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Abstract: The integration of surface-enhanced Raman scattering (SERS) and surface-enhanced
fluorescence (SEF) has attracted increasing interest and is highly probable to improve the sensitivity
and reproducibility of spectroscopic investigations in biomedical fields. In this work, dual-mode SERS
and SEF hierarchical structures have been developed on a single bio-metallic substrate. The hierarchical
structure was composed of micro-grooves, nano-particles, and nano-ripples. The crystal violet was
selected as reporter molecule and both the intensity of Raman and fluorescence signals were enhanced
because of the dual-mode SERS−SEF phenomena with enhancement factors (EFs) of 7.85 × 105 and
14.32, respectively. The Raman and fluorescence signals also exhibited good uniformity with the
relative standard deviation value of 2.46% and 5.15%, respectively. Moreover, the substrate exhibited
high sensitivity with the limits of detection (LOD) as low as 1× 10−11 mol/L using Raman spectroscopy
and 1 × 10−10 mol/L by fluorescence spectroscopy. The combined effect of surface plasmon resonance
and “hot spots” induced by the hierarchical laser induced periodical surface structures (LIPSS) was
mainly contributed to the enhancement of Raman and fluorescence signal. We propose that the
integration of SERS and SEF in a single bio-metallic substrate is promising to improve the sensitivity
and reproducibility of detection in biomedical investigations.

Keywords: hierarchical LIPSS; surface-enhanced Raman scattering; surface-enhanced fluorescence;
bio-metallic substrate; crystal violet

1. Introduction

Recently, surface-enhanced Raman scattering (SERS) has received increased research interest, as it
can allow for high sensitivity and selectivity in biochemical detection such as detection of carbaryl
pesticide residues, exploring the metabolism of bacterial cells and so on [1–4]. The enhancement factors
(EFs) of SERS is up to 1014, which makes it possible to detect a single molecule [5]. However, the long
measurement time together with the undesirable image resolution impede its practical applications in
biomedical fields. Surface enhanced fluorescence (SEF) is another powerful spectroscopic method in the
selective detection of bioanalytes. The intense electric field near the metallic tip can strongly enhance
the stimulating energy for the fluorescence molecular. Although the SERS and SEF have promising
potential in detecting biomedical signals, it is certainly challenging to study the two spectroscopic
approaches together [6–8].

Recently, the development of a multifunctional substrate that integrates various individual
functions into a single system attracts strong attention in nanotechnology fields [9,10]. It is reported
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that the sensitivity of biomedical spectroscopic is improved by the combination of the superior
advantages and synergistic effects of SERS and SEF. Kamalieva et al. [11] developed a composite
structure based on silver nanoparticles and a thin protective silicon film. In Kamalieva et al.’s
research, the Raman scattering and fluorescence signal of cyanine-dye emitters on formed composite
structure were enhanced by factors of 10 and 40, respectively. However, the obtained values of both
fluorescence and Raman scattering enhancement were too low compared to the previously reported
results. Cao et al. [12] integrated metal-enhanced fluorescence and Raman functions in a gold and
gelatin core-shell nanostructures. The enhancement factors of Raman and fluorescence signals were
found to be 3.1 × 104 and 4-fold, respectively. Furthermore, Cyrankiewicz et al. [13] studied the
enhancement properties of silver nanoparticles in SERS and metal-enhanced fluorescence (MEF). They
found that the agglomeration of nanoparticles (so-called “hot spots”) was a prerequisite for efficient
SERS. The maximal enhancement factor of Raman and fluorescence was 106 and 9-fold, respectively.
In Change et al.’s study [14], silver nanoparticles demonstrate both SERS and SEF properties. They
have found that metallic particles’ aggregation status together with the interval between metal structure
and emitters strongly influence the enhancement ratio.

Although many studies have been carried out to integrate SERS and SEF in a single platform,
almost all the multi-functional platform are metallic nanoparticles in solution. The main drawback for
this platform lies in the aggregation of metallic nanoparticles which can result in a poor reproducibility
of the prepared samples. Moreover, the fabrication process of nanoparticles is very complicated and
their biocompatibility needs to be further improved. That might be the limitation for the practical
applications of SERS and SEF systems in biomedical investigations.

