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During the last years, proteomic studies have revealed several interesting findings in experimental sepsismodels and septic patients.
However,most studies investigated protein alterations only in single organs or inwhole blood. To identify possible sepsis biomarkers
and to evaluate the relationship between protein alteration in sepsis affected organs and blood, proteomics data from the heart,
brain, liver, kidney, and serum were analysed. Using functional network analyses in combination with hierarchical cluster analysis,
we found that protein regulation patterns in organ tissues as well as in serum are highly dynamic. In the tissue proteome, the main
functions and pathways affected were the oxidoreductive activity, cell energy generation, or metabolism, whereas in the serum
proteome, functionswere associatedwith lipoproteinsmetabolism and, to aminor extent, with coagulation, inflammatory response,
and organ regeneration. Proteins from network analyses of organ tissue did not correlate with statistically significantly regulated
serum proteins or with predicted proteins of serum functions. In this study, the combination of proteomic network analyses with
cluster analyses is introduced as an approach to deal with high-throughput proteomics data to evaluate the dynamics of protein
regulation during sepsis.

1. Introduction

Proteomic studies and broad analyses of protein alterations in
experimental and clinical sepsis allow evaluating the systemic
host response to a hit or injury and offer comprehensive
information about the complex host response to infection [1].
Compared with genetic analyses, proteomics can give direct
insight into protein expression and not only in an indirect
way as would be possible by studying gene regulation. As
secreted proteins are signalling systemswhich convert genetic
signals into enzymatic activity, it might be advantageous to
study protein alterations [1]. Experience with proteomics in
sepsis has already revealed several interesting findings in both

experimental models and septic patients [2]. A small clinical
study in septic shock patients, for example, demonstrated
that proteomic analysis is a feasible tool to exclude early
alterations in protein expression and that there are specific
protein alterations between survivors and nonsurvivors in an
early stage of septic shock [3].

Furthermore, other proteomic studies identified peptides
as possibly useful sepsis biomarkers [4, 5]. In a septic mouse
animal model, dynamic changes of tissue-specific septic
protein profiles in blood plasma could be detected using pro-
teomic analysis [6]. Most studies investigated protein alter-
ations only in single organs or in whole blood [1]. However,
sepsis represents a continuum ranging from simple infection
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and bacteraemia to life threatening septic shockwithmultiple
organ dysfunction. As sepsis is a highly dynamic process,
protein alterations may vary during the different stages of the
disease [7]. Compared with genetic analyses, proteomics can
give direct insight into protein expression and not only in an
indirectway aswould be possible by studying gene regulation.

To identify possible protein regulation patterns and to
evaluate the interaction between protein alteration in sepsis
affected organs and blood, proteomics data from the heart,
brain, liver, kidney, and serum from previous studies was
analysed [8–12].

Modern technologies make it possible to identify and
quantify a large amount of different proteins in proteomic
experiments. Thus, big data analyses have become a bot-
tleneck and represent a great challenge in proteomics [13].
In this study, protein network analyses in combination with
cluster analyses are described as a possible approach to deal
with high-throughput proteomic data.

2. Material and Methods

2.1. Experimental Sepsis Model and Proteomic Data from
Previous Studies. In five previous studies, male Wistar rats
were randomly assigned to a sepsis group (cecal ligation
and puncture, CLP) or a control group (sham) [8–11, 14].
Surviving rats were sacrificed 12, 24, or 48 hours after
sepsis induction. Organs and serum were removed after
decapitation and prepared for proteomic analysis. Proteins
were separated using 2Dgel electrophoresis (2D-DIGE). Each
spot in the 2D-DIGE was matched to a corresponding spot in
a reference gel, which was created as a virtual PC-generated
averaged gel. Then, normalized spot volumes between the
sham and sepsis groups at each respective time point were
compared. In addition to a statistically significant difference
between the spots, differences were considered biologically
relevant if the protein expression factors (induction factor
[IF]) changed more than twofold (IF < 0.5 or IF > 2). This
helps ensure that regulated expression has actual biological
significance, thus making the changes more likely to affect
cellular functions. The IF in relation to the sham group was
calculated by dividing the mean normalized spot volumes
in both groups. A value of 2.0 therefore indicates a twofold
increase, and a value of 0.5 indicates a twofold decrease.

Significantly altered proteins were identified by mass
spectrometry (MALDI-TOFMS) and used for further bioin-
formatical analysis to identify underlying networks, sig-
nalling cascades, and pathways affected.

2.2. Stepwise Bioinformatical Approach. In summary, as a first
step, statistically significantly regulated proteins from blood
and organ tissues of previous studies were identified and
analysed by network analyses (GeneMania�). Afterwards,
those statistically significant proteins were grouped (12, 24,
and 48 hrs) using a hierarchical cluster analysis (Perseus�).
As a third step, proteins of similarly early upregulated clusters
underwent further network analysis to evaluate possible
corresponding proteins or functions in blood and organ

tissues. This approach to deal with pooled proteomic data is
described in detail below.

