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ABSTRACT 

Arsenic is well-recognized as one of the most hazardous elements which is characterized by its omnipresence 

throughout the environment in various chemical forms. From the simple inorganic arsenite (iAsIII) and arsenate 

(iAsV) molecules, a multitude of more complex organic species are biologically produced through a process of 

metabolic transformation with biomethylation being the core of this process. Because of their differential toxicity, 

speciation of arsenic-based compounds is necessary for assessing health risks posed by exposure to individual 

species or co-exposure to several species. In this regard, exposure assessment is another pivotal factor that includes 

identification of the potential sources as well as routes of exposure. Identification of arsenic impact on different 

physiological organ systems, through understanding its behavior in the human body that leads to homeostatic 

derangements, is the key for developing strategies to mitigate its toxicity. Metabolic machinery is one of the so-

phisticated body systems targeted by arsenic. The prominent role of cytochrome P450 enzymes (CYPs) in the 

metabolism of both endobiotics and xenobiotics necessitates paying a great deal of attention to the possible effects 

of arsenic compounds on this superfamily of enzymes. Here we highlight the toxicologically relevant arsenic spe-

cies with a detailed description of the different environmental sources as well as the possible routes of human 

exposure to these species. We also summarize the reported findings of experimental investigations evaluating the 

influence of various arsenicals on different members of CYP superfamily using human-based models. 
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1. INTRODUCTION 

Arsenic (As) is a naturally occurring ele-

ment that is widely distributed in the environ-

mental media. It is extremely toxic and does 

not seem to have any essential role in living 

organisms. The toxic nature of arsenic was 

recognized from early times, long before the 

documented recovery of its elemental form by 

the German alchemist; Albertus Magnus, 

amid the 13th century (Meharg, 2005). 

Historically, arsenic was known as the 

“king of poisons” because of its wide use as a 

murder weapon. It was notorious for being 

specifically a “poison of kings” that was com-

monly used to assassinate rulers and nobility. 

This was attributed to the fact that arsenic 

compounds are usually tasteless and odorless 

and are also lethal at small amounts. Moreo-

ver, poisoning is also masked by non-specific 

symptoms that mimic those of food poisoning 

mailto:aelkadi@ualberta.ca
http://dx.doi.org/10.17179/excli2021-3890
http://dx.doi.org/10.17179/excli2021-3890
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2900-7129
https://orcid.org/0000-0002-8692-0400


EXCLI Journal 2021;20:1184-1242 – ISSN 1611-2156 

Received: May 17, 2021, accepted: July 02, 2021, published: July 12, 2021 

 

 

1185 

(Parascandola, 2012). Being almost untracea-

ble in the body, arsenic was frequently used 

as a poison till the 19th century when a sensi-

tive detection method was developed and 

published by the British chemist; James 

Marsh (Marsh, 1836). 

The first documentation of arsenic impli-

cation in cancer development dates back to 

early 1800s when John Paris noticed high rate 

of scrotal skin cancer among men working in 

copper smelting in Cornwall and Wales. 

These observations also included farm ani-

mals near the smelters. The British physician 

speculated that the exposure to arsenic fumes 

associated with the metals is the reason be-

hind these findings (Bishop and Kipling, 

1978). 

Because of its deleterious effects, arsenic 

is recognized as an environmental toxicant 

and carcinogen by regulatory agencies. Arse-

nic ranks first on the Substance Priority List 

(SPL) established by the Agency for Toxic 

Substances and Disease Registry (ATSDR). 

In this list, the substances posing significant 

potential threat to human health are priori-

tized based on their toxicity in addition to 

their frequency of occurrence and potential 

for human exposure (ATSDR, 2007). Under 

the Canadian Environmental Protection Act 

(CEPA), arsenic and its compounds are in-

cluded in the first Priority Substances List 

(PSL1) published in 1989 by Environment 

Canada and Health Canada. In 1993, environ-

mental and human health assessment reports 

of the substances on this list revealed that ar-

senic and its inorganic compounds are toxic 

and pose a risk to the health of humans and to 

the environment (CEPA, 1993). The Mono-

graphs Program of the International Agency 

for Research on Cancer (IARC), which iden-

tifies carcinogenic hazards to humans, has 

classified arsenic and its inorganic com-

pounds as a Group 1 human carcinogen 

(IARC, 2004). 

With a varying degree of toxicity, arsenic 

has a wide range of trivalent and pentavalent 

compounds that fall under two main catego-

ries; inorganic compounds and organoarseni-

cals. From its natural repositories, arsenic is 

mobilized as water soluble inorganic species 

that can easily get into the food chain and un-

dergo metabolic biotransformation yielding 

carbon-containing organic forms (Watanabe 

and Hirano, 2013). 

Arsenic toxicity is a complex and multi-

faceted process, and one important aspect of 

such toxicity is the interference with the met-

abolic machinery in the human body, with 

subsequent physiological derangements (Fu 

and Xi, 2020). For instance, arsenicals, espe-

cially the trivalent species, are capable of dis-

rupting the function of more than 200 en-

zymes (Rehman and Naranmandura, 2012). 

Cytochromes P450 (CYPs) represent a su-

perfamily of hemoproteins that function as 

monooxygenases involved in the metabolic 

oxidation of a myriad of endogenous com-

pounds as well as xenobiotics. Because of 

their considerable contribution in the meta-

bolic system, their activity is regarded as a 

crucial element in the physiological homeo-

stasis as well as the overall body exposure to 

foreign chemicals. Accordingly, alteration of 

such activity should have a direct impact on 

normal body function as well as the behavior 

of xenobiotics within the body (e.g. pharma-

cokinetics of an administered drug) (Nebert 

and Russell, 2002). 