In the current work, we fabricated a hierarchical LIPSS structure on Ti6Al4V substrate, which can
provide dual-mode enhanced spectroscopic properties by SEF and SERS. The proposed hierarchical
LIPSS was composed of micro-grooves, nano-particles, and nano-ripples. Crystal violet (CV) was
chosen as species reporter molecule to indicate Raman and fluorescent signal. The combined effect from
surface plasmon resonance and “hot spots” on enhancement factors of Raman and fluorescence signals
is studied. The results shows that the proposed SERS and SEF dual-mode bio-metallic substrate could
have great promise for ultra-sensitive detection in the biomedical investigations, such as biological
sensor, photonics, bioimaging, and so on.

2. Materials and Methods

2.1. Sample Preparation

The experiments were carried out on biomedical grade 5 Ti6Al4V alloy substrate with a thickness
of 1 mm and an area of 10 × 10 mm2. The Ti6Al4V is one of the most common biomaterials and is
widely used in the biomechanical area. Before the laser processing, the Ti alloy samples were polished
with a 400 to 2000 grit sequence of SiC papers. Then, the polished samples were cleaned in ultrasonic
bath for 5 min in alcohol. Large-area hierarchical structures were fabricated by Yb:KGW solid-state
laser diode (Pharos, Light Conversion) with a maximum power of 20 W and pulse duration of 230 fs in
ambient air. The central wavelength of laser was 1030 nm and the beam diameter was 35 µm.

2.2. Surface Characterization

Surface morphology of the irradiated areas were analyzed by a scanning electron microscope
(SEM, Quanta 450 FEG, FEI, Hillsboro, OR, USA). Atomic force microscopy (AFM, ICON, Bruker,
Madison, WI, USA) and 3D laser scanning confocal microscope (VK100, Keyence, Osaka, Japan) were
utilized to measure the topography of the hierarchical structure.

2.3. Reflectance and Absorption Spectroscopy

The reflectance and absorption spectrum of the untreated surface and prepared hierarchical LIPSS
were recorded by a UV-vis-NIR (Ultraviolet-Visible-Near Infrared) spectrophotometer (UV3600,
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Shimadzu Scientific Instruments, Kyoto, Japan) with an integrating sphere (MPC-3100) in the
wavelength range from 250 to 700 nm.

2.4. Raman and Fluorescence Spectroscopy

Crystal Violet (CV) (purity 98%) was purchased from Sigma-Aldrich (Saint Louis, MO,
USA). The diluted solutions with various concentrations were prepared in ethanol (99.8% HPLC
(High Performance Liquid Chromatography) grade). Droplets of CV solution was placed onto the
prepared surface and dried in air. Raman spectra were measured using a Raman microscope (HR800,
Jobin Yvon, Paris, France). A He-Gd laser operating at wavelength of 325 nm was applied for the
Raman excitation. An 1800 g/mm diffraction grating is used to disperse the Raman spectra onto the
CCD (Charge-coupled Device). The excitation laser was focused by an objective lens with a numerical
aperture of 50, which was also used to collect scattering light (Raman signal) in back-reflection.
Fluorescence spectrum with an excitation wavelength of 580 nm was recorded from a fluorescence
spectrophotometer (F-7000, Hitachi, Tokyo, Japan). For steady-state measurements, the scan speed was
set to be 1200 nm/min. The excitation and emission slit width of the fluorescence spectrophotometer
were both set to be 5 nm. Unless specially emphasized otherwise, the above conditions were applied
for all Raman and fluorescence measurements.

