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ABSTRACT
The giant multifunctional protein “OBSCURIN” is encoded by OBSCN gene and 

is mostly expressed in cardiac and other skeletal muscles responsible for myofibrils 
organization. Loss of OBSCURIN affects the entire downstream pathway proteins 
vital for various cellular functions including cell integration and cell adhesion. The 
OBSCN gene mutations are more frequently observed in various muscular diseases, 
and cancers. Nevertheless, the direct role of OBSCN in tumorigenesis remains elusive. 
Interestingly, in clinical breast cancer samples a significant number of function 
changing mutations have been identified in OBSCN gene. In this study, we identified 
a significant role of OBSCN by conducting an integrative analysis of copy number 
alterations, functional mutations, gene methylation and expression data from various 
BRCA cancer projects data available on cBioPortal and TCGA firebrowse portal. Finally, 
we carried out genetic network analysis, which revealed that OBSCN gene plays a 
significant role in GPCR, RAS, p75 or Wnt signaling pathways. Similarly, OBSCN gene 
interacts with many cancer-associated genes involved in breast tumorigenesis. The 
OBSCN gene probably regulates breast cancer progression and metastasis and the 
prognostic molecular signatures such as copy number alterations and gene expression 
of OBSCN may serve as a tool to identify breast tumorigenesis and metastasis.

INTRODUCTION

Cancer in humans is a huge health burden in 
modern era worldwide. In recent years cancer genomics is 
assumed as a latest advancement in cancer research, which 
starts from disease identification and leads to personalized 
therapy. Owing to this scientific advancement, several key 
genetic elements have been identified and characterized in 
various cancer types. In human carcinogenesis events, cells 
lose their adhesion, integrity and others morphological 
characteristics and gain the invasive and migratory 
properties leading to cellular transitions which are called 
epithelial-to-mesenchymal transition (EMT), which is the 
most crucial step in initiating cancer metastasis [1, 2]. 
Large number of genes and their corresponding proteins 
are involved in EMT associated pathway including 
OBSCURIN. The giant OBSCURIN is encoded by unique 
gene called OBSCN located on chromosome 1 at loci 
q42 [3]. The giant OBSCURIN has two isoforms namely 

OBSCURIN-A & B [4–6]. The OBSCURIN-A comprises 
of immunoglobulin (Ig) and fibronectin type-III domains 
located in the amino terminal while in carboxyl terminal 
contains several signaling domains including Isoleucin & 
Glutamine calmodulin-binding (IQ), SRC homology-3 
(SH3) domains, pleckstrin homology (PH) and a Rho-
guanine nucleotide exchange factor (Rho-GEF) domains 
which are scattered in the non-modular sequences. The 
OBSCURIN-B or myosin light chain kinase (MLCK) 
isoform contains two serine/threonine kinase (STK) 
domains, which replace the non-modular carboxyl 
terminus of OBSCURIN-A. Additional to these domains, 
ERK kinase domain exists for phosphorylation along with 
two Ig domains [3, 4, 7, 8]. Every OBSCURIN domain 
regulates vast number of cellular and functional roles 
such as cell adhesion, migration and cell morphology, 
etc. Apart from these functional roles, OBSCURIN-A/B 
are also involved in cellular co-ordination that prevents 
cells from going in an EMT process [4, 9]. OBSCURIN 
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MLCK family domains chiefly maintain the cellular 
organizations and contractility [10]. Moreover, a huge 
number of copy number alterations and mutations were 
observed in OBSCN gene in many cancer types, although, 
OBSCN is highly mutated in breast cancer. The main study 
is to uncover the functional mutations and the active role 
of OBSCN in breast tumorigenesis. A few studies on this 
gene also proved that, the reduced or altered OBSCN 
gene expression largely disturbs the cellular integration 
and activates cancer initiation; therefore, OBSCN may 
function as a tumor suppressor gene and prevent cellular 
transition [11, 12]. OBSCN gene is mostly expressed in 
many cancer types although the real functional association 
in cancer is still uncertain. Several studies on OBSCN 
gene mutations revealed potential roles of OBSCURIN 
in melanoma, glioblastoma, colorectal, lung, breast and 
pancreatic cancer [13–15]. Also, our recent study on breast 
cancer driver mutations genes also emphasized OBSCN 
as one among the 63 top candidate driver genes [16]. 
Here we will mainly focus on copy number variation, 
non-silent mutations, promotor methylation followed 
by epigenetic changes and their consequences in breast 
cancer formation.

