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Abstract: A fundamental matrix estimation based on matching points is a critical problem in epipolar
geometry. In this paper, a global fundamental matrix estimation method based on inlier updating
is proposed. Firstly, the coplanar constraint was incorporated into the solution of the fundamental
matrix to reduce the number of parameters to be solved. Subsequently, an inlier updating matrix was
introduced according to the threshold of the epipolar geometry distance to eliminate the potential
outliers and obtain a reliable initial value of the fundamental matrix. On this basis, we employed a
four-point iterative method to estimate the fundamental matrix and make it satisfy the rank constraint
at the same time. Finally, the epipolar geometry in binocular vision was extended to triple-view,
and the fundamental matrix obtained in the previous step was globally optimized by minimizing
the coordinate deviation between the intersection point and feature point in each group of images.
The experiments show that the proposed fundamental matrix estimation method is robust to noise
and outliers. In the attitude measurement, the maximum static error was 0.104◦ and dynamic
measurement error was superior to 0.273◦, which improved the reconstruction accuracy of feature
points. Indoor images were further used to test the method, and the mean rotation angle error
was 0.362◦. The results demonstrate that the estimation method proposed in this paper has a good
practical application prospect in multi-view 3D reconstruction and visual localization.

Keywords: planar motion; inlier updating; triple-view constraint; global fundamental matrix; 3D
reconstruction; visual localization

1. Introduction

The estimation of a fundamental matrix is a basic step for computer vision applications
and is widely used in visual localization, camera calibration [1,2], object recognition, motion
analysis [3,4], 3D reconstruction [5,6], etc. Specifically, with the rapid development of 3D
reconstruction technology, the demand and applications of 3D models in virtual reality,
digital twin, the metaverse and other fields are rapidly growing [7,8]. The 3D reconstruction
method using the images has been widely researched. In multi-view 3D reconstructions
based on monocular vision, local invariance is used to detect image feature information and
match feature points, which can be used to recover camera position, direction and scene
structure. The matching of feature points and the relative pose between cameras directly
affect the accuracy of reconstruction [9–11]. In robotics, the estimation of the fundamental
matrix is the premise and foundation of visual localization. This accurately estimated
fundamental matrix can be used to effectively construct the matching between feature
points, and the relative pose between cameras is included in the fundamental matrix.
Therefore, it is of great significance to develop a high precision and robust estimation
method of the fundamental matrix [12,13].

The estimation accuracy of the fundamental matrix is mainly related to the extraction
and matching accuracy of the feature points [14–16]. Among them, the extraction error is
usually caused by the noise. When the feature points are not accurately matching, a small
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number of outliers will seriously affect the estimation accuracy of the fundamental matrix.
To solve the above problems, many fundamental matrix estimation methods have emerged
in recent years, including the linear method, iterative method, and robust method.

The linear method mainly includes a seven-point method, eight-point method, im-
proved eight-point method, etc. [17,18]. These methods use least square and singular
value decomposition to estimate the fundamental matrix by solving a set of linear equa-
tions. Under the conditions that feature point extraction and matching are accurate, linear
methods are usually more efficient. However, the accuracy of linear methods is seriously
affected when correspondences are abnormal. The iterative method can be divided into
two categories: one is based on minimizing the epipolar geometric distance and the other
is based on gradient [19,20]. Compared with the linear method, the iterative method im-
proves the estimation accuracy and effectively reduces the influence of noise, although
this method has a high computational complexity and is not suitable for cases with many
outliers. Comparatively, the robust method has been widely used and studied for its ad-
vantages of eliminating outliers and strong anti-noise ability. Typically, M-estimator [21,22],
LMedS [23,24] and RANSAC [25,26] are considered to be the most effective robust methods.
To obtain reliable results, these methods usually screen matching points before calculating
the fundamental matrix and take out the matching points with small geometric errors
as inliers. Then, these inliers are used to estimate the fundamental matrix. Compared
with these three methods, the M-estimator method reduces the influence of outliers by
assigning different weights to each point, but this method has higher requirements for
the initial values. The LMedS method uses the median distance from the point to the
corresponding epipolar line to optimize the fundamental matrix, but this kind of method
is quite time-consuming. The RANSAC method is used to estimate the fundamental ma-
trix by iteratively selecting inliers. However, as the proportion of outliers increases, the
computational efficiency significantly decreases.