3. Results and Discussion

3.1. Topography of the Hierarchical LIPSS

Figure 1 shows the evolution of hierarchical LIPSS at various laser scanning cycles. Figure 1b
shows the LIPSS scanned by five cycles with an average laser fluence of 0.12 J/cm2, which was
slightly higher than the material damage threshold (~0.1 J/cm2) [15]. The formation of LIPSS on
the substrate was mainly attributed to the interference between incident laser and the laser induced
surface plasmon wave [16]. During the interference process, the laser intensity was redistributed
into a periodic pattern on the air solid interface. The materials around laser intensity peak that is
above the damage threshold could be removed and LIPSS were therefore formed [17–19]. Hierarchical
LIPSS consisted of micro-grooved surfaces covered by nano-particles and nano-ripples were obtained
at scanning cycles of 20, as shown in Figure 1c. With further increasing the scanning cycles to 30,
however, the LIPSS was destroyed due to the excessive laser energy input. The inset of Figure 1
shows that LIPSS structures were covered by random nanoparticles, which were believed to cause
high EFs due to the creation of “hot spots” [20]. It is believed that the nanoparticles are generated
by laser caused fluid fragmentation [21]. During the femtosecond laser-surface interaction, the laser
energy was rapidly deposited onto the substrate, causing lattice vibration and temperature rise in short
time. The energetic melting fluid with high pressure was thereby created. Then the fluid expanded
into the air, the mechanical bonds were broken by the strain associated with the fast expansion of
melting, which resulted in fluid fragmentation [22,23]. The particle size was measured manually
using an open source image processing software ImageJ (NIH, Bethesda, MD, USA), where a total
of ∼100 nano-particles were measured to obtain an average dimension. As shown in Figure 1, three
LIPSS substrates were fabricated at laser scanning cycles of 5, 20, and 30. The nano-particles density
first increased from 6.5 × 106/mm2 to 9.3 × 106/mm2, then decreased to 2.9 × 106/mm2 and the average
diameter of nano-particles was 41 nm, 48 nm, and 130 nm, respectively. Previous studies show that
nano-particles with a diameter of 50 nm produced the maximum SERS enhancement [24]. In order
to further investigate the LIPSS’s enhancement effect in Raman and fluorescence, in the following
studies, the laser scanning cyclesof 20 that can produce the 48 nm nanoparticle is selected as the optimal
experimental condition to prepare the substrate.

The 45◦ view of hierarchical LIPSS were shown in Figure 2a and magnification of nano-particles
and LIPSS were shown in Figure 2b,c. Nano-particle aggregation was clearly seen in Figure 2b. This
aggregation can concentrate the incident electromagnetic field and effectively amplify the near field
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between and around the nanoparticles, which is believed to be associated with the “hot spots” [25].
It was found that the size distribution of nano-particles varied from 20 nm to 110 nm. The average
periodicity and depth of the micro-grooves was 30 µm and 8 µm, respectively, as illustrated in Figure 2e.
In Figure 2f, the spatial period of nano-ripples was found to be 890 nm, which was less than the laser
wavelength of 1030 nm. This could be attributed to the increment of the real part of the material
refractive index due to the higher surface roughness during the laser processing [26,27].
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Figure 2. Micrograph of hierarchical laser induced periodical surface structures (LIPSS): (a) 45◦ view
of scanning electron microscope (SEM) image; (b) magnification of nano-particles; (c) magnification
of LIPSS; (d) the size distributions of nanoparticles; (e) 3D surface topography (left), height profiles
of hierarchical LIPSS (right); (f) Atomic force microscopy image of the LIPSS; height profiles of
nano-ripples (right).

3.2. Optical Properties

To investigate the far-field optical properties of the fabricated structures and select the optimal
wavelength to excite the Raman signal, the optical absorption and reflection properties of hierarchical
LIPSS, LIPSS, and untreated substrate were measured in the wavelength range from 250 to 700 nm,
as presented in Figure 3. Compared to the untreated substrate, the reflection of hierarchical LIPSS
and LIPSS substrates decreased by more than 15% and 10%, respectively. This reflection decrease was
attributed to the localized surface plasmon resonance (LSPR) induced change in optical absorptive
properties [28]. Because of the efficient LSPR excitation resulting from the micro-grooves, the hierarchical
LIPSS substrate showed lower reflection values than those of LIPSS. As indicated in Figure 3b, a red
shift of the spectrum peak can be seen from LIPSS and hierarchical LIPSS. This phenomenon is because
of the interaction among the LIPSS. Moreover, the hierarchical LIPSS and LIPSS substrate showed
broadband light absorption, which was attributed to the broad size distribution of the nanostructures
that can cause surface plasmon resonant at various wavelength [29].

In Figure 3, the maximum absorption wavelength of untreated, LIPSS, and hierarchical LIPSS
substrate are 278 nm, 287 nm, and 305 nm, respectively. It is generally known that the common laser
excitation wavelengths used in the Raman microscope were 325 nm, 532 nm, 633 nm, and 785 nm,
respectively. According to the absorption spectra of the substrates, the light absorption at 325 nm
wavelength appeared to be higher than that at other common wavelengths, which was beneficial to the
surface plasmon resonance. Therefore, 325 nm excitation was chosen for the Raman test.
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3.3. SERS Characteristics