Mutations and expression of OBSCN: genetic 
predisposition to tumorigenesis

Recent advances in high throughput sequencing 
support genomics in a magnificent way. In every 
cancer, vast numbers of genes are mutated, therefore the 
identification of real genetic elements responsible for 
carcinogenesis becomes quiet challenging. OBSCN gene 
is frequently and consistently mutated in various cancers 
with a strong correlation with breast, colorectal and other 
female related cancers. Recent studies revealed that 
TP53 and OBSCN genes are highly mutated among 189 
candidate genes in breast and colorectal cancers [13, 17]. 
However, scientific background on OBSCN mutation 
and its impacts are limited in comparison to the other 
key genes involved in breast cancer [18, 19]. Mutations 
in OBSCN gene (> 15%) are observed in breast cancer 
patient samples published by TCGA. Furthermore, a 
recent study on OBSCN gene in breast cancer revealed 
that the loss of giant OBSCURIN protein increases the 
cell migration with more metastatic characteristics [20]. 

However, recent studies revealed that OBSCURIN 
expression loss causes functional abnormality, which 
increases the probability of cancer in human breast 
epithelial cells. Perry et al. (2012) found that knocking 
down OBSCN significantly affected breast epithelial 
cells in both growth and biological property, such as 
cellular adhesions, cell-cell communications, etc. As 
a result, expression level of other interlinked proteins 
such as E-cadherin, α and β-catenin involved in cell-cell 
junctions were largely affected. Meanwhile, an elevated 
level of p120-catenin prevents the cell adhesion and 

stimulates mesenchymal proteins, which stimulate cellular 
morphogenesis leading to metastasis [21–23]. The actin 
and microtubule cytoskeleton dysregulation is responsible 
for cellular transformation and migration found in many 
cancers and activation and deactivation of Rho-GTPase 
family proteins majorly regulates actin filaments through 
Ras homolog gene family, member A (RHOA) signaling. 
The loss of OBSCN caused RHOA signaling impairment 
leading to breast cancer initiation, progression and 
metastasis. [12, 24–28]. The consequent event of OBSCN 
loss may also affect tubulin microtentacles (McTN) 
formation. McTN is the key process in metastatic 
breast cancer and it increases metastatic probability and 
endothelial coupling followed by circulating tumor cells 
(CTC) [29–31]. 

Similarly, low levels of epithelial proteins accelerate 
phenotypic changes in cells, which further affect focal 
adhesion and increase of F-actin dynamics in cell-cell 
contacts [28]. Another interesting study proved that, an 
active oncogene, K-RAS in the OBSCN knockdown cells 
increases tumorigenesis probability [9]. The OBSCN down 
regulation also affected RHOA-mediated pathways leading 
to dramatic reduction of Rho activated kinase (ROCK) and 
its targeting proteins such as myosin light chain (MLC), 
lim kinase (LimK) and cofilin [4, 8, 22, 29, 30]. In this 
study, we reviewed and analyzed OBSCN gene and its 
association with breast cancer. The high throughput 
sequencing data for breast cancer mutations in clinical 
samples were retrieved from various breast cancer projects 
available in cBioPortal (www.cbioportal.org), Pan-Cancer 
(https://www.synapse.org), mRNAseq and Methylation 
data were retrieved from Firebrowse (http://firebrowse.
org/) data portal, which provides multi-tier cancer 
analysis. The analyses of the overall mutation rates and 
the mutational patterns of OBSCN gene, as well as their 
impact on downstream pathways may help us to predict 
feasible drug targets for breast cancer. 