2.3. Network Analysis of Proteins (GeneMania). Sixty pro-
teins from sepsis related organs (liver, kidney, heart, and
brain) and twenty proteins from a serum analysis which
were significantly altered, at least at one time point (12, 24,
and 48 hours), were used for further bioinformatical analysis
to identify underlying networks, signalling cascades, and
pathways affected.

Biological functions of statistically significantly regulated
proteins were identified using functional network analysis.
GeneMania (http://www.genemania.org/) is a tool that helps
predict interactions and function of genes in terms of net-
work and, when available, of pathway [15, 16]. It gives the
possibility of customizing the network and allows choosing
data sources or highlighting specific functions, with a more
comfortable graphic experience [15]. It is developed and
continually updated by the University of Toronto and is
funded by the Ontario Ministry of Research and Innovation.
GeneMania knowledge is based on data from large databases,
which comprehend Gene Expression Omnibus, BioGRID,
EMBL-EBI, Pfam, Ensembl, Mouse Genome Informatics, the
National Center for Biotechnology Information, InParanoid,
and Pathway Commons [15, 16]. It was developed for making
predictions about gene or protein function based on a query
of list of proteins that share a function of interest.The software
allows taking advantage of the persistent improvement and
proliferation of high-throughput genomics and proteomics
datasets bymaking up-to-date predictions of their interaction
with other genes or proteins [15, 16].

As these software programs use different algorithms, we
decided to perform the bioinformatical analyses with all of
them in order to retrieve the highest number of predicted
interactions, maintaining an acceptable level of confidence
(0.400).

The associated functions detected by the software were
downloaded inTAB-separated-values format and exported to
Microsoft Excel� (Microsoft, Redmond, USA; version 2007)
where they were filtered in subgroups which were reanalysed
using GeneMania.

2.4. Hierarchical Cluster Analysis. Heat maps are an efficient
method of visualizing complex datasets organized asmatrices
[17]. Perseus (Max Planck Institute of Biochemistry, Mar-
tinsried, Germany; v. 1.5.8.5) is a holistic software platform
that allows continuous expansion of scalable analytical tools,
their smooth integration, and reusability while providing
the user with explicit documentation of the analysis steps
and parameters [18]. Quantitative information concerning
proteins that had statistically significant altered expression
at 12, 24, and 48 hours from the induction of sepsis was
converted to TSV (Tab-Separated Values) text file using
Microsoft Excel (Microsoft, Redmond, USA; version 2007).
Each value was reported as fold change in comparison to
the sham group values, so that a positive number represents
a higher expression of a spot at 12, 24, or 48 hours while a
negative number represents lower expression of a spot at 12,

http://www.genemania.org/
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Figure 1: Network analysis of serum proteins. In a GeneMania network analysis, each circle represents a gene. The input proteins/genes
are depicted as striped circles of the same size, while the monochromatic circles, whose size is proportional to the number of interactions
according to the software, can be considered “relevant” related genes found by GeneMania searching in many large, publicly available
biological datasets (including protein-protein, protein-DNA, and genetic interactions, pathways, reactions, gene and protein expression data,
protein domains, and phenotypic screening profiles). Lines linking different circles can be distinguished from their colour; mainly violet
represents coexpression (when expression levels are similar across conditions in a gene expression study); light orange represents predicted
functional relationships between genes.

24, or 48 hours. In this format the data were analysed using
the free software Perseus (Max Planck Institute of Biochem-
istry, Martinsried, Germany; v. 1.5.8.5) which performed the
𝑍-scoring and, consequently, the hierarchical cluster analysis.
The resulting heat map can be interpreted on the basis of
colour intensity. In our case, a red brick represents a protein
whose expression at a particular time was increased when
compared to the value of the same protein in the sham group
at that time.

2.5. Identification of Regulation Pathways and Biomarker Can-
didates. On the basis of the cluster analysis, further subgroup
network analyses of similarly upregulated proteins at 12 hours
or 12 and 24 hours after sepsis induction in sepsis related
organs (liver, kidney, heart, and brain)were performed to find
regulation patterns and identify possible biomarkers.

3. Results

3.1. Biologically Statistically Significantly Regulated Proteins.
Collecting data from the 5 previous studies [8–12], 80 statis-
tically significant altered proteins (a total of 113 total spots)
from sepsis related organs and serum were identified.

Using GeneMania, separate network analyses regarding
serum proteins (Figure 1) and regarding sepsis related organs
(liver, kidney, heart, and brain) (Suppl. Figure 1) were per-
formed. The detected organ-related functions were subse-
quently filtered. From the original 159 functions, we found
38 functions filtered for prevalence (arbitrary cutoff at 12%)
(Table 1) and 51 functions filtered by absolute number (cutoff
≥ 7) (Suppl. Table 1).