In this regard, several studies have impli-

cated arsenic and other heavy metals as mod-

ulators of CYPs regulation, which implies 

modification of their metabolic function 

(Anwar-Mohamed et al., 2009). Characteriz-

ing the aspects of arsenic manipulation of 

CYP enzymatic system provides further in-

sights into understanding the mechanisms un-

derlying its toxicity which can be imple-

mented in developing preventive strategies or 

exploited in treating certain illnesses. 

This review offers a collective overview 

for the toxicologically relevant arsenic spe-

cies and their origins. It also provides a de-

tailed description of the different sources of 

arsenic release to the environment and dis-

cusses how humans can be exposed to such 

contaminant. Finally, it summarizes years of 

experimental investigations into the modula-
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tory effects of various arsenic species on dif-

ferent members of CYP superfamily using hu-

man-based models. 

A literature search was performed through 

MEDLINE database using the Medical Sub-

ject Headings (MeSH) term “Arsenic” com-

bined with all of its subheadings. Addition-

ally, a comprehensive literature review was 

conducted through Google Scholar and Pub-

Med using search terms that included combi-

nations of keywords such as; arsenic, history, 

chemistry, speciation, toxicity, poisoning, 

metabolism, methylation, arsenite, arsenate, 

arsenic trioxide, thioarsenicals, arsenobeta-

ine, arsenocholine, arsenolipids, arseno-

sugars, arsines, trimethylarsine oxide, tetra-

methylarsonium ion, sources, environment, 

Canada, weathering, volcanoes, wildfires, 

mining, smelting, fuels, electronics, batteries, 

wood preservatives, pesticides, livestock, 

poultry, medication, treatment, cancer, expo-

sure, drinking water, food, seafood, rice, ce-

reals, air, pollution, cytochrome P450, 

CYP450, alteration, modulation, and regula-

tion. Moreover, hand-searching was used to 

get additional relevant publications that are 

cited in previous review articles but were not 

retrieved through searching the electronic da-

tabase. Full-text review was done after initial 

screening of all titles and abstracts as well as 

meticulous evaluation to include only articles 

published in peer-reviewed journals. Our 

search wasn’t confined to a specific range of 

publication years. 

 

2. ARSENIC CHEMISTRY AND  

SPECIATION IN NATURE 

2.1. Arsenic chemistry 

Arsenic is found in the nature as a monoi-

sotopic element (atomic number, 33; standard 

atomic weight, 74.92) and belongs to Group 

15 of the Periodic Table. It is classified chem-

ically as a metalloid because of having mixed 

properties of both metals and nonmetals; 

however, it is frequently referred to as a metal 

(Flora, 2015). 

Based on its electronic configuration, ar-

senic shows four common redox states: -3, 0, 

+3, and +5. Elemental arsenic (As0), also 

known as metallic arsenic, has three allo-

tropes the most common of which is the steel-

grey brittle solid polymorph. This pure form 

is rarely encountered in natural environment 

because of the inherent nature of arsenic to 

easily combine with other elements. The great 

ability of arsenic to lose electrons increases its 

cationic character, thus it can readily exhibit 

(+3) and (+5) oxidation states when combined 

with non-metals (most commonly oxygen and 

sulfur). The negative oxidation state (-3) 

arises when additional three electrons become 

more attracted towards arsenic upon interact-

ing with less electronegative elements, basi-

cally metals, to form compounds known as ar-

senides (O'Day, 2006). 

Variable oxidation states of arsenic imply 

its affinity to participate in chemical bonding 

with other elements forming several com-

pounds. There are over 300 naturally occur-

ring arsenic minerals, which are mainly ox-

ides and sulfides. Arsenic oxides and arseno-

sulfides may also contain other metals com-

bined with arsenic. These minerals are con-

sidered valuable ore deposits if their copper, 

nickel, cobalt, or other metals can be econom-

ically recovered without negatively affecting 

the environment. Uncommon forms of natural 

arsenic minerals include metal arsenide and 

elemental arsenic (Drahota and Filippi, 2009). 

 

2.2. Arsenic species 

2.2.1. Arsenite and arsenate 

Arsenic oxide minerals are either arsenite-

containing minerals (arsenites) or arsenate-

containing minerals (arsenates) and are 

formed naturally as secondary weathering 

products of other arsenic minerals. Arsenosul-

fides, arsenides, and elemental arsenic are 

commonly found associated with anoxic ore 

deposits, but once these minerals come in 

contact with oxygen, they are rapidly oxi-

dized into arsenites (iAsIII) and, in case of ex-

tensive oxidation, arsenates (iAsV) (Welch 

and Stollenwerk, 2003). Oxidation is the ini-

tial step in the mobilization of arsenic from its 

deposits to the environment, and the rate of 

the process is much greater in the presence of 

water besides air (Jackson et al., 2003). 
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The hydrothermal fluids extract arsenic from 

its oxidized minerals as water-soluble spe-

cies; trivalent arsenious acid (H3AsO3), pen-

tavalent arsenic acid (H3AsO4) and their dis-

sociated oxo-anions (Figure 1). Arsenic is 

transported in these fluids over long distances 

through extensive fractures in earth crust until 

they end up in ground water or reach the sur-

face water. iAsIII and iAsV are readily inter-

converted and the speciation of dissolved ar-

senic depends mainly on pH and redox poten-

tial, in addition to aqueous chemistry and bi-

ological activity (Shih, 2005). In the reducing 

environments of hydrothermal fluids or an-

oxic groundwater, arsenic is predominantly in 

the form of arsenious acid, which exists as 

dissolved H3AsO3 at pH below 9.2 or as its 

dissociated oxo-anions (H2AsO3
-, HAsO3

-2, 

and AsO3
-3) under more alkaline conditions. 

As arsenic-carrying fluids approach the earth 

surface and become diluted with aerated 

groundwater or reach surface water, iAsIII will 

begin to oxidize to iAsV. Eventually, arsenic 

acid becomes the dominant form under these 

oxidizing conditions, and then can be found 

as dissolved H3AsO4 at extremely acidic (pH 

<2) environment or as its associated anions 

(H2AsO4
-, HAsO4

-2) in less acidic or neutral 

conditions, or (AsO4
-3) in alkaline waters 

(Mondal and Garg, 2017; Smedley and 

Kinniburgh, 2002). 