The CV solution was used to investigate the sensitivity and reproducibility of SERS signal.
As shown in Figure 4, the spectra in the range from 300 to 1800 cm−1 were recorded with 20 µL of
CV solution at a concentration of 10−3 mol/L dropped onto the untreated, LIPSS, and hierarchical
LIPSS substrate. It can be seen that the typical Raman peaks of CV located at 802, 913, 1175, 1229,
1539, 1583, and 1618 cm−1 were clearly observed [30,31]. The results showed that the intensity of the
Raman signal was greatly increased with the use of LIPSS and hierarchical LIPSS substrate. Moreover,
the hierarchical LIPSS substrate exhibited a much higher Raman intensity than that of LIPSS substrate.
This significant enhancement indicated that hierarchical nanostructure played a very important role
in the generation of electromagnetic enhancement that induced a significant enhancement of SERS
signals from the adsorbed CV molecules.
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The enhancement factors (EFs) were used to quantify the Raman enhancement of different
substrates and were estimated by the following formula [32,33]:

EFSERS =
ISERS
IRaman

×
NRaman

NSERS
(1)
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where ISERS and IRaman are the intensities of the selected Raman peaks on SERS and untreated substrate,
NSERS and NRaman are the number of CV molecules adsorbed on SERS and untreated substrate.
The average number of adsorbed CV molecules (N) in laser illumination volume of testing areas was
estimated by the following formula

N = cV (2)

where c and V are the concentration of CV molecules and laser illumination volume, respectively.
It is assumed that the CV molecules are distributed homogenously on different substrates once the
CV solution was dropped and dried [34–36]. Therefore, the EFs can be estimated by the following
formula [37]:

EFSERS =
ISERS
IRaman

×
CRaman

CSERS
(3)

where CSERS and CRaman are the concentration of CV solution used for SERS and untreated substrate,
respectively. In this work, the intensity of peaks located at 913, 1175, 1229, 1539, 1587, and 1618 cm−1

were used to estimate the EFs. As listed in Table 1, the calculated EFs of CV on LIPSS and hierarchical
LIPSS substrate are up to 3.59 × 104 and 7.85 × 105, respectively.

Table 1. Peak position value of the surface-enhanced Raman scattering (SERS) spectra and calculated
enhancement factors (EFs) of Crystal Violet (CV) adsorbed on LIPSS and hierarchical LIPSS substrate.

Peak (cm−1) 913 1175 1229 1539 1587 1618

LIPSS 8.83 × 103 1.99 × 104 2.15 × 103 8.29 × 103 3.59 × 104 2.16 × 104

Hierarchical LIPSS 2.82 × 104 6.27 × 104 7.85 × 105 7.28 × 104 2.32 × 105 1.36 × 105

The excitation of surface plasmon resonance (SPR) with a strong field enhancement, known as
electromagnetic mechanism, is the main contribution to SERS enhancement [38]. It is known that
the SPR can occur in two different forms: the localized SPR (LSPR) and the propagating surface
plasmon polariton (SPP) [39]. In this work, the LSPR occurs when the dimension of the nanoparticles
(average size 48 nm) was much less than the incident light wavelength (325 nm). In this range,
the electron displacement against the atomic cores led to collective but non-propagating surface
electrons oscillations in the nanostructure [40,41]. Strong local electric fields induced from the LSPR is
the reason for the enhanced signal. Moreover, the sparse and randomly distributed nano-particles
(known as “hot spots”) could also cause small areas of greatly enhanced electromagnetic field [42].
Therefore, the Raman signal was enhanced on the hierarchical LIPSS and LIPSS substrates. Moreover,
when hierarchical LIPSS was illuminated by incident light, the surface plasmon mode generated in
nano-particles could also propagate along the micro-grooves, which produced more “hot spots” and
the local electric fields was further enhanced in hierarchical LIPSS [43]. Furthermore, the hierarchical
LIPSS could provide larger surface areas to deposit more “hot spots” [44]. Thus, the stronger localized
electric fields in the hierarchical LIPSS produced higher Raman enhancement than LIPSS. The SPP
induced by the nano-ripples and micro-grooves was also responsible for the stronger Raman signal.
The wave-vector of SPP can be estimated by the following formula:

kspp =
2π
λ

√
εmεe

εm + εe
(4)

where λ, εm and εe are the wavelength of the incident light, the permittivity of the substrate and
CV, respectively.

The wavelength of SPP can be estimated by employing the following formula:

λspp =
2π
kspp

= λ

√
εm + εe

εmεe
(5)
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In the current work, the λ, εm, and εe is 325 nm, 114 [45], and 5 [46], respectively. According to
Equation (4), the λspp is 147.50 nm. The period of nano-ripples and microgrooves is 890 nm and 31 µm,
respectively, which is the 6.03 and 210.17 times of the SPP wavelength. Considering the measuring
errors, the grating period was 6 and 210 multiples of the SPP wavelength, respectively, which could
effectively excite the SPP [47].