Most of the functions were associated with oxidoreduc-
tive activity and cell energy generation or metabolism (ATP
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Table 1:Thirty-eight functions filtered by prevalence (cutoff≥ 12%) from the original 159 functions derived fromGeneMania network analysis
of the whole dataset without the serum proteins. Column 1 shows the functions names. Columns 2 and 3 show, respectively, the number of
annotated genes in the displayed network and the number of genes with that annotation in the genome. In column 5, names in bold letters
represent the genes predicted by the software.

Function
Genes
in

network

Genes
in

genome
Ratio Names

NADHmetabolic process 6 12 50.00% gpd1, dlst, ogdh,mdh2, mdh1, aldob
Oxaloacetate metabolic process 4 11 36.36% got1,mdh1, mdh2, pc
Tricarboxylic acid cycle 5 15 33.33% dlst, ogdh, aco2, suclg2,mdh2
Tricarboxylic acid cycle enzyme complex 3 11 27.27% dlst, ogdh, suclg2
NAD metabolic process 6 24 25.00% gpd1, dlst, ogdh, aldob, mdh2, mdh1
Aerobic respiration 5 25 20.00% dlst, ogdh, aco2, suclg2,mdh2
Fatty-acyl-CoA binding 3 15 20.00% acadl, pitpna, acadm
Succinate metabolic process 2 10 20.00% aldh5a1, suclg2
Pentose-phosphate shunt 2 10 20.00% g6pd, taldo1
Ribonucleoside diphosphate biosynthetic process 2 10 20.00% atp5a1, atp5b
Pentose metabolic process 2 10 20.00% g6pd, taldo1
NADPH regeneration 2 10 20.00% g6pd, taldo1
2-Oxoglutarate metabolic process 3 16 18.75% got1, dlst, ogdh

Nicotinamide nucleotide metabolic process 8 43 18.60% gpd1, dlst, ogdh, g6pd,mdh2, mdh1, taldo1,
aldob

Pyridine nucleotide metabolic process 8 43 18.60% gpd1, dlst, ogdh, g6pd,mdh2, mdh1, taldo1,
aldob

MHC class I protein binding 2 11 18.18% atp5a1, atp5b
ADP metabolic process 2 11 18.18% atp5a1, atp5b
Positive regulation of glycolysis 2 11 18.18% gpd1,mif
Oxidoreductase activity, acting on the aldehyde or oxo
group of donors, NAD or NADP as acceptor 4 25 16.00% aldh5a1, ogdh, gapdh, aldh7a1

Monosaccharide catabolic process 10 63 15.87% aldoa, akr1a1, gapdh, eno1, g6pd, fbp1, gpd1,
taldo1, mif, aldob

Glucose catabolic process 9 57 15.79% fbp1, gpd1, aldoa, gapdh, eno1, g6pd, taldo1,
mif, aldob

Neurotransmitter metabolic process 3 19 15.79% aldh5a1, glul, pebp1

Pyridine-containing compound metabolic process 8 51 15.69% gpd1, dlst, ogdh, g6pd,mdh2, mdh1, taldo1,
aldob

Monosaccharide biosynthetic process 8 51 15.69% gnmt, akr1a1, gapdh, g6pd, fbp1, gpd1, pc,
acadm

Oxidoreduction coenzyme metabolic process 8 51 15.69% gpd1, dlst, ogdh, g6pd,mdh2, mdh1, taldo1,
aldob

Acetyl-CoA metabolic process 4 26 15.38% acss1, fasn, dlat, acaa2
Glycolysis 7 46 15.22% fbp1, gpd1, aldoa, gapdh, eno1,mif, aldob
Glutamate metabolic process 3 20 15.00% aldh5a1, got1, glul

Hexose catabolic process 9 61 14.75% fbp1, gpd1, aldoa, gapdh, eno1, g6pd, taldo1,
mif, aldob

Gluconeogenesis 6 44 13.64% gnmt, gapdh, fbp1, gpd1, pc, acadm

Dicarboxylic acid metabolic process 10 76 13.16% gnmt, ogdh, glul, suclg2, aldh5a1, got1, dlst,
mdh1, mdh2, pc

Hexose biosynthetic process 6 46 13.04% gnmt, gapdh, fbp1, gpd1, pc, acadm
Purine nucleoside triphosphate biosynthetic process 3 23 13.04% adk, aldoa, atp5b
Oxidoreductase activity, acting on the aldehyde or oxo
group of donors 4 31 12.90% aldh5a1, ogdh, gapdh, aldh7a1

Single-organism carbohydrate catabolic process 11 90 12.22% cps1, aldoa, akr1a1, gapdh, eno1, c6pd, fbp1,
gpd1, taldo1, mif, aldob
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Table 1: Continued.