2.2.2. Methylated and thiolated arsenic  

species 

Through water, these aqueous arsenic spe-

cies can reach any life form. Once inside a liv-

ing system, inorganic arsenic (iAs) can un-

dergo extensive biotransformation, usually by 

methylation, into more complex organic com-

pounds (oAs) (Challenger, 1945; Hayakawa 

et al., 2005; Naranmandura et al., 2006). Fig-

ure 1 lists the chemical structures, names and 

abbreviations of the major toxicologically rel-

evant trivalent and pentavalent arsenic com-

pounds.  

Each methylated species generated in the 

process could be excreted or remain in the or-

ganism and be further metabolized into more 

methyl-rich species. The most common meth-

ylated organoarsenicals include trivalent spe-

cies as monomethylarsonous acid (MMAIII) 

and dimethylarsinous acid (DMAIII), in addi-

tion to pentavalent species such as 

monomethylarsonic acid (MMAV) and dime-

thylarsinic acid (DMAV) (Bentley and 

Chasteen, 2002; Kumagai and Sumi, 2007).  

The exact reaction sequence and enzymes 

involved in arsenic biomethylation are still 

debated. Starting from iAsV, both tri- and 

penta-valent methylated arsenic species can 

be derived through three proposed mecha-

nisms (Figure 2). The generally accepted clas-

sical pathway of Challenger (Challenger, 

1945) consists of two alternating steps of re-

duction as well as oxidation coupled with 

methylation. The reduction of iAsV to iAsIII 

can be catalyzed by different enzymes with 

arsenate reductase activity such as glutathione 

S-transferase omega-1 (GSTO1), purine nu-

cleoside phosphorylase (PNP), glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH), 

and glycogen phosphorylase (GP), where glu-

tathione (GSH) mediates the reaction for all 

of them except PNP for which the reductant is 

dihydrolipoic acid (DHLA) (Henke, 2009). 

Hayakawa proposed an alternative pathway 

(Hayakawa et al., 2005) mediated by non-en-

zymatic formation of trivalent arsenic-GSH 

complexes, which are sequentially methyl-

ated and subsequently hydrolyzed. Ulti-

mately, the trivalent species are oxidized to 

the less toxic pentavalent counterparts. Based 

on the higher affinity of trivalent arsenicals to 

thiol group from proteins than that of GSH, a 

third pathway by Naranmandura (Naranman-

dura et al., 2006) suggests that protein-bound 

trivalent arsenic is consecutively methylated 

in the presence of GSH. The end-products are 

the pentavalent species which are liberated 

from proteins upon oxidation of their corre-

sponding trivalent forms. 
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Figure 1: Chemical structures, names and abbreviations of some arsenic compounds. Arsenious 
and arsenic acids are interconverted under oxidizing and reducing conditions with subsequent dissoci-
ation of each acid to its respective oxo-anions by further increase in pH. 
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Figure 2: The three metabolic pathways proposed to explain arsenic metabolism via bio-methyl-
ation. Challenger’s pathway (red arrows), Hayakawa’s pathway (blue arrows), and Naranmandura’s 
pathway (green arrows). 

Abbreviations:  
GSTO1: glutathione S-transferase 
omega-1, GSH: reduced glutathione 
(reducing agent), GSSG: oxidized 
glutathione, AS3MT: arsenic (+3 ox-
idation state) methyltransferase, 
SAM: S-adenosylmethionine (methyl 
donor), SAHC: S-adenosylhomocys-
teine. ATG: Arsenic triglutathione, 
MMADG: Monomethylarsonous acid 
diglutathione, DMAG: Dime-
thylarsinous acid glutathione. 
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In mammals, most of the absorbed inor-

ganic arsenic in the body gets transformed 

and excreted in the urine as methylated me-

tabolites (DMA > MMA), with a relatively lit-

tle amount being excreted unchanged as iAs 

(Concha et al., 2002). These urinary metabo-

lites are mostly pentavalent species (DMAV > 

MMAV) (Rehman and Naranmandura, 2012). 

For instance, iAs-exposed human subjects 

have generally shown 10-30 % inorganic ar-

senic, 10-20 % MMA, and 60-80 % DMA in 

the urine (Vahter, 1999b). Interestingly, the 

pattern of iAs metabolism varies across mam-

malian species as a result of inter-species dif-

ferences in the capacity to form various meth-

ylated arsenic metabolites, yielding eventu-

ally species-specific urinary profiles for these 

metabolites. Generally, the higher the methyl-

ation efficiency (towards forming DMA), the 

higher the excretion rate. In humans, the ma-

jor component of urinary arsenic is DMA; 

however, the fraction of MMA in urine is rel-

atively higher than that in other mammalian 

species; and that's probably why humans are 

more prone to arsenic toxicity than most ex-

perimental animals such as mice (Vahter, 

1994). The prominent efficiency of mice in 

arsenic methylation, as indicated by the high 

fraction of DMA and minimal amount of 

MMA in urine, results in a very fast urinary 

arsenic elimination (about 90 % of adminis-

tered iAs dose is excreted within two days) 

(Vahter and Marafante, 1983). On the other 

hand, lacking arsenic methylation ability in 

some species; such as marmoset and tamarin 

monkeys (Vahter and Marafante, 1985; 