To further improve the robustness and computational efficiency of the fundamental
matrix estimation, many scholars made some improvements to the methods mentioned
above. For example, Chum [27] proposed the randomized RANSAC method, which
effectively reduces the amount of computation. The authors of [28,29] used different
geometric constraints to iteratively solve the fundamental matrix. Moreover, Xiao et al. [30]
proposed a fundamental matrix estimation method based on inlier set sample optimization.
By adopting guided sampling and local optimization, this method can effectively deal with
outliers. The above methods make up for the deficiency of the traditional robust method
to some extent, but they also have a fatal problem, that is, the accuracy of these methods
deteriorates sharply with the increase in outlier ratio. Later, Yan et al. [31] proposed a
robust fundamental matrix estimation method based on epipolar geometric error criterion,
which eliminated the outliers in the calculation process of the fundamental matrix and
improved the calculation efficiency; however, the calculation accuracy of such methods
needs to be further improved.

2. Related Work in Robotic Applications

Visual localization and multi-view 3D reconstruction of planar motion robots are
important to indoor service robotic applications. Visual localization utilizes feature corre-
spondences in the environment to recover the camera pose, and the relative pose between
cameras can be used in 3D reconstruction. Among them, the fundamental matrix obtained
by point correspondence can provide more constraints for camera pose estimation [32,33].
He et al. [34] systematically introduced the latest achievements of robot navigation in the
literature and studied the simplified fundamental matrix of planar motion. Jiao et al. [35]
introduced the fundamental matrix into 3D–2D correspondences to calculate the camera
pose, which incorporated a planar motion constraint and enhanced the robustness of pose
estimation. Choi et al. [36] proposed a 2-point non-iterative method based on epipolar
geometry under a planar motion to estimate the camera pose. Choi et al. [37] proposed a
minimal solver for pose estimation by establishing the fundamental matrix constraint and
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perspective projection function under a planar motion. Wang et al. [38] presented the im-
portance of the fundamental matrix in robot active vision technology, and Dong et al. [39]
devised a collaborative dense scene reconstruction method for multi-planar motion robot.
These cases reduce the complexity of the algorithm and improve visual localization ac-
curacy and 3D reconstruction accuracy by exploiting the fundamental matrix constraint
under planar motion, but they do not conduct a thorough study on the solution of the
fundamental matrix. The fundamental matrix is estimated by the traditional method.

Motivated by the above analysis, this paper proposes a minimal solution for estimating
the fundamental matrix from point correspondence by taking the planar motion constraint
into consideration. Among the existing methods, the linear method and iterative method
are usually poor in robustness and not suitable for cases with many outliers. Although the
robust method can eliminate outliers, it has the problem of unstable calculation when the
outlier proportion is high. In addition, the number of iterations exponentially increases
with the number of inliers required. When the camera moves on the plane, the accuracy of
the traditional fundamental matrix estimation method decreases, and the required number
of inliers is relatively large. The main contribution of this study is that it addresses the
problem of a fundamental matrix estimation from multi-view images under planar motion,
a robust null space estimation method is proposed. On this basis, the four-point iterative
method is derived. Thus, the problem of rank constraint and local optimum caused by
inlier random selection and an artificial threshold in the process of fundamental matrix
estimation is successfully solved. Furthermore, the global optimization function of the
fundamental matrix further improves the estimation accuracy.

The remainder of this paper is organized as follows. Section 3 introduces the epi-polar
geometry in binocular vision and the traditional robust fundamental matrix estimation
method. In Section 4, the global fundamental matrix estimation method based on the
inlier updating of planar motion is proposed. Simulations and practical experiments are
provided to verify the robustness and effectiveness of the proposed method in Section 5,
and finally, the paper is concluded in Section 6.