Function
Genes
in

network

Genes
in

genome
Ratio Names

Regulation of glycolysis 3 25 12.00% fbp1, gpd1,mif
Proton-transporting two-sector ATPase complex 3 25 12.00% atp6v1b1, atp5a1, atp5b
Hydro-lyase activity 3 25 12.00% uroc1, aco2, eno1

production, tricarboxylic metabolism, glycolysis, gluconeo-
genesis, cell respiration, etc.) and nucleotide or nucleoside
metabolism. One-third of the proteins found are usually
located in the mitochondria.

The functions identified with statistically significant
altered serum proteins using 2% as cutoff for prevalence are
shown in Table 2. Functions identified with 6 for absolute
numbers as cutoffs are shown in Suppl. Table 2. Most of
the functions for the serum proteins were associated with
lipoproteins metabolism and, to a minor extent, with coag-
ulation, inflammatory response, and organ regeneration.

3.2. Hierarchical Cluster Analyses and Heat Maps. Quanti-
tative information concerning proteins that had statistically
significant altered expression in the liver, kidney, heart, and
brain at 12, 24, and 48 hours from the induction of sepsis was
analysed using Perseus (Max Planck Institute of Biochem-
istry, Martinsried, Germany; v. 1.5.8.5) which performed
the hierarchical cluster analysis (Figure 2).

The cluster analysis revealed several groups of regulation
patterns with different combinations of proteins up/down-
regulated or unchanged at different time points. Three sub-
clusters of similarly upregulated proteins at 12 or 12 and 24
hours were identified. Since these early upregulated subclus-
ters may contain possible candidates for sepsis biomarkers,
further network analyses were conducted for these subgroups
highlighted in Figure 3.

In the same way, a cluster analysis of statistically signif-
icantly regulated serum proteins was performed (Figure 3).
In this analysis, two subgroups of upregulated proteins at 12
hours or 12 and 24 hours could be identified. Comparing
likewise regulated proteins from sepsis related organs and
serum, no concordance of proteins could be detected.

3.3. Network Analyses of Similarly Regulated Proteins. The
subclusters of similarly up- and downregulated proteins in
the first 24 hours after sepsis induction for both sepsis
related organs and serum underwent further GeneMania
analyses to identify networks and predicted proteins within
these networks and their associated functions. By identifying
predicted proteins, we expected a higher likelihood of finding
statistically significantly regulated proteins both in organ
tissues and in serum. For subcluster 1 in the organ tissue
cluster analysis, we found no network using GeneMania.

The network for subcluster 2 revealed 19 functions filtered
by absolute number (cutoff ≥ 5) and 17 functions filtered by
prevalence (cutoff ≥ 10%) (Suppl. Tables 3 and 4). Most of
the functions in this subcluster were related to oxidoreductive

activity and cell energy generation andmetabolism, like in the
unselected group of the whole tissues. None of the predicted
proteins within the functions and pathways was previously
found in serum.

Using the same cutoff values in subcluster 3, 27 functions
filtered by absolute number and 20 functions filtered by
prevalence were found (Suppl. Tables 5 and 6). Most of the
functions regarding this subcluster were related to energy
generation and metabolism and to muscle contractile func-
tion (heart), and nucleoside metabolism. Similar to subclus-
ter 2, none of the predicted proteins within the functions and
pathways was previously found in the serum.

In serum proteins, a network analysis of subcluster 1
(Figure 3) with an upregulated group at 12 hours (C3,
Apoa1, Kng2, Dpysl2, and Igh-6) was not possible because
the number of proteins involved was too low. Therefore,
subclusters 1 (see above) and 2 (Hp, Alb, Apoa1, Kng2, Tf,
Gc, Apoe, and Cfb) were analysed together and most of the
functions were related to lipid metabolism or lipid transport
and to a lower extent associated with immune response
(Suppl. Tables 7 and 8).

4. Discussion

In this study, proteomic data of various experiments all using
the same experimental sepsis model (i.e., cecal ligation and
puncture, CLP)were analysed using bioinformaticalmethods
to identify protein regulation patterns altered by sepsis [8–
12]. To the best of our knowledge, this is the first study
which compares proteomic data from a broad set of organs
during sepsis to associated protein regulation patterns and
pathways in serum. Furthermore, we used protein network
analysis in combination with hierarchical cluster analysis to
deal with large proteomic data. The combination of cluster
analysis and network analysis is well established in proteomic
studies. However, so far, this approach was not described in
an animalmodel to analyse septic induced protein alterations
at different time points.