Vahter et al., 1982; Zakharyan et al., 1996), 

chimpanzees (Roy et al., 2020; Vahter et al., 

1995; Wildfang et al., 2001), and guinea pigs 

(Healy et al., 1997); has been evidenced by 

the absence of methylated arsenicals in the 

urine after iAs treatment. This has been at-

tributed to their inability to produce func-

tional arsenic (+3 oxidation state) methyl-

transferase (AS3MT); the key enzyme in ar-

senic biomethylation. In these animals, iAs 

becomes strongly bound to different tissues in 

the body and gets excreted unchanged in the 

urine at a relatively much lower rate com-

pared with other species, resulting in long re-

tention time that leads to toxicity. Besides in-

ter-species variability, intra-species variation 

in arsenic methylation and excretion patterns 

have been also reported in several arsenic-af-

fected human populations. The reason behind 

such inter-individual differences may be one 

of several factors such as age, gender, 

length/intensity of iAs exposure, nutrition, or 

smoking (Vahter, 1999a, b). Additionally, 

both inter- (Drobná et al., 2010) and intra- 

(González-Martínez et al., 2020; Hernández 

et al., 2008; Lu et al., 2018, 2019; Meza et al., 

2005) species variations have been correlated 

to genetic factors affecting the expression of 

the enzymes involved in arsenic metabolic 

pathway especially AS3MT which, similar to 

other methyltransferases (Vahter, 2000), has 

shown genetic polymorphisms. 

The biomethylation process was widely 

regarded as a detoxification mechanism be-

cause, compared to iAs precursors, the penta-

valent methylated forms; which are dominant, 

stable, and readily detected; are less reactive 

with tissue constituents and more easily ex-

creted in urine resulting in lower retention of 

arsenic in the body. However, the discovery 

of trivalent methylated intermediates, which 

are less stable thus harder to be detected, has 

overthrown this assumption and rendered ar-

senic methylation a bioactivation process 

(Cullen, 2014). Several studies have shown 

that MMAIII and DMAIII are more reactive 

and toxic than their pentavalent counterparts 

and even more than trivalent iAs (Khairul et 

al., 2015; Petrick et al., 2000, 2001). 

In addition to methylated metabolites, 

several thiolated forms have been detected in 

mammals including humans. Thioarsenicals 

are sulfur-containing derivatives of the meth-

ylated oxo-arsenicals where the oxygen 

bonded to arsenic atom is replaced by sulfur, 

thus forming As-SH and/or As=S inter-

changeable tautomeric substructures (Herath 

et al., 2018; Suzuki et al., 2010). Only penta-

valent, but not trivalent, thiolated metabolites 

have been identified in biological systems, 

such as monomethylmonothioarsonic acid 
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(MMMTAV), dimethylmonothioarsinic acid 

(DMMTAV), and dimethyldithioarsinic acid 

(DMDTAV) (Sun et al., 2016). Thioarsenials 

are suggested to be produced through entero-

hepatic circulation. Methylated species ex-

creted in the bile get converted by gastrointes-

tinal microbiota into thiolated forms, which 

are then absorbed into the blood and end up 

excreted in the urine (Bu et al., 2011).  

When trivalent species, both inorganic or 

methylated, are introduced to the biological 

systems, trivalent thioarsenicals are hypothe-

sized to only act as transient intermediates 

which eventually get oxidized to their penta-

valent counterparts (Fan et al., 2018). Be-

cause of their high affinity for sulfhydryl 

groups, trivalent arsenicals are usually bound 

in vivo to glutathione or proteins forming sul-

fur-containing complexes, which are not con-

sidered thioarsenicals. Examples of glutathi-

one-conjugated arsenic species include arse-

nic triglutathione (AsIII-GS3), monomethylar-

sonous acid diglutathione (MMAIII-GS2), and 

dimethylarsinous acid glutathione (DMAIII-

GS) conjugates (Ponomarenko et al., 2014; 

Shen et al., 2013). Interestingly, the thiolated 

arsenic metabolite, DMMTAV, was the only 

pentavalent species to be detected in a com-

plex with glutathione. The formation of dime-

thylmonothioarsinic acid glutathione conju-

gate (DMMTAV-GS) is attributed to DMM-

TAV affinity to interact with sulfhydryl 

groups of biomolecules such as glutathione, 

resulting eventually in profound oxidative 

stress rendering it the most cytotoxic among 

other thiolated metabolites and all pentavalent 

forms (Herath et al., 2018; Naranmandura et 

al., 2011). 

In most natural waters that have detecta-

ble arsenic, inorganic AsIII or AsV are domi-

nant, while organoarsenicals are often absent 

or found in very low concentrations. Since the 

methylation of arsenic is exclusively biotic, 

the presence of oAs in water is associated 

with microorganisms such as bacteria and 

phytoplankton which can be mostly found in 

surface waters (Hasegawa et al., 2019). The 

increased ratio of organic species in surface 

waters during summer may be explained by 

the enhanced methylation reactions catalyzed 

by microbial activity (Hasegawa et al., 1999). 

On the other hand, the near absence of meth-

ylated forms in groundwater can be attributed 

to low populations of microorganisms there. 

However, oAs may be detected in groundwa-

ter if it was infiltrated with surface waters that 

already have such organic species (Mandal 

and Suzuki, 2002). It is worth mentioning that 

abnormally high levels of oAs can be ob-

served in areas that are impacted by industrial 

pollution and human-generated wastes. 

2.2.3. Arsenobetaine, arsenocholine,  

arsenolipids, and arsenosugars 

In addition to accumulation of a minor 

percentage of methylated metabolites (Taylor 

et al., 2017), iAs is mainly retained in marine 

organisms as more complex species of or-

ganoarsenicals. The most predominant of 

such species is arsenobetaine (AsB) which is 

found in the majority of finfish and shellfish. 

Chemically, arsenobetaine is an arsenic ana-

log of the osmolyte glycine betaine (trime-

thylglycine), and such structural similarity 

suggests that it may have an osmotic role 

within marine animals (Popowich et al., 

2016). Arsenocholine (AsC) serves as a pre-

cursor which is readily converted to AsB 

(Francesconi et al., 1989), thus it can be only 

detected at low levels in seafood (Kirby and 

Maher, 2002; Suner et al., 2002). However, 

AsC has been reported as a major arsenical in 

some sea anemones (Ninh et al., 2008) and 

species of jelly fish (Hanaoka et al., 2001). 