The OBSCN mutations in human cancers using 
high throughput analysis

Apart from breast cancer, OBSCN gene is 
widely mutated in many other cancer types as well 
(Supplementary Figure 1) (www.cbioportal.org). Among 
the various cancer types breast cancer cases are observed 
with significant numbers of OBSCN mutations (n = 819) 
with average mutation frequency of 18%. The overview of 
this work and study selection are given in the Figure 1. The 
overall mutations percentage of OBSCN gene in various 
breast cancer projects are illustrated in Figure 2 (www.
cbioportal.org). The large numbers of functional mutations 
were observed and OBSCN copy number analyses were 
performed using GISTIC program and many copy gain, 
amplification and few deletion mutations were observed 
in major breast cancer projects data (Figure 3). From the 
overall DNA copy number analysis, we found that OBSCN 
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Figure 3: GISTIC copy number analyses of OBSCN gene in various breast cancer projects found with more number 
of gain and amplification mutations.

Figure 2: Overall OBSCN gene mutations across various breast cancer projects data of cBioportal. (A) number of OBSCN 
mutations/copy number variations found in each project; (B) Distribution of OBSCN gene mutations across the patient samples (%).

Figure 1: Flow diagram summarizing selection and validation of the present meta-analysis on OBSCN gene.
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gene had more number of copy gain and amplification 
mutations and these variations may potentially affect the 
giant OBSCURINs protein level and their subsequent 
expression. 

The significant copy number alterations are 
observed and their outcomes are predicted using GISTIC 
copy number analysis [32]. The overall mutation profiles 
of OBSCN gene in breast cancer shallow loss, diploid, 
gain and high level amplifications are classified based on 
distinctive copy number profiles and their clinical settings 
[33, 34]. This analysis also revealed a huge number of 
gain and high level amplification mutations in OBSCN 
gene found in invasive ductal carcinoma (IDC), followed 
by invasive lobular carcinoma (ILC) and so on. These 
results indicated that OBSCN gene might play an active 
role in invasion of cancer cells to distant organs and other 
metastatic processes. The subsequent mRNA expression 
analysis was performed using breast cancer patient 
data and based on the median Log2 value, the OBSCN 
gene is seen down regulated in majority of the mutated 
TCGA data. To confirm the OBSCN gene expression 
we also compared with other well-known breast cancer 
genes such as TP53, PIK3CA, ARID1A, BRCA1, etc. and 
found that these genes had closer expression levels and 
it indicated that OBSCN gene mutations may also have 
a positive correlation with breast cancer dispositions 
(Figure 4) (https://cran.r-project.org/); (www.cbioportal.
org); (https://cancergenome.nih.gov/). In addition to 
that, OBSCN methylation profiles were also assessed 
using breast cancer methylation data by calculating 
beta value and found OBSCN gene apparently hyper-
methylated. Then we compared methylation profiles of 
OBSCN gene over various cancer types and found the 
gene is hyper-methylated in breast cancer data, which 
indicates its methylation may also play an important role 
in disease etiology. We used promotor methylated and 
gene expression samples of OBSCN gene from TCGA 
wanderer (http://maplab.imppc.org/wanderer/). The 
OBSCN methylation and gene expression was compared 
with normal (n = 98) and tumor (n = 720) samples at 
cg09411356 and interestingly, the hyper methylation on 
OBSCN gene significantly reduced gene expression in 
tumor than the normal samples. The detailed methylation 
profile of single probe and its corresponding gene 
expression and comprehensive comparison of methylation 
pattern over major cancer types is depicted in Figure 5. 
(https://xenabrowser.net/#). The downregulation of 
OBSCN may affect cell-cell adhesion of breast epithelial 
cells and cells undergo EMT process [12]. Further we 
analyzed the expression of OBSCN gene in various 
immunohistochemical breast cancer molecular subtypes. 
Nearly 73% cases found with luminal A (46.99%) and 
luminal B (26.05%) type of disease followed by other 
subtypes including basal (10.7%), Her2(8.9%), normal 
(3.78%) and claudin-low (3.56%). These molecular 
subtypes classifications distinctly emphasized, OBSCN is 