3. Fundamental Matrix Estimation Method Based on RANSAC Method

As shown in Figure 1, the projection points of a 3D point Pwi on image planes are mi
and m′i, respectively. O1, O2 indicate optical centers of the cameras, and the line between
them is the baseline. The baseline intersects with image planes at two points e1 and
e2, which are called epipoles. The plane formed by Pwi, O1 and O2 is defined as the
epipolar plane Π, which intersects with image planes at lines l and l′. l′ is the epipolar
line corresponding to mi on the image plane I′, and m′i is on the line l′. Similarly, l is the
epipolar line corresponding to m′i on the image plane I. We define the constraint as epipolar
geometry in binocular vision.
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Figure 1. Epipolar geometry in binocular vision. 
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Suppose that the homogenous coordinates of the projection points can be expressed as:

mi =
[

ui vi 1
]T

m′i =
[

u′i v′i 1
]T (1)

According to the epipolar geometry constraint:

m′i
TFmi = 0. (2)

The fundamental matrix F is defined as:

F =

F11 F12 F13
F21 F22 F23
F31 F32 1

. (3)

By combining Equations (1)–(3), we develop the following equation:

Uf = 0 (4)

where:

U =

u′1u1 u′1v1 u′1 v′1u1 v′1v1 v′1 u1 v1 1
...

...
...

...
...

...
...

...
...

u′nun u′nvn u′n v′nun v′nvn v′n un vn 1

. (5)

f =
[
F11 F12 F13 F21 F22 F23 F31 F32 1

]T. (6)

The solution of the fundamental matrix is transformed into the process of solving the
least squares of min‖Uf‖ with ‖f‖ = 1. Due to the influence of noise and mismatching, the
fundamental matrix cannot be directly obtained by solving Equation (4). Therefore, in this
case, we often use the RANSAC method to estimate the fundamental matrix.

The specific calculation process is as follows: Firstly, eight pairs of matching points
are randomly selected from correspondences of feature point pairs, and Equation (4) is
utilized to solve the fundamental matrix. Then, the points with geometric distances of
less than the designed threshold value are judged as the inliers. By repeating the first
two steps, the model with the largest number of inliers is selected as the fundamental
matrix. The accuracy of the fundamental matrix estimation method based on RANSAC
method depends on the proportion of inliers. When the ratio of inliers is low, it is difficult
to find enough inlier sets to estimate the fundamental matrix, and the uneven distribution
of matching points selected by random sampling will also affect the accuracy and stability
of the estimation.

4. The Improved Fundamental Matrix Estimation Method of Planar Motion
4.1. Robust Null Space Estimation Method Based on Inlier Updating

The fundamental matrix of planar motion is analyzed in this section and the simplified
fundamental matrix contains the constraint of coplanarity.

As shown in Figure 2, when the camera moves on the horizontal plane, the relative
rotation and translation relationship between camera coordinate systems at location 1 and
location 2 can be expressed as:

R =

 cos ϕ 0 sin ϕ
0 1 0

− sin ϕ 0 cos ϕ

, t =

sin θ
0

cos θ

. (7)

where ϕ is the rotation angle and θ is the direction of translation.
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The essential matrix E is defined as:

E = t×R. (8)

By substituting Equation (7) into Equation (8), the following equation can be obtained:

E =

 0 − cos ϕ 0
cos(ϕ− θ) 0 sin(ϕ− θ)

0 sin θ 0

. (9)

Assuming that the intrinsic matrix of the camera is K, and the intrinsic parameters
remain constant during camera movement, then K can be expressed as follows:

K =

 fx s x0
0 fy y0
0 0 1

. (10)

Here, fx and fy are the normalized focal length on the X axis and Y axis; (x0, y0) is the
principal point coordinate; s is the non-perpendicular factor between the X axis and Y axis.

According to the relationship between fundamental matrix and essential matrix,
we obtain:

F = K−TEK−1 =

 0 f1 f2
f3 0 f4
f5 f6 f7

. (11)

For Equation (11):

d = 1/ fx fy
f1 = −d cos θ
f2 = dy0 cos θ
f3 = d cos(ϕ− θ)
f4 = d fx sin(ϕ− θ)− dx0 cos(ϕ− θ)
f5 = −dy0 cos(ϕ− θ)
f6 = d fx sin θ + dx0 cos θ
f7 = dx0y0(cos(ϕ− θ)− cos θ)− d fxy0(sin(ϕ− θ) + sin θ)

(12)

By substituting Equation (11) into Equation (2), we obtain:

Mf = 0. (13)

where:

M =

u′1v1 u′1 v′1u1 v′1 u1 v1 1
...