Arsenolipids (AsLipids) is another group of 

arsenic compounds that have been detected at 

low levels in marine life with significant frac-

tions being generally associated with oily 

fish. The classes of these compounds include 

fatty acids (AsFAs), hydrocarbons (AsHCs), 

and phospholipids (AsPLs) (Taleshi et al., 

2014). Arsenosugars (AsSugars) are ribose 

derivatives representing arsenic species 

which are commonly found at major fractions 

in marine algae such as seaweeds (Xue et al., 

2017). 
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2.2.4. Arsines 

Arsines are a special family of volatile tri-

valent arsenic-bearing chemicals that com-

prises the inorganic arsine (AsH3) and the or-

ganic methylarsines; mono-, di-, and tri-

methylarsine ((CH3)AsH2, (CH3)2AsH, and 

(CH3)3As) (Mestrot et al., 2011b). The dis-

covery of gaseous arsenic dates back to 19th 

century, when vivid green color of some arse-

nic compounds such as Scheele's green (cop-

per arsenite) and Schweinfurt's green (copper 

acetoarsenite) was widely used as a pigment 

for dyeing fabrics and wallpaper. At that time, 

reported cases of child deaths and people suf-

fering from chronic illness were linked to liv-

ing in rooms decorated with As-pigmented 

wallpaper, especially when it gets damp in 

closed and poorly ventilated spaces (Bartrip, 

1994; Chasteen et al., 2002). 

The reason behind this was mistakenly be-

lieved to be the inhalation or ingestion of As-

bearing particles released mechanically from 

the wallpaper. However, in late 1800s, Bar-

tolomeo Gosio found that a toxic arsenic gas 

with a strong garlic-like odor was produced 

from the inorganic arsenic pigment by a fun-

gus, Penicillium brevicaule (reclassified as 

Scopulariopsis brevicaulis), growing on 

damp wallpaper and feeding on starch adhe-

sive (Gosio, 1892; Thom and Raper, 1932). 

The exact nature of this gas, eponymously 

named "Gosio gas", remained unclear until 

1930s when Frederick Challenger et al. 

demonstrated that the gas was trimethylarsine 

(TMA) which is formed as an end product of 

arsenic methylation (Figure 2) (Challenger, 

1945; Challenger and Higginbottom, 1935; 

Challenger et al., 1933). Ever since, Chal-

lenger became a leader in the study of bi-

omethylation and organometals. Mechanisti-

cally, how arsines are generated from non-

volatile arsenic species remains unexplained. 

It is postulated that arsine is formed by the re-

duction of arsenite or arsenate, while for other 

arsines, the process involves formation of tri-

valent methylated arsenicals which, in case of 

(CH3)AsH2 and (CH3)2AsH, undergo addi-

tional hydride transfer yielding their volatile 

counterparts. Therefore, arsines are consid-

ered intermediates in arsenic biomethylation 

pathway with the end product being TMA 

(Mestrot et al., 2013a; Planer-Friedrich et al., 

2006). 

Upon formation, these volatile com-

pounds are partitioned from aqueous solu-

tions into the atmosphere under ambient 

standard temperature and pressure conditions; 

therefore, they should not be confused with 

non-volatile arsenic species emitted from ar-

senic-bearing minerals to the atmosphere at 

high temperatures such as in volcanoes or 

smelters. The latter determines evaporated ar-

senic species that are condensed and adsorbed 

onto the particulate matter (Sanchez-Rodas et 

al., 2007; Tirez et al., 2015). 

In nature, generation of arsines is mainly 

dependent on a biotic component. In such or-

ganisms, biovolatilization into gaseous spe-

cies is considered as a mechanism of arsenic 

release thus alleviating its poisoning (Qin et 

al., 2006; Yuan et al., 2008). Arsines are pro-

duced under anaerobic conditions by micro-

organisms such as bacteria, fungi, methanoar-

chaea, protozoans, and algae (Wang et al., 

2014). Several studies have shown that arse-

nic volatilization can happen in humans via 

intestinal microbiota (Diaz-Bone and van de 

Wiele, 2009; Michalke et al., 2008; Van de 

Wiele et al., 2010). Formation of volatile spe-

cies through pre-systemic metabolism, medi-

ated by gut microbial ecosystem, can modify 

arsenic toxicokinetics and total body expo-

sure, with the impact on human health being 

determined by the relative toxicity of gener-

ated species compared to the ingested forms. 

The sources of volatile arsenicals include ar-

senic-bearing waste in landfills (Pinel-

Raffaitin et al., 2007), sewage sludge 

(Michalke et al., 2000), soils and rice paddies 

(Mestrot et al., 2009, 2011a), and biogas di-

gesters (Mestrot et al., 2013b). Additionally, 

TMA has been reported as the main volatile 

arsenic species in natural gas (Krupp et al., 

2007; Uroic et al., 2009) and geothermal 

spring water (Planer-Friedrich et al., 2006). 
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The relatively low levels of volatile spe-

cies, compared to total arsenic, in natural en-

vironmental systems can be attributed not 

only to the limited arsenic biovolatilisation, 

but also to their poor atmospheric stability. 

Because of their reactive nature towards oxy-

gen, arsine is directly oxidized to arsenite or 

arsenate, while mono-, di-, and tri-methylar-

sine are readily oxidized to the corresponding 

pentavalent methylated arsenic oxides; 

monomethylarsonic acid (MMAV), dime-

thylarsinic acid (DMAV) and trimethylarsine 

oxide (TMAO), respectively. These non-vol-

atile oxidation products will be adsorbed onto 

atmospheric particles or, ultimately, find their 

way into rainwater (Haas and Feldmann, 

2000; Jakob et al., 2010). Interestingly, some 

studies have demonstrated that these volatile 

species are quite stable in the environment 

(Mestrot et al., 2011b). Studying the environ-

mental stability of volatile arsenicals is highly 

important, as it is a major determinant of their 

impact on the population. Higher stability of 

these compounds implies their travel over 

considerable distances, without chemical 

change, thus imposing threats not only in the 

area of emissions but also in remote locations. 