The sensitivity of the SERS substrate was studied with different CV concentrations ranging from
10−11 mol/L to 10−3 mol/L dropped onto the hierarchical LIPSS substrate and their Raman spectra
under 325 nm excitations were recorded in Figure 5a. The intensity of Raman signal decreased with
decreasing CV concentration. The inset picture in Figure 5a showed that the spectra peaks of CV with
a concentration of 10−11 mol/L. The plot of Raman intensities for CV at 1583 cm−1 showed a good
linear correlation between the SERS intensity and the CV concentration ranging from 10−3 to 10−11

mol/L. As illustrated in Figure 5b, the linear equation was y = 9537.74 + 863.95x (x represented the
logarithm of concentration, y represented the Raman intensity at 1587 cm−1). As shown in Figure 5a,
the limit of detection (LOD) of CV was about 1 × 10−11 mol/L, which was comparable to the previous
results (from 10−14 mol/L to 10−6 mol/L) [48,49]. Therefore, the SERS substrate shows good sensitivity
for detecting CV molecules at low concentration.Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 14 
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Figure 5. (a) SERS spectra of CV with the concentration decreased from 10−3 to 10−11 mol/L. Inset
shows the detailed view of SERS spectra of CV at 10−11 mol/L; (b) plot of Raman intensities for CV at
1583 cm−1 with different concentrations.

In order to study the reproducibility for SERS testing, 20 different locations on the substrate
were randomly selected to collect the SERS signal at CV concentration of 10−10 mol/L, as illustrated
in Figure 6a. The major band of CV was used to evaluate the reproducibility of the Raman signal
intensity, as shown in Figure 6b. A maximum RSD (relative standard deviation) value of 7.87% for
Raman intensities of the 422 cm−1 was obtained. Meanwhile, the SERS intensities at 1539 cm−1 showed
the lowest RSD value of 2.46%. Hence, the hierarchical LIPSS substrate could work as a substrate with
high sensitivity as well as good reproducibility in detecting CV molecules.



Nanomaterials 2019, 9, 916 9 of 14

Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 14 

 

 
Figure 5. (a) SERS spectra of CV with the concentration decreased from 10−3 to 10−11 mol/L. Inset shows 
the detailed view of SERS spectra of CV at 10−11 mol/L; (b) plot of Raman intensities for CV at 1583 
cm−1 with different concentrations. 

In order to study the reproducibility for SERS testing, 20 different locations on the substrate were 
randomly selected to collect the SERS signal at CV concentration of 10−10 mol/L, as illustrated in Figure 
6a. The major band of CV was used to evaluate the reproducibility of the Raman signal intensity, as 
shown in Figure 6b. A maximum RSD (relative standard deviation) value of 7.87% for Raman 
intensities of the 422 cm−1 was obtained. Meanwhile, the SERS intensities at 1539 cm−1 showed the 
lowest RSD value of 2.46%. Hence, the hierarchical LIPSS substrate could work as a substrate with 
high sensitivity as well as good reproducibility in detecting CV molecules. 

 
Figure 6. (a) SERS spectra of CV with the concentration of 10−10 mol/L absorbed on hierarchical LIPSS 
collected from 20 locations from the substrate; (b) RSD(relative standard deviation) value of the major 
Raman peaks of CV spectrum. 

3.4. SEF Characteristics 

The CV molecules were also used to investigate the surface enhanced fluorescence (SEF) effects 
on the different substrates by detecting the intensity of fluorescence spectrum. The fluorescence 
extinction spectra of CV adsorbed on hierarchical LIPSS substrate was shown in Figure 7a. At the 
peak of 580 nm, the CV on the hierarchical LIPSS exhibited obvious plasmon resonance bands due to 
the electron oscillations [50]. According to the extinction spectra, the 580 nm wavelength was used 
for extinction emission spectrum of CV. As shown in Figure 7b, 20 μL of CV solution at a 
concentration of 10−3 mol/L was dropped onto the different substrates and the fluorescence spectra 

Figure 6. (a) SERS spectra of CV with the concentration of 10−10 mol/L absorbed on hierarchical LIPSS
collected from 20 locations from the substrate; (b) RSD(relative standard deviation) value of the major
Raman peaks of CV spectrum.