vital gene may involve in the cell proliferation. Moreover, 
several previous studies on OBSCN gene mutations and its 
association with other cancers were identified by intensive 
literature search and the detailed information such as 
cancer types, mutation profiles, co-mutating genes, amino 
acid variations and supporting citations are tabulated 
(Table 1). 

Functional analysis of differentially expressed 
OBSCN gene in breast cancer

Mutations in the OBSCN gene largely affect 
various interlinked proteins involved in cell adhesion and 
integration process [52]. Functional mutations in OBSCN 
largely affects E-cadherin, α-catenin and β-catenin 
expressions which initiate epithelial cells dispersions and 
subsequently increase the level of F-actin followed by 
cell migration [20, 53–55]. Actin filaments are vital for 
cellular mechanistic amoeboid movements accelerated 
by filapodia or pseudopodia like structures formed in 
cytoplasmic regions [56, 57]. A recent study showed that 
OBSCN functional gene mutations are responsible for the 
loss of vital protein expressions [21]. The loss of OBSCN 
appears to be consequent event in primary to metastatic 
breast cancer majorly affecting cellular integration. The 
protein kinases (PKs) are from the larger protein family 
involved in various cellular, structural and functional 
mechanisms in humans. The Serine/Threonine Kinase 
(STK) is one of the important protein kinase involved 
in cellular cytoskeletal and integration roles such as cell 
proliferation, differentiation and apoptotic process, etc. 
[58, 59]. The STK actively binds with p120-catenin and 
regulates cadherin facilitated intercellular adhesions and 
E-cadherin-p120 bound complex also plays a crucial role 
in maintaining the equilibrium of cadherin levels [60, 61]. 
The OBSCN mutations affect E-cadherin level, lead to 
flux in adherens junctions and increase cell disintegration 
followed by cell movement [62]. The OBSCN gene 
mutations heavily affect STK protein activity and also 
act as a ligand for small ankyrin1 (sANK1). sANK1 
are integral proteins to the fundamental spectrin-actin 
cytoskeleton involved in cellular movement activation 
and proliferation, which cause metastasis [63]. Moreover, 
OBSCN gene also acts as a kinome regulatory element that 
regulates few other kinase family proteins in either direct 
or indirect manner. 

Gene interaction analysis revealed that OBSCN 
gene is positively correlated with protein binding 
and cell transition associated genes

The OBSCN gene mutations have significant 
relationship with genes responsible for cellular structural 
and functional roles. Also, the expression of OBSCN 
gene is positively correlated with few other genes such 
as TOP1MT, MYC, TARPBP1, ADCK3, TRIM17, and 
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Figure 4: Comparative evaluation of OBSCN gene expression pattern with other known breast cancer genes shows 
OBSCN gene has similar expression pattern with some of the known breast cancer driver genes.