In such case, monitoring of global arsines' 

fluxes would be necessary. 

2.2.5. Trimethylarsine oxide 

Aside from being the oxidation product of 

TMA, TMAO can be also produced either 

through microbial arsenic biomethylation 

(Cullen et al., 1979, 1994, 1995), then it pos-

sibly undergoes subsequent reduction to vol-

atile TMA (Pickett et al., 1981), or as a deg-

radation product of the main marine arsenical, 

AsB (Hanaoka et al., 1988, 1989, 1992a, b, 

1995; Kaise et al., 1987). AsB degradation ac-

counts for its complete absence (Jenkins et al., 

2003) or very low levels (Glabonjat et al., 

2018) in seawater, despite being the predom-

inant form in marine life which eventually 

gets released to water in considerable 

amounts from dead marine animals. Such mi-

crobial degradation is regarded as a part of ar-

senic cycling in marine ecosystem, and results 

in generating simpler species including 

TMAO (Suner et al., 2002). 

The formation of TMAO as a minor con-

stituent in several marine animals (Norin et 

al., 1985; Taylor et al., 2017) can be mainly 

attributed to the presence AsB-degrading mi-

croorganisms inside these animals (Gailer et 

al., 1995; Kaise et al., 1998; Kirby and Maher, 

2002), but in some cases, it may result from 

biomethylation of inorganic arsenic by micro-

bial activity in the gut of fish (Edmonds and 

Francesconi, 1987; Maher et al., 1999). 

TMAO formation has been reported in some 

terrestrial organisms as well (Braeuer et al., 

2018; Kuehnelt et al., 2000). 

In mammals, including humans, DMAV is 

the end product of arsenic biomethylation 

(Rehman and Naranmandura, 2012), with no 

(Hughes et al., 2000; Naranmandura et al., 

2010) to minimal (Cohen et al., 2002; Lu et 

al., 2003; Yoshida et al., 1997, 1998, 2001a) 

detection of TMAO because of DMAV rapid 

clearance that doesn’t allow its further meth-

ylation to the trimethylarsinic form 

(Marafante et al., 1987). Instead of mamma-

lian hepatic metabolism, TMAO formation in 

mammals is believed to be achieved through 

a different arsenic methylating pathway me-

diated by intestinal microbial activity 

(Kuroda et al., 2001). Gut metabolism of ar-

senic can go beyond TMAO to further trans-

form it into volatile TMA (Pickett et al., 1988) 

resulting in complete (Marafante et al., 1987) 

or partial disappearance (Yoshida et al., 

2001a) of TMAO in fecal samples. Such ex-

trahepatic metabolism may explain why 

TMAO could not be found in liver tissue de-

spite being detected in urine (Liu et al., 2015). 

Additionally, TMAO formation is associated 

with oral arsenic administration (Cohen et al., 

2002; Lu et al., 2003; Yoshida et al., 1997, 

1998, 2001a), while complete absence of 

TMAO was observed in experiments studying 

arsenic through intravenous exposure 

(Hughes et al., 2000; Naranmandura et al., 

2010). In a study by Yoshida et al., TMAO 

detection in urine after intraperitoneal injec-

tion of DMAV can be attributed to background 

arsenic derived from fish which is a source of 

protein commonly found in the standard ro-

dent dietary chow which was used in that 
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study (Yoshida et al., 2001a). Comparing ar-

senic levels in rats feeding on standard rodent 

chow, in which AsB is the main chemical 

form of arsenic, with those feeding on arse-

nic-depleted rodent chow, in which casein is 

used instead of fish as the protein source, has 

demonstrated that diet can significantly con-

tribute to arsenic exposure. In this case, AsB 

is the main form of arsenic excreted in urine, 

with trace amounts being in the form of 

TMAO (Kobayashi and Hirano, 2016). 

TMAO can be also produced from breaking 

down ingested AsB by gut microbiome in hu-

mans (Harrington et al., 2008) and other 

mammals (Yoshida et al., 1998, 2001b). 

Moreover, traces of TMAO have been de-

tected in humans as an intestinal degradation 

product of AsSugars (Francesconi et al., 

2002). Additionally, tetramethylarsonium salt 

may also undergo microbial degradation 

yielding TMAO (Hanaoka et al., 1994). 

2.2.6. Tetramethylarsonium ion 

Tetramethylarsonium ion (TETRA) is a 

trace arsenic species that has been detected in 

aquatic (Lai et al., 1999; Larsen et al., 1993; 

Sloth et al., 2003) as well as in some terres-

trial organisms (Kuehnelt and Goessler, 

2003). Exceptionally higher percentages of 

TETRA are found in some marine species 

such as clams (Shiomi et al., 1987), gastro-

pods (Francesconi et al., 1988; Ruiz-Chancho 

et al., 2013), and annelids (Geiszinger et al., 

2002). It is postulated that TETRA production 

is mediated by microbial degradation of AsB 

(Suner et al., 2002) and/or methylation of 

other arsenic species (Kirby and Maher, 2002; 

Yoshida et al., 1998). 

