 ± 2.0 37.4 ± 0.8 16.9 ± 0.3 14.0 ± 0.5 1.11 ± 0.13 2.21 ± 0.11 3.13 ± 0.37
Year 2 266 ± 10 229 ± 9 113 ± 4 51.1 ± 4.3 48.1 ± 3.6 16.9 ± 2.1 36.8 ± 0.8 16.4 ± 0.3 13.8 ± 0.6 1.16 ± 0.13 2.16 ± 0.10 3.22 ± 0.35

ANOVA p-values
SYS 0.238 0.263 0.004 0.000 0.011 0.029 0.107 0.337 0.385 0.000 0.962 0.188
YR 0.027 2 0.022 0.001 0.030 0.977 0.837 0.571 0.238 0.771 0.746 0.728 0.849

SYS × YR 0.609 0.631 0.857 0.408 0.806 0.905 0.443 0.391 0.697 0.869 0.711 0.834

1 Data are presented as means ± standard errors; 2 significant ANOVA p-values (p < 0.05) are marked in bold.
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The outcome that there were no consistent effects of the cultivation system (organic
vs. conventional) on the concentrations of the analyzed phenolic compounds in the tested
samples of herbs was unexpected, since extensive meta-analyses that compare the com-
positions of organic and conventional vegetables and fruits have reported overall higher
levels of many groups of antioxidants, including phenolic acids and flavonoids, in organic
crops [20,35]. However, it is important to point out that the mentioned meta-analyses also
detected a considerable variation among individual studies and crop types/species, and
none of the original studies included in these meta-analyses specifically targeted lovage
and/or valerian as study objects.

The availability of nitrogen as well as the irradiation intensity were previously shown
as significant agronomic and environmental factors that impacted phenolics synthesis and
concentration in crops, with higher phenolic contents being linked to limited nitrogen
availability, typical for the organic systems [28,36]. However, in the study reported here,
the nitrogen availability pattern was not controlled; thus, we could not investigate the
relations between this potential explanatory factor and the level of phenolic compounds.
Pressure of diseases and crop pests are also considered as potential factors that can trigger
phenolic synthesis and result in higher concentrations of these compounds in plants, since
phenolics are known to play an important role in the plant resistance response to biotrophic
stresses [37]. The effect of year and cultivation system on the concentrations of some
of the measured compounds could, therefore, have been due to differences in pest and
disease pressure in both years and under both cultivation regimens. Higher disease and
pest incidence was previously indicated as the potential reason for higher concentrations
of phenolic and other resistance-related chemicals in organic compared to conventional
crops [29], even though this has not been confirmed in the controlled experiments [28,36].
It is important to point out that in the present field experiment, no chemical crop protection
was used in any of the two compared production systems. Thus, potential differences
in the pests and diseases pressure between the two systems could result from, i.e., the
differences in the fertility management applied and the crop rotation schemes. It was
previously reported that diversifying crop rotation, typical for the organic agronomic
systems, improves system robustness through enhancing crop resistance to and resilience
from biotic-induced disturbances [38].

In the present study, only roots of the two medicinal plants underwent the analyses
of phenolic acid and flavonoid content. Another study of lovage plants indicated that the
phenolic acid concentrations in various plant parts were as follows: roots 0.12–0.16%, herb
0.88–1.03%, stems 0.30–0.39%, leaf 1.11–1.23% and fruits 1.32–1.41% [14].

Table 3 and Figure 6 show the results on the antioxidant activity of the lovage and
valerian root samples expressed as the radical scavenging activity (RSA), equivalents of
ascorbic acid (AAE) and equivalents of quercetin (QE). Independent from the expression of
the results, no significant cultivation system-related differences in the antioxidant activity
of samples were detected (Table 3). Interestingly, while valerian samples from both years
were characterized as rather stable values of the measured parameters, the lovage samples
showed considerable between-year variation in all the three antioxidant activity measures
(expressions), with considerably higher values in the second year compared to the first year.
Moreover, the year-to-year differences were more pronounced in the case of organic lovage
samples than the conventional lovage samples (Figure 6).

The authors of the previously mentioned meta-analyses [20] have identified a large
number (over 150) of comparison studies that look into the antioxidant activity of various
organic and conventional crops, with a range of different methodologies. Both weighted
and unweighted meta-analyses confirmed a significantly higher antioxidant activity, on
average, in organically grown crops. However, a separate analysis of data obtained for
fruits and vegetables detected a significant difference for fruits, but only a trend towards
such a difference in the case of vegetables. Moreover, the power of the detected differences
varied largely depending on the specific antioxidant activity assays used. Again, none of
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the studies included in the mentioned meta-analysis focused on the antioxidant activity of
organic vs. conventional medicinal plants, such as lovage and valerian roots.

Table 3. The main effects of, and interactions between, the production system (conventional and
organic) and cultivation year on the antioxidant activity of dried lovage and valerian roots.

Lovage Valerian

RSA 1

(%)
AAE 2

(mg/g)
QE 3

(mg/g)
RSA
(%)

AAE
(mg/g)

QE
(mg/g)

System (SYS)
Conventional 51.2 ± 2.7 4 3.79 ± 0.36 3.62 ± 0.29 64.2 ± 3.2 3.45 ± 0.15 3.74 ± 0.16

Organic 42.9 ± 4.2 3.31 ± 0.59 3.19 ± 0.57 74.0 ± 3.6 3.91 ± 0.18 4.22 ± 0.18
Year (YR)

Year 1 40.3 ± 2.7 2.31 ± 0.34 2.17 ± 0.23 66.1 ± 4.1 3.58 ± 0.19 3.82 ± 0.20
Year 2 53.8 ± 3.5 4.79 ± 0.32 4.65 ± 0.29 72.2 ± 3.0 3.78 ± 0.16 4.14 ± 0.15