Figure 5: (A) OBSCN methylation profiles of normal (n = 98) and breast tumor samples (n = 720) comparison; (B) Gene expression 
comparison between normal and tumor samples; (C) Comparison of methylation profiles showed that OBSCN gene largely hypermethylated 
in breast cancer than other cancer types.
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RND2. Initially we used metastatic breast cancer data 
(Metastatic Breast cancer-France 2016) for network 
analysis and revealed many participating genes such as 
RHOT2, RAC3, RHOD, ARHGEF7, PAK1, PDPK1, 
AKT3, RIPK2, ERBB2, PRKD1, etc. which are positively 
correlated with amplification mutations and have strong 
association with cell proliferation, differentiation, 
tumorigenesis and other metastasis features. Similarly, 
we used British Columbia Xenografts (British Columbia, 
Nature 2014) data linked with many interesting genes such 
as RHOB, ITSN1, RHOD, ERBB2, AKT3, BRAF, CDK1, 
MASTL along with eight more genes which were highly 
correlated with cell signaling and cell migration functions. 
The breast invasive carcinoma (TCGA, Provisional) data 
showed that the OBSCN had strong interaction with 
PAK1 gene through RHOU and RAC3 genes. The breast 
cancer oncogene, PAK1, acts as a hub gene connecting 
two sub networks. In first sub network, PDPK1 gene a 
central gene linked with other significant genes such as 
AKT3, ERBB2, SGK3, PRKCB, PRKCQ, etc. and the 
second sub network is connected with STK3, AURKA, 
CSNK1D, NEK2, etc. The PAK1 and PDPK1 genes are 
strongly associated with breast tumorigenesis and cell 
migration in metastatic event [64, 65]. Along with the 
afore-mentioned genes, OBSCN is interconnected with 
other genes such as PAK2, AKT1, TP53RK, NEK2, WNK1, 
CSNK1D, etc. which are frequently mutated in invasive 

breast carcinoma (Nature 2012) (Cell 2015). The detailed 
OBSCN mutation specific network neighbors were 
identified using functional protein association network 
using STRING (http://string-db.org/). Additional pathway 
specific networks were also used to identify and validate 
the genes involved in OBSCN associated pathway using 
PCViz (http://www.pathwaycommons.org/) and detailed 
networks are illustrated in Figure 6.

OBSCN genetic alterations lead to cell survival 
and switches towards EMT

Substantial evidences propose that OBSCN 
functional mutations may have strong associations with 
Wnt signaling regulated by a series of activators along 
with β-catenin [66]. In the nucleus, β-catenin binds to 
transcription activation elements (TCF/LEF), leading to 
the activation of the target genes (specifically CCND1, 
c-MYC, and FN1) responsible for the regulation of cell 
proliferation and differentiation [67–69]. Mutational event 
of OBSCN gene majorly affects β-catenin downstream 
signaling leading to lower down or over expression of 
genes such as CCND1, c-MYC, and FN1, which stimulates 
several types of cancers including breast, ovarian, lung, 
pancreatic, colorectal, and uterine carcinoma [70–75]. 
The elevated level of fibronectin or loss of proteins such 
as E-CADHERIN, Β-CATENIN, etc. may cause cellular 

Table 1: The OBSCN gene mutations and their associations with various cancer types

Disease Types Most common co-mutation with OBSCN gene Major mutations 
type

Specific
Amino acid 
variations

References

Breast Cancer TP53 Missense NA [13, 21, 35]

Lung Cancer;
Respiratory Disease

TP53, ARID1A, PTEN, KRAS, MYC, PIK3CA,
BRAF, EGFR, NRAS Missense NA [36, 37]

Gastrointestinal
Stromal tumor
and Leiomyosarcoma

C9orf65, TTN, SPEG Missense NA [15, 38, 39]

Colorectal cancer TP53 Missense NA [13, 35]

Prostate cancer CLDN7, STRA13, FLNA FAM83H, CLDN7, ARFGAP3, 
KDM2A, Missense NA [40, 41]

Melanoma EPHA3, TTN Somatic
Missense E4574K [14]

Cervical/ Endometrial and 
Ovarian cancer

Tp53, PIK3CA, FBXW7, NEB, DNAH11, ORAI2,
RNF19B, SPTA1, UBA2, UTRN, BSN Missense NA [42]

Liver & Pancreatic cancer ATPAF1, TRPM4, MLL3, ARID1A, ARID1B, ARID2, SOS1, 
MROH1 Missense NA [14, 19, 43, 44]

Glioblastoma TTN Germline
Missense R4558H [13, 14] 

Esophageal Cancer C9orf65, TP53, ARID1A, MUC17 Missense NA [45]