 

2.3. Importance of arsenic speciation 

Arsenic speciation is of great importance 

because the toxicity of this element is defined 

by species-related factors such as its oxidation 

state and molecular nature, that is, different 

forms of arsenic have vastly different toxicity 

on humans. Therefore, for a risk assessment, 

the identification of individual species would 

be more useful than the determination of total 

arsenic, which may overestimate harmful ar-

senic exposure. For example, inorganic spe-

cies as arsenite or arsenate are well-recog-

nized toxic and carcinogenic agents, while or-

ganic seafood-derived forms are fairly safe 

with no health risks posed on seafood con-

sumers (ATSDR, 2007). Since seafood ac-

counts for the largest contribution to arsenic 

exposure, primarily in organic forms which 

are mainly excreted unchanged, misleading 

estimates of inorganic arsenic exposure may 

be drawn from measuring total arsenic after 

seafood consumption (Navas-Acien et al., 

2011). High seafood consumption has been 

associated with elevated total arsenic in urine, 

blood, and other parts of the body 

(Birgisdottir et al., 2013; Miklavcic et al., 

2013). That is why participants in studies as-

sessing arsenic exposure and its related health 

impact are instructed to refrain from eating 

seafood (Brima et al., 2013), and in animal 

experiments, non-standard arsenic-depleted 

chow is used (Kobayashi and Hirano, 2016). 

These food restrictions are usually applied be-

fore commencing the study to reduce any 

background levels of arsenic in the body. 

 

3. ARSENIC SOURCES IN THE ENVI-

RONMENT (WITH EXAMPLES FROM 

THE CANADIAN ENVIRONMENT) 

Arsenic is a natural component of the earth’s 

crust, with varying amounts depending on lo-

cal geological history of the geographic re-

gion. From its natural repositories, arsenic is 

released and dispersed into the pedosphere, 

hydrosphere, and atmosphere (Figure 3). Nat-

ural geogenic processes including weathering 

and volcanism achieve this release slowly. 

However, greatly enhanced release results 

from anthropogenic activities that involve ar-

senic-containing products or wastes. For in-

stance, the global anthropogenic contribution 

to atmospheric emissions of arsenic is esti-

mated to be about three times higher than that 

from natural sources (WHO, 2001). It is of 

grave importance to understand how arsenic 

is introduced to the biosphere in order to char-

acterize its environmental levels and subse-

quently assess the risk of human exposure. 
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Figure 3: Pictorial depiction of various natural phenomena and anthropogenic activities that con-
tribute to arsenic release from its natural repositories to the environment. Subsequently, human 
exposure to the released arsenic can take place either directly through soil, water, or air; or indirectly 
through different food products. The main arsenic form, inorganic (iAs) or organic (oAs), is shown for 
each route of exposure. 

 

 

3.1. Natural arsenic sources 

3.1.1. Chemical weathering 

Chemical weathering in the presence of 

oxygen and water is the main natural mecha-

nism of arsenic mobilization from its miner-

als. Arsenic-bearing minerals such as arseno-

pyrite (FeAsS), realgar (As4S4), and orpiment 

(As2S3) represent the starting point for the 

processes of oxidation and hydrolysis, from 

which arsenic is subsequently released result-

ing in enrichment of the surrounding soil with 

highly soluble species (Masuda, 2018). The 

global average natural arsenic level released 

into uncontaminated soil is 5 mg/kg, with 

much higher levels being detected near high 

geological deposits of arsenic-rich minerals, 

or in human-impacted spots as mining areas 

(ATSDR, 2007). 

In Canadian uncontaminated soil, arsenic 

can be found naturally at levels of 4.8-13.6 

mg/kg (Wang and Mulligan, 2006). Pyrite ox-

idation, upon exposure to the air, in acid sul-

fate soils located in northwestern Alberta re-

sults in arsenic enrichment up to 37.9 mg/kg 

(Bennett and Dudas, 2011). In British Colum-

bia, Warren et al. have detected extremely 

high arsenic concentrations of 4600 mg/kg in 

A2 soil horizon in the neighborhood of some 

mineralized veins (Warren et al., 1964). 

3.1.2. Volcanism 

Volcanism is another significant natural 

arsenic-releasing mechanism. Large amounts 

of arsenic are mobilized, especially to the at-

mosphere, by volcanic activity through vol-

canic emissions including ash and gases 

(Matschullat, 2000; Ng, 2005; Signorelli, 

1997). In addition to ground water contami-

nation by volcanic eruptions, surface water 

can be also affected by deposition and disso-

lution of volcanic ash (Juncos et al., 2015; 

Morales-Simfors et al., 2019). 

3.1.3. Wildfires 

Wildfires represent an increasingly im-

portant global phenomenon, particularly tied 

to hot and dry weather, and their risk is ex-

pected to increase as a result of climate 

change (Finlay et al., 2012). They contribute 

to releasing large quantities of toxic pollutants 

including arsenic (Johnston et al., 2019b; 

Makkonen et al., 2009). Significantly higher 

levels of arsenic are detected in wildfire-im-

pacted areas, especially in urban residential 

areas, because of burning buildings and other 
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urban elements, compared to open wildlands 

(Wittig et al., 2008; Wolf et al., 2011). 

In Canada, wildfire has been a major en-

vironmental concern for a long time, burning 

approximately 2 million hectares of forest an-

nually (in some years, more than 7 million 

hectares) (Stocks et al., 2003). For instance, 

in 2003, British Columbia had catastrophic 

wildfires where nearly 2,500 fires burnt more 

than 265,000 hectares (Beck and Simpson, 

2007). The costliest natural disaster in the his-

tory of Canada was the 2016 Horse River 

wildfire in Alberta. Because of the toxic fire 

ashes containing arsenic, the re-entry of Fort 

McMurray residents, who were evacuated 

from the wildfire-ravaged area, was delayed 

for five months. Fourteen months later, sam-

ples of ground ashes from wildland-urban in-

terface fires in Fort McMurray have shown 

residual arsenic pollution originating, most 

probably, from burning local buildings rather 

than forests (Kohl et al., 2019). 

 

3.2. Anthropogenic arsenic sources 

In addition to these natural processes, a 

wide range of human activities has been also 

implicated in arsenic mobilization. These ac-

tivities, because of environmental awareness, 

have become historical and do not exist any-

more, or, because of technological improve-

ment and remediation, still exist but are well-

regulated under rigorous restrictions for arse-

nic release. However, the old practices have 

resulted in the release of massive amounts of 

arsenic that have impacted the environment 

till today, because once released, arsenic can-

not be destroyed but can only be converted 

into different forms thus spreading its toxic 

effects throughout the ecosystem (Leist et al., 

2000). 