4.1. Functions of Significantly Regulated Proteins. The study
reveals several major findings. By using protein network
analysis software (GeneMania), we demonstrated that most
of the statistically significantly regulated proteins from the
heart, liver, kidney, and brain were associated with oxidore-
ductive activity, cell energy generation or metabolism (ATP
production, tricarboxylic metabolism, glycolysis, gluconeo-
genesis, cell respiration, etc.), and nucleotide or nucleoside
metabolism (Table 1 and Suppl. Table 2).Most of the functions
of statistically significantly regulated serum proteins were
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Table 2: Network analysis serum functions prevalence. Twenty-nine functions filtered by prevalence (cutoff ≥ 2%) from the original 166
functions derived from GeneMania� network analysis of the serum-protein dataset. Column 1 shows the functions names. Columns 2 and 3
show, respectively, the number of annotated genes in the displayed network and the number of genes with that annotation in the genome. In
column 5, names in bold letters represent the genes predicted by the software.

Function
Genes
in

network

Genes
in

genome
Ratio Names

Blood microparticle 22 97 22.68%
apcs, hp, c3, tf, apoa1, cfb, apoe, serping1,
fga, alb, itih4, gc, ahsg, c9, hpx, fgb, pon1,
ambp, apoa2, f2, c4bpa, fgg

Glycerolipid metabolic process 9 211 4.27% c3, apoa1, apoe, apoa5, apoh, pon1, cps1,
apoa2, apoc3

Phospholipid binding 9 222 4.05% apoe, apoa1, apoa5, apoh, fabp1, pon1, cps1,
apoa2, apoc3

Negative regulation of hydrolase activity 9 264 3.41% fetub, kng2, apoa1, serping1, serpina1, fabp1,
ambp, apoa2, apoc3

Lipid transport 8 174 4.60% apoe, apoa1, apoa5, apoh, fabp1, pon1,
apoa2, apoc3

Regeneration 8 184 4.35% fga, hp, apoa1, apoe, apoa5, ahsg, apoa2,
apoh

Enzyme inhibitor activity 8 197 4.06% fetub, apoa1, serping1, serpina1, ahsg,
ambp, apoa2, apoc3

Wound healing 8 287 2.79% fga, c3, apoe, apoa5, c9, fgb, f2, apoh

High-density lipoprotein particle 7 15 46.67% apoe, apoa1, apoa5, apoh, pon1, apoa2,
apoc3

Plasma lipoprotein particle 7 19 36.84% apoe, apoa1, apoa5, apoh, pon1, apoa2,
apoc3

Protein-lipid complex 7 20 35.00% apoe, apoa1, apoa5, apoh, pon1, apoa2,
apoc3

Acylglycerol metabolic process 7 75 9.33% c3, apoe, apoa5, apoh, apoc3, apoa2, cps1
Neutral lipid metabolic process 7 77 9.09% c3, apoe, apoa5, apoh, apoc3, apoa2, cps1
Acute inflammatory response 7 96 7.29% hp, c3, tf, itih4, serping1, ahsg, apoa2

Lipid localization 7 136 5.15% apoe, apoa1, apoa5, apoh, fabp1, apoa2,
apoc3

Regulation of lipid metabolic process 7 229 3.06% c3, apoa1, apoe, apoa5, fabp1, apoa2, apoc3
Regulation of body fluid levels 7 246 2.85% c3, apoe, gc, fga, c9, f2, apoh
Extracellular matrix 7 262 2.67% apcs, alb, tf, rbp3, f2, apoh, ahsg
Triglyceride-rich lipoprotein particle 6 14 42.86% apoe, apoa1, apoa5, apoh, apoc3, apoa2
Very-low-density lipoprotein particle 6 14 42.86% apoe, apoa1, apoa5, apoh, apoc3, apoa2
Triglyceride metabolic process 6 67 8.96% c3, apoe, apoa5, apoh, apoc3, cps1
Organ regeneration 6 92 6.52% hp, apoa1, apoa5, ahsg, apoa2, apoh
Blood coagulation 6 110 5.45% c3, apoe, fga, c9, f2, apoh
Hemostasis 6 112 5.36% c3, apoe, fga, c9, f2, apoh
Coagulation 6 115 5.22% c3, apoe, fga, c9, f2, apoh
Negative regulation of endopeptidase activity 6 156 3.85% fetub, kng2, serping1, serpina1, fabp1, ambp
Lipid catabolic process 6 157 3.82% apoe, apoa5, fabp1, cps1, apoa2, apoc3
Negative regulation of peptidase activity 6 159 3.77% fetub, kng2, serping1, serpina1, fabp1, ambp
Steroid metabolic process 6 200 3.00% gc, apoa1, apoe, apoc3, pon1, apoa2
Alcohol metabolic process 6 211 2.84% gc, apoa1, apoe, apoc3, pon1, apoa2
Regulation of endopeptidase activity 6 276 2.17% fetub, kng2, serping1, serpina1, fabp1, ambp
Organic anion transport 6 279 2.15% dpysl2, apoa1, apoe, apoc3, fabp1, apoa2
Regulation of peptidase activity 6 288 2.08% fetub, kng2, serping1, serpina1, fabp1, ambp
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related to lipoproteins metabolism and, to a minor extent, to
coagulation, inflammatory response, and organ regeneration.