...
...

...
...

...
...

u′nvn u′n v′nun v′n un vn 1

, (14)

f = [ f1, f2, f3, f4, f5, f6, f7]
T. (15)
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When there is no noise in the point correspondence, the rank of the null-space of M
is 1. However, affected by noise and outliers, the rank of null-space does not equal one
and M has no zero singular values. Motivated by the paper [40], to eliminate the outliers,
let the matrix L represent the matrix M without noise, and the process of solving L can be
converted into the following minimization:

argmin
W,L

‖W(M− L)‖2

rank(L) = rank(M)− 1
(16)

In Equation (16), W = diag(w1, w2, · · · , wn) is an inlier updating matrix. If the i-th
pair of matching points are inliers, set wi = 1, otherwise set wi = 0. Since L satisfies Lf = 0,
Equation (16) can be transformed into a minimization problem of Equation (17):

argmin
W, f

‖WMf‖2. (17)

Initially, let us assume that all the corresponding points are inliers, and W is a n× n
identity matrix, ξ= Inf. Before iteration, W is updated according to the position similarity
of feature points in the images. Subsequently, singular value decomposition is performed
on MTWM, and f is the eigenvector associated with the minimum singular value. If the
condition εmax > ξ is not met, W and ξ are updated according to Equation (18). Ultimately,
W and f are substituted into the four-point iterative method as initial values:

wi =

{
1 εi ≤ τ
0 otherwise

, ξ = εmax, (18)

εi =

 1√
(Fmi)

2
1 + (Fmi)

2
2

+
1√(

FTm′i
)2

1 +
(
FTm′i

)2
2

‖m′iFmi‖. (19)

where εi denotes the epipolar geometry distance; εmax = Q25%(ε1, · · · εn) is the lowest
quartile of the epipolar geometry distance; and τ = max(εmax, δmax); δmax is the maximal
geometric error.

4.2. Four-Point Iterative Method for Global Fundamental Matrix Estimation

In the estimation method based on traditional RANSAC method, the artificial thresh-
old is usually utilized to iteratively update the model, and the fundamental matrix does not
satisfy the rank constraint. Therefore, we used a singular value decomposition correction
to solve the rank constraint problem.

In the four-point iterative method, primarily, the average value of the epipolar geome-
try distance calculated by the initial value f is taken as the threshold. Furthermore, four
pairs of matching points are randomly selected from the inliers obtained by the initial value
W and substituted into Equation (13):

Af = 0. (20)

where:

A =

u′1v1 u′1 v′1u1 v′1 u1 v1 1
...

...
...

...
...

...
...

u′4v4 u′4 v′4u4 v′4 u4 v4 1

. (21)

A is a 4× 7 matrix, f′1, f′2, f′3 are vectors that span the right null space of A. Therefore, f
can be expressed as:

f = af′1 + bf′2 + cf′3. (22)
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These vectors are transformed into the fundamental matrixes and assume to be c = 1:

F = aF′1 + bF′2 + F′3. (23)

When the camera moves on the plane, the intrinsic matrix of the camera K remains
unchanged, and the rank of the fundamental matrix is 2. According to [26], the fundamental
matrix satisfies:

det(F) = 0
det
(
F + FT) = 0

(24)

By substituting Equation (23) into Equation (24), we obtain:

C
[

a3, a2b, ab2, b3, a2, ab, b2, a, b, 1
]T

= 0. (25)

where C is a parameter matrix constituted by the elements of f′1, f′2, f′3.
The parameters a and b can be solved by the minimum automatic generator method [41],

and the fundamental matrix is estimated. Meanwhile, the number of matching points that
satisfy the threshold is calculated and then these points are defined as a new inlier set.
Eventually, through repeated use of the four-point iterative method, the model with the
largest number of inliers is selected as the estimated fundamental matrix, which is stable
and satisfies the rank constraint.