ANOVA p-values
SYS 0.053 0.295 0.234 0.059 0.069 0.055
YR 0.003 5 0.000 0.000 0.222 0.421 0.199

SYS × YR 0.308 0.097 0.078 0.640 0.674 0.649

1 RSA—radical scavenging activity; 2 AAE—ascorbic acid equivalents; 3 quercetin equivalents—QE; 4 data are
presented as means ± standard errors; 5 significant ANOVA p-values (p < 0.05) are marked in bold.
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Figure 6. The antioxidant activity of dried lovage (a–c) and valerian (d–f) roots grown in two
consecutive years in the organic and conventional system; expressed as: RSA—radical scavenging
activity; AAE—ascorbic acid equivalents; quercetin equivalents—QE. Data are presented as means
with standard errors. Within each figure plot, bars marked with different letters are significantly
different at the 5% level of probability.

Overall, the concentrations of antioxidants (i.e., phenolics) and the antioxidant activity
of plants are known to be variable, depending, among others, on plant genotype, cultivation
conditions and agronomic practices applied during cultivation, but also further post-
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harvest handling [39–42]. The results presented in this study, as well as those reported
by other researchers, show that there is a need for investigating the best conditions and
practices, increasing the crops’ potential for reaching high levels of health-promoting
bioactive compounds.

3.2. Associations between Composition Data of the Tested Medicinal Plants

Principal component analysis (PCA) was performed to further explore the possible
differences and similarities in the composition of lovage and valerian roots grown in
different cultivation systems (Figures 7a and 8a) and in two years (Figures 7b and 8b). The
analysis demonstrated that the cultivation system resulted in the clearer separation of the
results and explained a larger proportion of the variation than climatic differences between
the two growing years. This was especially evident in the case of valerian (Figure 8). The
PCA plot also shows a positive association between the organic cultivation system and
concentrations of the majority of the tested parameters (except for chlorogenic acid and
kaempferol concentration) in valerian (Figure 8a). A similar association was not observed
in the case of lovage (Figure 7a).
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Figure 7. Principal component analysis (PCA) biplot, showing the relationships between the chemical
composition of the dried lovage roots and (a) cultivation system and (b) year. AAE—ascorbic
acid equivalents, CA—caffeic acid, ChA—chlorogenic acid, dm—dry matter, FA—ferulic acid, Flav-
sum—flavonoids (sum), GA—gallic acid, Kaem—kaempferol, PhA-sum—phenolic acids (sum),
Pph-sum—polyphenols (sum), Q—quercetin, Q3OG—quercetin-3-O-glucoside, Q3OR—quercetin-3-
O-rutinoside, QE—quercetin equivalents, RSA—radical scavenging activity; PC1—the first principal
component, PC2—the second principal component.
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Figure 8. Principal component analysis (PCA) biplot showing the relationships between the chemical
composition of the dried valerian roots and (a) cultivation system and (b) year. AAE—ascorbic acid
equivalents, CA—caffeic acid, ChA—chlorogenic acid, dm—dry matter, Flav-sum—flavonoids (sum),
GA—gallic acid, Kaem—kaempferol, Myr—myricetin, pCA—p-coumaric acid, PhA-sum—phenolic
acids (sum), Pph-sum—polyphenols (sum), Q—quercetin, Q3OG—quercetin-3-O-glucoside, Q3OR—
quercetin-3-O-rutinoside, QE—quercetin equivalents, RSA—radical scavenging activity; PC1—the
first principal component and PC2—the second principal component.

Pearson’s analysis detected a range of significant correlations between the composition
parameters analyzed in both species of herbs (Figure 9a,b). In lovage, there was a strong
negative correlation between gallic acid and ferulic acid content (r = −0.74, p < 0.001) and
a strong positive correlation between gallic acid and kaempferol (r = 0.77, p < 0.001). In
valerian, positive associations were found between the content of gallic acid and caffeic acid
(r = 0.74, p < 0.001), quercetin-3-O-rutinoside (r = 0.46, p < 0.001), quercetin-3-O-glucoside
(r = 0.52, p < 0.001) and quercetin (r = 0.60, p < 0.001). Similar positive associations were
detected between the contents of caffeic acid and flavonoids, such as quercetin (r = 0.82,
p < 0.001) and quercetin-3-O-glucoside (r = 0.67, p < 0.001). At the same time, negative
associations were found between the concentrations of kaempferol and compounds, such
as p-coumaric acid (r = −0.49, p < 0.001) and quercetin-3-O-glucoside (r = −0.50, p < 0.001).
The detected interrelations could be explained by the biosynthesis and/or metabolism of
the listed flavonoid compounds and phenolic acids being closely linked, but also by the
fact that they are regulated by the same agronomic and environmental factors [43,44].
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Figure 9. Pearson’s correlations between the concentrations of the analyzed compounds identified in
(a) dried lovage roots and (b) dried valerian roots. Color (red/blue) and the color intensity indicate
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4. Conclusions

The present study shows that organic cultivation practices do not guarantee higher
concentrations of phenolic acids and flavonoids or higher antioxidant capacity of lovage
and valerian, when compared to the low-input (no chemical protection) conventional culti-
vation system. Additional efforts are needed to enhance the potential of organic medicinal
plants to consistently present the expected high concentrations of health-promoting antioxi-
dants, which could be effectively brought through their post-harvest handling, storage and
processing, and thus meet consumers’ expectations at the stage when they reach the market.
Performing research that could allow us to identify and promote strategies and specific
factors to enhance the health-promoting qualities of medicinal plants grown in alternative,
more sustainable systems is of interest for producers and consumers, who are increasingly
searching for produce with high quality features and a low environmental footprint.
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