It appears plausible that in the clinical setting of sepsis
there is an alteration of proteins involved in energy genera-
tion in tissues since an imbalance between oxygen delivery
and consumption is a hallmark of sepsis and particularly
septic shock [19]. Therefore, it is conceivable that expression
of proteins related to energy generation might be a com-
pensatory mechanism to account for intracellular hypoxia.
Previous studies also showed an association between sepsis
and organ failure. Future studies could investigate whether
this is a feature specific to sepsis and septic shock or common
to different causes of shock and hypoxia.

Concerning lipoprotein expression, which was found to
be altered in serum in our study, there is an evolving interest
in the use of lipoproteins, especially high-density lipoprotein,
both as a biomarker [20, 21] and as a potential therapeutic
approach in sepsis [21, 22].

4.2. Course of Protein Alterations. Hierarchical cluster analy-
sis confirmed that protein regulation in sepsis related organs
and tissues underlies a dynamic process. We found that pro-
teins can be up- or downregulated or even remain unchanged
at different time points (12 hours, 24 hours, or 48 hours) after
induction of sepsis. Regarding the early phase of sepsis, that
is, up to 24 hours after sepsis induction, three subclusters
of organ proteins were identified which were upregulated
at 12 or at 12 and 24 hours (Figure 3). Subclusters were
defined based on the hypothesis that statistically significantly
upregulated proteins in organ tissues can probably be found
simultaneously in blood. We focused on the early phase of
sepsis up to 24 hours after sepsis induction as from a clinical
point of view, a timely diagnosis of sepsis is crucial. Proteins
of these subclusters in principle could be candidates for early
sepsis biomarkers if detected in blood.

4.3. Congruency in Regulation between Tissue and Serum.
Another major finding of our analysis was that proteins in
early upregulated subclusters of the serum (Figure 3) did not
correspond to tissue proteins of different organs analysed.
Also, functions in upregulated subclusters in serum identified
by GeneMania network analysis did not correspond to
functions in early upregulated organ tissue clusters. In serum,
functions were related to lipoprotein metabolism and, to a
minor extent, to coagulation, inflammatory response, and
organ regeneration, whereas in organ tissues most functions
were associated with energy generation and metabolism
and with muscle contractile function (heart) and nucleoside
metabolism (Suppl. Tables 5 and 6). Finally, predicted pro-
teins from network analyses of organ tissue did not correlate
with significantly regulated serum proteins or with predicted
proteins of serum functions.

4.4. Evaluation of the Bioinformatical Approach. In our
bioinformatical analysis we sought to assess if the dynamic
process of sepsis associated alterations in tissue proteome is
reflected in serum proteome changes. Several subclusters of
early upregulated tissue proteins could be detected, which
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Figure 2: Heat map of the hierarchical cluster analysis of signifi-
cantly regulated proteins of sepsis related organs. Three subclusters
with significantly upregulated proteins at 12 or 12 and 24 hours are
highlighted. A brick can progressively become darker up to a com-
pletely black one that would represent a fold change equal to 1
(therefore, no change between sepsis and sham groups). On the
contrary, a green brick represents a protein whose expression at a
particular time was decreased when compared to the value of the
same protein in the sham group at that time.

are possible interesting candidates as sepsis biomarker, if
detected in blood. Furthermore, functions and pathways
in organ tissues associated with early upregulated protein
clusters could be compared to altered functions inblood.
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Figure 3:Heatmapof the hierarchical cluster analysis of significantly regulated serumproteins. Two subclusterswith significantly upregulated
proteins at 12 or 12 and 24 hours are highlighted. A brick can progressively become darker up to a completely black one that would represent
a fold change equal to 1 (therefore, no change between sepsis and sham groups). On the contrary, a green brick represents a protein whose
expression at a particular time was decreased when compared to the value of the same protein in the sham group at that time.

However, none of the tissue proteins was found in the serum
and, moreover, even none of the predicted proteins from
the GeneMania network functions correlated with serum
proteins. Even though no identical proteins were detected in
the serum as well as in the organ tissues, our bioinformatical
approach could be helpful for our understanding of the
pathophysiology of sepsis. For example, the cluster analyses

revealed which proteins and functions were regulated at
different stages during the course of sepsis. Furthermore,
one-third of statistically significantly regulated proteins can
be found in the mitochondria, underlining the importance
of alteration of mitochondrial functions and even mito-
chondrial damage in the host response to sepsis [12, 23–
25].
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Even though no common protein was found in the serum
as well as in organ tissue, this does not necessarily mean
that the detected proteins might not be potential candidates
of sepsis biomarkers. Probably, the organ-related proteins
were not found in the serum because they were under the
detection limit and more sensitive techniques are needed.
By using network analyses we were able to predict proteins
possibly involved in functions and pathways of upregulated
clusters. As a result of this, the number of possible candidates
for biomarkers could be increased. The detection of a single
protein or a set of proteins, upregulated in organ tissue as
well as in serum, would implicate further research in those
proteins.