The epipolar geometry in triple-view is shown in Figure 3, where the camera captures
the object from different angles. The projection points of a 3D feature point Pwi on image
planes are mi, m′i and m′′i , respectively; O1, O2, O3 are the optical centers of the cameras.
Three images taken with public view as a group and F12, F32 are the fundamental matrices
estimated by the four-point iterative method between the two images, respectively. Then,
mi, m′i in the first and third images are mapped to the epipolar lines l′1i = F12mi, l′3i = F32m′i
in the intermediate image, and the intersection point of epipolar lines is set as pi. Due to
the influence of noise, there is a distance error between pi and m′′i . Therefore, F12 and F32
are simultaneously optimized by bundle adjustment:
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argmin
F13,F23

‖pi −m′′i ‖
2. (26)

Figure 4 shows the flow chart of the fundamental matrix estimation method in this
paper. Firstly, the fundamental matrix is simplified by analyzing the motion characteristics
of the camera, and the parameters to be solved are determined. Furthermore, the robust
null space estimation method is applied to calculate the initial model of the fundamental
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matrix, and on this basis, a four-point automatic generator is derived. Ultimately, according
to the epipolar geometry in triple-view, global optimization is carried out.
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Figure 4. Flow chart of fundamental matrix estimation method.

5. Experimental Results and Analysis

Two datasets were used in the experiment: one is the real dataset, and the other
is a simulated dataset containing Gaussian noise and outliers. The proposed method
is compared with ISSO [30], EGEC [31] and RANSAC [26] methods. In the subsequent
experiments, the mean epipolar geometry distance and the mean distance between feature
points and the intersection points of epipolar lines are used as the evaluation criteria to
evaluate the accuracy of various methods.

5.1. Experiments on the Simulated Dataset

In the simulation test, we generated 300 pairs of corresponding points, which were
uniformly distributed in the synthetic images. Gaussian noise with a mean value of 0, the
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standard deviation of σ and outliers with different proportions were added to simulate
real-world conditions. We conducted 100 independent tests, taking the average value as
the final result.

In Figure 5a, the standard deviation of Gaussian noise increases from 0 to 2 without
adding any outliers to the simulated data. The results show the epipolar geometric distance
obtained by various fundamental matrix estimation methods under Gaussian noise. With
the increase in noise standard deviation, the accuracy of the fundamental matrix estimated
by all methods linearly decreases. Among them, the performance of the RANSAC method
and EGEC method seems to be similar, and both of them sharply decline with the increase in
noise. In contrast, the method proposed in this paper deteriorates slowly with the increase
in noise. The experimental results in Figure 5b show that the other three methods have a
stronger robustness to outliers than the RANSAC method when the corresponding points
are noise-free. Moreover, it is clear that the epipolar geometry distance of the proposed
method is essentially independent from the proportion of outliers.
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Figure 5. Comparisons of the epipolar geometric distances. (a) The mean geometric distance with
varying Gaussian noise; (b) The mean geometric distance with varying outliers proportion.

In Figure 3, pi should coincide with m′′i . Gaussian noise and outliers are added to the
simulation points in Figure 6a,b as Figure 5, respectively. As can be seen from Figure 6,
under the same experimental conditions, the distance between pi and m′′i obtained by
the proposed method is the smallest, which indicates that this method has a good anti-
interference performance and can better adapt to the uncertainty of noise and outliers.

In the second simulation experiment, the proportion of outliers is set at 10%, while
Gaussian noise with mean value of 0 and standard deviation from 0 to 2 is added to the
synthetic data. The experimental results of four methods for synthetic data are summarized
in Tables 1 and 2. When the ratio of outliers is fixed, the errors of the four estimation
methods increase with the noise intensity. However, in comparison, the proposed method
has the best performance when there are outliers and noises in the dataset.
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Figure 6. Comparisons of the distance between intersection points and feature points. (a) The mean
distance with varying Gaussian noise; (b) The mean distance with varying outliers proportion.

Table 1. The mean epipolar geometric distance of synthetic data (pixel).