Sarcoma C9orf65, PRUNE2 Missense NA [15]

Nephroblastoma and other 
kidney cancers PTHB1 Missense NA [46, 47]

Cardiomyopathy TTN, MYH7, DSP, VCL, LAMA4, MYOM1, TNNC1, TNNI3 Truncating
Mutation NA [47–51]
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proliferation followed by EMT, which render patients 
overall survival. Henceforth, OBSCN gene is believed to 
be an indirect regulator of fibronectin expression in breast 
and colon cancer [72, 76]. The fibronectin malfunction 
may also affect vital proteins such as integrin and other 
transmembrane receptors responsible for cell-cell contact, 
extracellular matrix (ECM) communications, cell adhesion 
and accommodate several ligands such as collagen, 
laminin and vitronectin. Fibronectin is important protein 
which activates integrin and is involved in the regulation 
of cellular signal transduction, cell proliferation, gene 
expression and cytoskeletal reorganization [77]. Hence, 
the OBSCN gene mutation perhaps affects the regulation 
of β-catenin and other regulatory elements in Wnt 
signaling pathway largely affects mainly the downstream 

genes and proteins expressions involved [78]. Interestingly 
in metastatic cancer, OBSCN mutation observed with new 
list of interacting genes in Ras protein family members 
such as RHOD, RHOT2 and RAC3 are involved in major 
functions such as reorganization of actin cytoskeleton, 
GTPase activity, formation of lamellipodia, respectively 
[79–81, 99]. The RAC3 gene is important gene activates 
PAK1, which is vital to stimulates F-actin formation 
leads to cell migration. Similarly, PAK1 activates 
another important proliferation related protein, aurora 
kinase (AURKA) and it inhibits IKB-α, which inhibits 
apoptosis through NF-ĸB and CIAP1 genes [82, 83]. 
The detailed OBSCN gene involved cancer-associated 
pathway illustrated in Figure 7. The Panther database 
(http://pantherdb.org/) was used to further validate gene 

Figure 6: (A) Mutation specific OBSCN functional association network and its interacting network partners identified using STRING 
database; (B) Gene specific interactions pathways were identified using pathway commons network visualizer and many interacting 
partners of OBSCN are cancer-associated genes.

Figure 7: The OBSCN gene involved either direct or indirect pathway of GPCR, Ras, p75 or Wnt signaling. (In GPCR 
pathway, OBSCN-RhoGEF is simultaneously regulates mDIA, Rho and their downstream genes which are involved in cell differentiation 
and lamellipodia formation; the other chain of OBSCN, MLCK and its downstream pathway activates MLC leads to formation of stress 
fiber which cause cell differentiation and survival; On the other way RhoA activated from p75 (NTR) pathway also involved in Ras 
pathway regulates down regulates MLCK; in Wnt signaling OBSCN disequilibrium leads to β-catenin loss which leads to carcinogenesis.



Oncotarget102270www.impactjournals.com/oncotarget

ontology based molecular functions analysis and further 
confirmed by evaluating fold enrichment scores [84]. The 
OBSCN gene and their networks neighbors were involved 
in binding and cell regulatory mechanisms including cell 
adhesion and binding with several receptors and signaling 
molecules (Figure 8).

Mutational tolerance profiles and their 
consequences in proteome level

Recent studies on OBSCN mutations uncover 
key amino acids mutations, which are crucial factor for 
many human diseases including cardiomyopathy and 
cancers. [49, 51, 85]. In this study, we also attempted to 
know the deep impact of OBSCN mutations including 
the proteome level. The OBSCN gene mutational protein 
variants retrieved from Ensembl genome browser (http://
asia.ensembl.org/) and their effects were predicted using 