In blood plasma, numerous tissue proteins can be found.
However, most of them do not contribute to the genuine
blood plasma functions [26]. Currently, there is limited
knowledge on the regulation of the blood plasma proteome
and it is unknown to what extent various tissues can affect
blood plasma protein composition in sepsis [6].

In a recent septic mouse model, the authors introduced
an MS-based strategy to monitor the dynamics of tissue and
cell-specific proteins in the blood plasma and constructed
a proteome-wide tissue atlas to demonstrate how the sur-
rounding tissue and cells influence the blood plasma in
severe infectious diseases [6]. In their study, only one single
time point at 48 hours after sepsis induction was analysed,
whereas in our study we sought to identify early time-
dependent correlations between changes in organ and blood
proteome using a hierarchical cluster analysis. Hierarchical
cluster analysis turned out to be useful in both detection
of possible biomarkers and protein regulation patterns in
clinical or experimental sepsis research [27–30].

In a recent review article the authors stated that “in case
of the proteomic investigation, the challenges occur at all
levels ranging from sample preparation and data gathering
over the raw data integration and database searching to
the functional interpretation of large datasets” [31]. Thus,
our bioinformatical analysis might be a promising method
of how to deal with large proteomic data and complex
interactions and functions. In future, proteomic techniques
will steadily improve and data quantities will increase. Thus,
new methods are required, helping us to interpret these
results. In this context, our study should be rather interpreted
as hypothesis generating rather than definitive. Nonetheless,
there are no current standards on settings or cutoff levels
for network analysis software. For the present study, we used
default settings of the network analysis software. Cutoffs for
proteins and functions were defined arbitrarily only to find a
pragmatical balance between finding relevant sepsis related
functions and eliminating nonspecific proteins. Of course,
these settings and cutoffs might have influenced the results
in our analysis and further analyses should aim for this.
Likewise, protein clusters in our study were defined from
a clinical point of view. Future studies should evaluate the
most appropriate selection algorithms and software settings
and should compare different network analysis software
programs. Nonetheless, every study is unique and software
settings and cutoffs also depend on the type of analysis and
the hypotheses.

4.5. Limitations. Some limitations of our study have to be
mentioned. Statistically significantly regulated tissue proteins
from different organs were mixed in the network analyses.
Thus, we cannot be sure that the derived functions and path-
ways in fact correspond to these functions in the respective
organs. However, the previous organ proteomics analyses of
this sepsis model confirm that most of the functions are
associated with energy metabolism, mitochondrial function,
and lipid metabolism [8–12].

The number of functions presented in this analysis was
limited by using arbitrary cutoffs for prevalence and the
absolute number of proteins involved in the network. By
this, functions were identified in which only a representative
number of proteins was present.

Interestingly, we found no typical acute phase proteins
in our analysis. This probably depends on the technical
limitations of proteomic analyses. As common inflammation
biomarkers are relatively small proteins and concentration
even after upregulation might be low, this could explain why
those typical proteins were missed in our analysis. With
further advances in proteomic techniques andmore sensitive
methods, small and low concentrated proteins might also be
detected in future.

5. Conclusion

In summary, in our stepwise comparison of dynamic organ
tissue proteome changes to serum proteome changes we
were able to demonstrate that regulation patterns in organ
tissues as well as in serum are highly dynamic. Subclusters of
proteins can be upregulated or downregulated or even remain
undifferentiated at different stages of sepsis. The main func-
tions and pathways affected in the tissue proteome were oxi-
doreductive activity, cell energy generation, or metabolism,
whereas in the serum proteome, functions were associated
with lipoproteins metabolism and, to a minor extent, with
coagulation, inflammatory response, and organ regeneration.
Using hierarchical cluster analyses and functional network
analyses (GeneMania) including predicted network proteins,
we were not able to detect correlating proteins or functions
in organ tissues and blood. Furthermore, we were not
able to identify promising candidates for sepsis biomarkers.
Nonetheless, this analysis provides new insights into protein
regulation during sepsis and this bioinformatical approach
could be helpful to deal with high-throughput proteomic
data.
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Supplementary Materials