Noise Level Proposed Method ISSO Method EGEC Method RANSAC Method

0 0.031 0.191 0.086 1.645
0.2 0.056 0.308 0.303 1.896
0.4 0.094 0.412 0.511 2.105
0.6 0.147 0.503 0.731 2.333
0.8 0.277 0.607 0.955 2.556
1 0.406 0.724 1.164 2.75

1.2 0.51 0.893 1.396 3.001
1.4 0.616 1.036 1.612 3.206
1.6 0.797 1.213 1.817 3.411
1.8 0.971 1.411 2.045 3.65
2 1.132 1.741 2.254 3.851

Table 2. The mean distance between feature point and intersection point of synthetic data (pixel).

Noise Level Proposed Method ISSO Method EGEC Method RANSAC Method

0 0.191 0.534 0.354 2.812
0.2 0.345 0.983 0.934 3.524
0.4 0.498 1.135 1.502 4.013
0.6 0.641 1.432 1.752 4.292
0.8 0.875 1.652 2.141 4.733
1 1.19 1.836 2.352 4.95

1.2 1.43 2.047 2.553 5.163
1.4 1.574 2.207 2.851 5.514
1.6 1.723 2.491 3.207 5.87
1.8 2.13 2.713 3.524 6.183
2 2.231 3.135 3.857 6.488

5.2. Experiments on Real Dataset

Next, in order to verify the effectiveness of the proposed method under planar motion
scenes, we randomly selected three images in the Middlebury dataset [42]. The images
are taken from equally spaced viewpoints along the x-axis of camera coordinate system
from left to right. Meanwhile, to further evaluate the performance of different fundamental
matrix estimation methods in computer vision fields, we added a set of satellite images, as
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shown in Figure 7d, and a sequence of indoor images in the real experimental environment,
as shown in Figure 7e,f.
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Figure 7. The epipolar geometry in different images. (a) Feature points and epipolar lines in Image1;
(b) Feature points and epipolar lines in Image2; (c) Feature points and epipolar lines in Image3;
(d) Feature points and epipolar lines in Image4; (e) Feature points and epipolar lines in Image5;
(f) Feature points and epipolar lines in Image6.

The satellite was placed on the turntable and images were taken from nine perspectives
from equiangular viewpoints. In the process, the camera was horizontal. The sequence of
indoor images was collected by a camera mounted on a mobile robot horizontally, and the
pose of the camera was provided by the OptiTrack system. Feature points were obtained by
applying a Harris corner detector, and the correspondence of feature points was obtained by
the optical flow method. The fundamental matrix was estimated by the proposed method,
ISSO and EGEC methods.

Figure 7 shows the inlier feature points in the first and the intermediate images of
the proposed method, which are marked as red ‘*‘. Additionally, the epipolar lines are
recovered using the fundamental matrix estimated by the proposed method. As we can see,
feature points fall exactly on the corresponding epipolar lines, indicating that the proposed
method is relatively accurate for the estimation of the fundamental matrix. The mean
epipolar geometry distance is shown in Table 3.
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Table 3. The mean epipolar geometric distance of real images (pixel).

Data Proposed Method ISSO Method EGEC Method

Image1 0.618 0.992 1.615
Image2 0.815 1.241 1.826
Image3 1.038 1.41 2.346
Image4 0.509 0.976 1.587
Image5 1.161 1.817 2.455
Image6 1.291 2.019 2.532

Figure 8 shows the inlier feature points in the intermediate images, which are labeled
by ‘o’, and intersection points are labeled by ‘+’. It can be clearly seen that the intersection
points and feature points calculated by the proposed method correctly coincide. Table 4
lists the mean distance between the intersection points and feature points calculated by
each method. Compared with the other two methods, the proposed method is more robust.
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Figure 8. The feature points and intersection points in the intermediate images. (a) Feature points and
intersection points in Image1; (b) Feature points and intersection points in Image2; (c) Feature points
and intersection points in Image3; (d) Feature points and intersection points in Image4; (e) Feature
points and intersection points in Image5; (f) Feature points and intersection points in Image6.
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Table 4. The mean distance between feature point and intersection point of real images (pixel).