Variant Effect Predictor (VEP) tool (http://asia.ensembl.
org/Tools/VEP) and wANNOVAR (http://wannovar.
wglab.org/) [86, 87]. The SIFT (http://sift.jcvi.org/) and 
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/)  
tools were used to achieve the most reliable protein 
variants prediction, and we also considered few other 
variants impact prediction algorithms such as Log ratio 
test (LRT), Mutation Taster (http://www.mutationtaster.
org/), Mutation Assessor (http://mutationassessor.org/r3/), 
FATHMM (http://fathmm.biocompute.org.uk/) and Variant 
effect scoring tool 3 (VEST3)( http://karchinlab.org/apps/
appVest.html), etc. Most of the abovementioned tools 
predict the variants and their impacts based on sequence 
changes and very few tools also consider structural 
changes [88–96]. The variants predicted by the maximum 
number of tools were used to filter and used for further 
analysis (Figure 9) (http://compbio.berkeley.edu/proj/
varant/manual.html). From the overall analysis, it was 

Figure 8: Molecular functional classification analysis of OBSCN gene and its network neighbor genes showed that 
OBSCN gene majorly involved in binding activity with various molecules.

Figure 9: (A) SIFT and POLYPHEN-2 programs were used to predict the most common and significant OBSCN mutational impact 
variants; (B) To validate the high-impact variants and their mutations impact are predicted using 10 potential impact prediction tools.
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seen that OBSCN gene had a low tolerance against few 
functional mutations (total of 251 protein variants), half 
of the variants (~48%) exhibited deleterious and probably 
damaging effects (Supplementary Table 1), and rest of 
the variants came in deleterious & possibly damaging 
and deleterious with benign categories [95, 97, 98]. The 
overlapping mutational impact variants were taken and 
further analyzed the somatic mutations using COSMIC 
database. The detailed OBSCN mutational impact on 
protein levels are emphasized using lollipop plot of 
maftools (Bioconductor R-package) and amino acids 
variations and their impacts are indicated in various colors 
representations along with mutations count (Figure 10) 
(https://github.com/PoisonAlien/mafTools). In addition, 
the key mutational variants, types, amino acid variations 
and impacts in domain levels are listed in Table 2.

OBSCN mediated targeted anti-cancer therapy: 
a present and future perspectives

Several interesting genes are interlinked with 
tumorigenesis including OBSCN gene, which is considered 
the key gene among them. The OBSCN gene may act as 
unique target for anti-cancer therapy in breast and other 
cancers, since it is having multiple interactions with intra 
and inter-cellular levels of numerous interconnecting 
proteins. In breast cancer targeted anti-cancer therapy, 
several key genes are targeted such as CTNND1, 
CDC42 and DVL. Over expression of P120-CATENIN 
tremendously inhibited several signaling molecules 
such as RHOA, RAC1 and CDC42 which are involved 
in the regulation of numerous cellular functions [100]. 
Similarly, downregulation of CDC42 initiated cancer. 
Interestingly OBSCN gene is an active target regulating 
CDC42 downstream pathway accounting for the 
tumorigenesis [101]. DVL (Dishevelled homology1) 

protein phosphorylation are vital phenomenon accelerated 
by CK1ε and RIPK4 in Wnt signaling pathway [102]. 
Hence, reduced β-catenin level and LRP6 association 
facilitates further downstream signaling of β-catenin, 
which activates transcription factors/ lymphoid enhancer-
binding factors (TCF/LEF) involved in numerous cellular 
regulations and cell migrations. An alternative and 
most interesting target is DVL expression responsible 
for calmodulin-dependent protein kinase (CamK-II) 
activation followed by expression of F-actin. The F-actin 
is the key protein involved in cell division, contraction 
and locomotion and altered F-actin dynamics is most vital 
feature for epithelial to mesenchymal transition (EMT) of 
metastatic breast cancer. Hence, anti-cancer drug targets 
may actively repress DVL and it may potentially block 
F-actin dynamics, which inhibits EMT process in cancer 
cells, and the overall phenomena, is indirectly regulated by 
OBSCN gene.