Suppl. Table 1: fifty-one functions filtered by absolute number
(cutoff ≥ 7) from the original 159 functions derived from
GeneMania network analysis of the whole dataset without
the serum proteins. Column 1 shows the functions names.
Columns 2 and 3 show, respectively, the number of annotated
genes in the displayed network and the number of genes with
that annotation in the genome. In column 5, names in bold
letters represent the genes predicted by the software. Suppl.
Table 2: network analysis serum functions absolute number.
Thirty-three functions filtered by absolute number (cutoff ≥
6) from the original 166 derived from GeneMania network
analysis of the serum-protein dataset. Column 1 shows the
functions names. Columns 2 and 3 show, respectively, the
number of annotated genes in the displayed network and
the number of genes with that annotation in the genome. In
column 5, names in bold letters represent the genes predicted
by the software. Suppl. Table 3: subcluster 2 (gpd1, eno1,
aldh5a1, coro1a, atp6v1b2, ckb, alb, fasn, acy1, fbp1, fscn1,
aldh7a1, cct3, gpd1, ogdh, oxct1, and ca1). Seventeen functions
filtered by prevalence (cutoff ≥ 10%) from the original 51
functions derived from GeneMania network analysis of the
whole dataset without the serum proteins. Column 1 shows
the functions names. Columns 2 and 3 show, respectively,
the number of annotated genes in the displayed network and
the number of genes with that annotation in the genome.
In column 5, names in bold letters represent the genes
predicted by the software. Suppl. Table 4: subcluster 2 (gpd1,
eno1, aldh5a1, coro1a, atp6v1b2, ckb, alb, fasn, acy1, fbp1,
fscn1, aldh7a1, cct3, gpd1, ogdh, oxct1, and ca1). Nineteen
functions filtered by absolute number (cutoff ≥ 5) from
the original 51 functions derived from GeneMania network
analysis of the whole dataset without the serum proteins.
Column 1 shows the functions names. Columns 2 and 3 show,
respectively, the number of annotated genes in the displayed
network and the number of genes with that annotation in
the genome. In column 5, names in bold letters represent the
genes predicted by the software. Suppl. Table 5: subcluster 3
(gapdh, cps1, aldoa, glul, myh6, myh7, oplah, got1, and acss1).
Twenty functions filtered by prevalence (cutoff ≥ 10%) from
the original 90 functions derived from GeneMania network
analysis of the whole dataset without the serum proteins.
Column 1 shows the functions names. Columns 2 and 3 show,
respectively, the number of annotated genes in the displayed
network and the number of genes with that annotation in
the genome. In column 5, names in bold letters represent the
genes predicted by the software. Suppl. Table 6: subcluster
3 (gapdh, cps1, aldoa, glul, myh6, myh7, oplah, got1, and
acss1). Twenty-seven functions filtered by absolute number
(cutoff ≥ 5) from the original 90 functions derived from
GeneMania network analysis of the whole dataset without
the serum proteins. Column 1 shows the functions names.
Columns 2 and 3 show, respectively, the number of annotated
genes in the displayed network and the number of genes with
that annotation in the genome. In column 5, names in bold
letters represent the genes predicted by the software. Suppl.
Table 7: subcluster of similarly upregulated proteins from
the serum-protein dataset (c3, kng2, dpysl2, igh-6, apoa1, hp,

alb, tf, gc, apoe, and cfb). Forty-four functions filtered by
prevalence (cutoff ≥ 15%) from the original 190 functions
derived from GeneMania network analysis of this subcluster
dataset. Column 1 shows the functions names. Columns 2
and 3 show, respectively, the number of annotated genes
in the displayed network and the number of genes with
that annotation in the genome. In column 5, names in bold
letters represent the genes predicted by the software. Suppl.
Table 8: subcluster of similarly upregulated proteins from
the serum-protein dataset (c3, kng2, dpysl2, igh-6, apoa1,
hp, alb, tf, gc, apoe, and cfb). Fifty-nine functions filtered by
absolute number (cutoff ≥ 5) from the original 190 functions
derived from GeneMania network analysis of this subcluster
dataset. Column 1 shows the functions names. Columns 2
and 3 show, respectively, the number of annotated genes in
the displayed network and the number of genes with that
annotation in the genome. In column 5, names in bold letters
represent the genes predicted by the software. Suppl. Figure
1: network analysis organs without serum. In a GeneMania
network analysis, each circle represents a gene. The input
proteins/genes are depicted as striped circles of the same size,
while the monochromatic circles, whose size is proportional
to the number of interactions according to the software, can
be considered as “relevant” related genes found by Gene-
Mania searching in many large, publicly available biolog-
ical datasets (including protein-protein, protein-DNA, and
genetic interactions, pathways, reactions, gene and protein
expression data, protein domains, and phenotypic screening
profiles). Lines linking different circles can be distinguished
from their colour; mainly violet represents coexpression
(when expression levels are similar across conditions in a
gene expression study); light orange represents predicted
functional relationships between genes; light blue represents
colocalization (when genes are expressed in the same tissue or
proteins found in the same location); light yellow represents
shared protein domains (when two gene products have the
same protein domain). (Supplementary Materials)
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