3.4. SEF Characteristics

The CV molecules were also used to investigate the surface enhanced fluorescence (SEF) effects on
the different substrates by detecting the intensity of fluorescence spectrum. The fluorescence extinction
spectra of CV adsorbed on hierarchical LIPSS substrate was shown in Figure 7a. At the peak of 580 nm,
the CV on the hierarchical LIPSS exhibited obvious plasmon resonance bands due to the electron
oscillations [50]. According to the extinction spectra, the 580 nm wavelength was used for extinction
emission spectrum of CV. As shown in Figure 7b, 20 µL of CV solution at a concentration of 10−3 mol/L
was dropped onto the different substrates and the fluorescence spectra ranging from 825 to 900 nm were
recorded. It is found that both LIPSS and hierarchical LIPSS substrates could enhance the fluorescence
of CV at 880 nm. It should be noted that the fluorescence on the hierarchical LIPSS substrate showed
larger enhancement than that from LIPSS substrate.
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By comparing the peak at 880 nm, the EF is found to be around 3.25 and 14.32 for LIPSS and
hierarchical LIPSS based on the following equation:

ESEF =
ISEF − Ibackground

Ire f erence − Ibackground
(6)

where ISEF is the fluorescence intensity of CV from LIPSS or hierarchical LIPSS, Ireference is the fluorescence
intensity from CV, and Ibackground is the background spectra intensity.
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The LSPR from the collective electrons oscillation of the nanostructures was considered to be
the mainly reason for the SEF enhancement [51]. As illustrated in Section 3.3, the LSPR and “hot
spots” could induce extremely high local electric fields, leading to the an enhanced excitation rates and
efficiency [52]. Then, the fluorescence emission coupled surface plasmon caused the incensement of
radiative decay rate, leading to the fluorescence signal enhancement [53]. The increased fluorophores
radiative decay rate and enhanced local field would increase both the quantum yield rates and the
excitation efficiency, resulting in the enhancement of the fluorescence emission of CV near LIPSS.
Moreover, the hierarchical LIPSS could enlarge the surface area with more complicated morphology,
leading to stronger coupling effect with fluorophores and localized fields. Therefore, the hierarchical
LIPSS substrate produced higher fluorescence enhancement than LIPSS.

Figure 8a shows the SEF spectra of CV with the concentration from 10−3 to 10−11 mol/L using the
hierarchical LIPSS substrate. The fluorescence signal of CV with the concentration of 10−11 mol/L was
barely observed, which indicated that the LOD was about 1 × 10−10 mol/L, as shown in the inset of
Figure 8. The plot of fluorescence intensities for CV also showed a well linear correlation with CV
concentration ranging from 10−3 mol/L to 10−10 mol/L, as shown in Figure 8b. The linear equation was
y = 12329.96 + 1110.56x (x was the logarithm of CV concentration; y was the fluorescence intensity;
the correlation coefficient R2 was 0.972).Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 14 
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To test the reproducibility of SEF substrates, fluorescence spectra of CV (1 × 10−10 mol/L) were
collected from twenty different locations on the hierarchical LIPSS substrate, as illustrated in Figure 9a.
In column graphs of Figure 9b, the relative RSD estimated by the fluorescence intensities of 880 nm
was 5.19%. These results indicated the hierarchical LIPSS substrate also had favorable sensitivity and
reproducibility for detecting CV fluorescence.
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4. Conclusions

In this work, we have studied the hierarchical LIPSS structure fabricated by femtosecond laser on
Ti6Al4V substrate with the purpose to provide a proof for integrating both SERS and SEF’s enhancement
capabilities into a single substrate, in which CV was employed as Raman and fluorescent probes.
The main conclusions are listed as follows:

1. The hierarchical LIPSS structure consisting of micro-grooves, nano-ripples, and nano-particles
with strong SPR was produced by one-step femtosecond laser processing, which may open up
new possibilities in both SERS and SEF.

2. Due to the combination effect of SPR and “hot spots”, the hierarchical LIPSS substrate exhibits an
ultra-sensitive detectability, which shows an EFs of 7.85 × 105 for CV and LOD of 10−11 mol/L.

3. The intensity of the CV fluorescence on the hierarchical LIPSS substrate was enhanced by about
14 times with the LOD of 1 × 10−10 mol/L, which is attributed to the LSPR and “hot spots” from
the hierarchical LIPSS.
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