Concluding remarks

We have analyzed OBSCN gene mutation, 
expression and methylation data and the data revealed 
that OBSCN gene is one of most frequently mutated gene 
in various cancer types, especially in breast cancer. The 
OBSCN gene mutation may play an essential role during 
cancer initiation and progression, largely distressed by 
various kinds of mutations in gene level due to loss of 
heterozygosity, various oncogenic factors, intra and 
intercellular environmental stress. Mutations in OBSCN 
gene largely affects multiple properties of cells including 
cell adhesion and increase the integration and render 
cellular transitions and many more. Evaluation of OBSCN 
mutational status may help early prognosis of metastatic 
potential of breast cancer. Mutational, copy number and 
epigenetic analysis of OBSCN gene status may serve as a 

Figure 10: Lollipop plot function of maftools represents functional amino acids mutations and their impacts on various 
domains of OBSCN gene are indicated in different colors representation. 
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Table 2: The significant OBSCN mutation variants and their impacts filtered from cBioPortal 
breast cancer patient tumor samples

Genomic Coordinate Reference and Variants Mutation Type Copy Number Amino acid Variant Major Domain Affected

228402602 C>G Missense AMP  T544S Fibronectin-III

228412169 NA Missense Gain V888G Ig-Domain

228432150 T>G Missense Gain V1212G Ig-Domain 

228432150 NA Missense Gain V1120G  Ig-Domain

228432244 G>T Missense Gain Q1243H Ig-Domain 

228434340 C>T Missense Diploid T1382M Ig-Domain

228461665 G>A Missense Gain V1778M Fibronectin-III

228464221 G>- Frameshift DEL Del V2282fs Ig-Domain

228464225 ->G Frameshift INS Gain Q2283fs Ig-Domain

228479785 NA Missense Gain G3509V Ig-Domain

228479785 G>T Missense Gain G3938V Ig-Domain

228479785 G>T Missense Gain G3693V Ig-Domain

228480325 T>C Missense Gain W3998R Ig-Domain

228480325 T>C Missense Gain W3753R Ig-Domain

228480325 NA Missense Gain W3569R Ig-Domain

228481236 C>T Missense Gain R3868C Ig-Domain

228491624 AC>- Frameshift DEL Del L4419fs Ig-Domain

228492905 G>C Missense Gain S4538T Ig-Domain

228494273 G>A Missense Gain E4911K Ig-Domain

228494273 NA Missense Gain E3954K Ig-Domain

228494979 NA Missense AMP K4071N Ig-Domain

228497221 G>A Missense Gain V5282M Ig-Domain

228497221 NA Missense Gain V4325M Ig-Domain

228497221 G>A Missense Gain V5037M Ig-Domain

228503574 G>A Missense Gain E5059Q Ig-Domain

228506585 T>C Missense Gain V5668A SH3

228506585 NA Missense Gain V4711A Ig-Domain

228506585 T>C Missense Gain V5423A Ig-Domain

228506947 G>A Missense Gain A5544T NA

228509882 G>A Missense Gain E5826K NA

228521392 NA Missense Gain S5322C Ig-Domain

228521466 C>T Missense Gain R6304W NA

228521466 NA Missense Gain R5347W Ig-Domain

228521466 C>T Missense Gain R6059W Ig-Domain

228537694 ->T Frameshift INS Gain Y6796fs NA

228538601 C>T Nonsense Gain Q6838* Ig-Domain

228547542 G>A Missense Gain G6317R NA

228556454 G>T Missense Gain R7312L STK-cat Domain

228559643 C>A Missense Gain P7767Q NA

228559663 C>T Missense Gain P7774S Protein Kinase 2

*Ig- Immunoglobulin. AMP-Amplification; Del-Deletion
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tool for the prediction of targeted anti-cancer drugs, which 
will be helpful for targeted breast cancer therapy [11, 20]. 
Further functional studies on OBSCN gene in various 
model systems with gene overexpression and/or targeted 
disruption should also greatly facilitate these processes.
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