Data Proposed Method ISSO Method EGEC Method

Image1 1.513 2.162 2.893
Image2 1.775 2.685 3.381
Image3 2.309 2.787 3.502
Image4 1.402 2.054 2.586
Image5 2.271 3.017 3.883
Image6 2.406 3.137 4.038

From the above experiments, it can be included that the proposed fundamental ma-
trix estimation method has a higher accuracy under different planar motion scenes. In
order to display the application of the fundamental matrix estimation method in the field
of 3D reconstruction and visual localization more intuitively, we designed the satellite
reconstruction and indoor localization experiments.

In 3D reconstruction, the static measurement and dynamic measurement are devised
to verify the reconstruction accuracy of feature points by calculating the rotation angle of
the satellite. Firstly, we extract the feature points in the satellite dataset images and obtain
the correspondences of feature points. The camera coordinate system in the first image is
defined as the world coordinate system by default. The fundamental matrix estimation
method proposed in this paper and the ISSO method, respectively, are used to reconstruct
the feature points on the satellite and establish the 3D feature point models of the satellite.
Figure 9 shows the satellite 3D feature point model obtained by our method and the relative
position relationship between camera coordinate systems.
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Figure 9. Satellite 3D feature point model.

Afterwards, the turntable is rotated every 2◦ for a total of 10◦, and the control accuracy
is 0.010◦. The satellite 3D feature point models obtained by the proposed method and ISSO
method are used to measure the static rotation angle by applying the perspective-n-point
algorithm. The measured static errors are shown in Table 5. It can be seen that the error
gradually increases with the increase in the rotation angle, and the estimation method
proposed in this paper can control the maximum error of the rotation angle within 0.104◦,
which is better than the result of the ISSO method (0.138◦).
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Table 5. Static rotation angle error (◦).

Data
Measured Angle

Standard Angel
Absolute Error

Proposed Method ISSO Method Proposed Method ISSO Method

1 0.013 0.023 0 0.013 0.023
2 2.034 1.942 2 0.034 0.058
3 3.949 3.923 4 0.051 0.077
4 6.075 6.086 6 0.075 0.086
5 8.091 7.887 8 0.091 0.113
6 9.896 10.138 10 0.104 0.138

The motion trajectory of the turntable is a cosine curve with amplitudes rising from 0◦

to 10◦, and the average speed of the turntable is 1◦/s. Figure 10 shows the dynamic errors
of the rotation angle in one cycle of motion. We can see that the proposed method in this
paper can control the dynamic error of satellite up to 0.273◦, but the dynamic error of ISSO
method is relatively high.
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Figure 10. Dynamic rotation angle error.

In visual localization, after we obtain the point correspondence, the proposed method
and ISSO method are used to estimate the fundamental matrix between the indoor images.
The rotation angle of the camera calculated by the fundamental matrix at different moments
is used to verify the accuracy of visual localization. We calculate the camera rotation angle
in 30 s with the angle amplitudes rising from 0◦ to 43◦. Figure 11a,b show the ground-true
value and error of the rotation angle, respectively. In Figure 11b, the average rotation
error obtained by the ISSO method is 0.517◦; however, the error obtained by the proposed
method is 0.362◦. It can be seen that the error distribution of the proposed method is more
concentrated than that of the ISSO method.
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6. Conclusions

In this paper, we propose a robust method for estimating the fundamental matrix from
point correspondence in multi-view images. Firstly, stable and reliable initial values are
obtained by combining the outlier elimination with the fundamental matrix estimation.
Even if there is a large number of outliers, the calculated values will soon become stable.
Then, the rank constraint is introduced, and we solve the problem of reducing the accuracy
of the fundamental matrix in a traditional singular value decomposition correction. The
global optimization function under triple-view is constructed, which further improves the
estimation accuracy of the fundamental matrix. The experimental results show that the
proposed method is more accurate and robust than traditional methods. It can solve the
fundamental matrix estimation problem under planar motion scenes. This kind of method
is beneficial for the research of high precision non-cooperative target pose measurement
and has important significance for the planning research of mobile robots.
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