3.2.1. Mining and smelting 

The significant natural occurrence of arse-

nic in sulfide-bearing ore deposits of metals 

such as lead, copper, zinc, gold and silver, 

poses high risk of arsenic liberation upon ex-

traction of such metals (Basha et al., 2008). 

Mining and metallurgical processing opera-

tions (including comminution, disposal of 

mine wastes and tailings, smelting, and 

refining) represent a significant source of 

heavy metals pollution including arsenic 

(Razo et al., 2004). Mining can accelerate the 

weathering process via oxidation of arsenic-

bearing minerals, mainly sulfides, resulting in 

the formation of sulfuric acid. The outflow of 

such acidic water, namely acid mine drainage, 

with its elevated levels of heavy metals facil-

itates arsenic release to the soil in the vicinity 

of mines (Straskraba and Moran, 1990). High 

concentrations of arsenic have been detected 

in the blood (Kesici et al., 2016), urine 

(Dartey et al., 2013), and hair (Murao et al., 

2004) of miners. 

In smelters, the pyrometallurgical treat-

ment of metal ores, such as copper, results in 

removal of arsenic, a common impurity in 

copper ores, by oxidation into arsenic trioxide 

(As2O3). Subsequently, under high tempera-

tures, As2O3 volatilizes and escapes in the 

generated flue gases, and ultimately, as the 

gases cool down, condenses on particulate 

matter and is captured by the flue dust as 

white powder. Such dust not only affects the 

atmosphere, but also can deposit to contami-

nate soil and water (Weisenberg et al., 1979). 

As2O3 can be found naturally as two dimorphs 

of trivalent arsenic oxide minerals (arsenites), 

namely; arsenolite and claudetite, but its com-

mon source is oxidation through roasting of 

arsenic-bearing ore minerals or coal. The gas-

eous emissions from copper smelters account 

for about half of the annual anthropogenic ar-

senic emissions to the atmosphere (Chen et 

al., 2012). Besides atmospheric releases, 

wastewater from these smelters also contains 

considerable amounts of arsenic and must be 

treated before disposal (Hansen and Ottosen, 

2010). Exposure of smelter workers to arsenic 

results in high urinary concentrations of its 

metabolites (Vahter et al., 1986) and it has 

been tied to peripheral neuropathy (Feldman 

et al., 1979; Lagerkvist and Zetterlund, 1994), 

Raynaud's phenomenon (Lagerkvist et al., 

1986), cancer (Enterline et al., 1995), and 

other disorders (Axelson et al., 1978). Arse-

nic-mediated lung cancer is identified as the 

major cause of mortality among smelter 

workers (Järup et al., 1989; Lubin et al., 
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2008), as suggested by high arsenic concen-

trations detected in autopsy samples of lung 

tissue from dead workers (Wester et al., 

1981). The carcinogenic effect of smelter-

generated arsenic also extends to impact those 

who are living in the vicinity of smelters 

(Pershagen, 1985). 

Few kilometers away from Yellowknife 

(Northwest Territories), Giant Mine was a 

gold mine that operated for over five decades, 

until it became officially abandoned in 2005. 

Arsenopyrite-bearing gold ore mining opera-

tions, especially roasting, have swamped the 

surrounding environment with massive 

amounts of As2O3 dust from stack emissions. 

Moreover, thousands of tons of As2O3 were 

stored in underground chambers and are cur-

rently an ongoing source of arsenic to ground-

water. A costly remediation plan to perma-

nently freeze these chambers, to keep ground-

water seepage out, was approved by the Ca-

nadian federal government in 2014 

(Jamieson, 2014). 

Another example of legacy arsenic con-

tamination is located in Cobalt town (Ontario) 

where historical silver and cobalt mining ac-

tivity took place. The mineralogical associa-

tion of arsenic with silver and cobalt ores re-

sulted in tons of arsenic-rich tailings and 

wastes that were disposed into nearby depres-

sions (often, lakes). Almost a century after 

ending the operations there, wastes are still 

lingering in both aquatic and terrestrial envi-

ronments till today (Sprague and Vermaire, 

2018). In northern Saskatchewan, high levels 

of arsenic have been detected in Rabbit Lake 

uranium mine tailings (Moldovan et al., 

2003). Historical gold mining in Nova Scotia 

has left many arsenic-rich tailings deposits in 

different areas across the province (Walker et 

al., 2009). 

Athabasca oil sands, located in northeast-

ern Alberta, are large deposits of bitumen that 

are considered the largest known reservoir of 

crude bitumen in the world. Being the largest 

in the world, surface mining operations in 

these bituminous sands result in generating 

massive volumes of wastes in which arsenic 

is present in significant levels, thus posing 

ecological risks. The development of mining 

operations in that area has been accompanied 

with increased arsenic concentrations in Ath-

abasca River (Donner et al., 2017). 

Smelters across Canada pose a great threat 

to the environment through arsenic release. 

Examples include base-metal smelting com-

plex in Flin Flon (Manitoba) and Creighton 

(Saskatchewan) (Zhang et al., 2009), lead 

smelter in Belledune (New Brunswick) 

(Parsons and Cranston, 2006), copper smelter 

in Rouyn-Noranda (Québec) (Bonham-Carter 

et al., 2006), and lead-zinc processing facility, 

formerly a gold smelter, in Trail (British Co-

lumbia) (Caplette and Schindler, 2018). 

3.2.2. Fossil fuels 

As a fossil fuel, coal is combusted to pro-

duce very high temperatures used in several 

applications, most notably of which is gener-

ating electricity, through steam, in coal power 

stations. Coal is a natural source of arsenic 

and primarily responsible for its release in dif-

ferent forms. During combustion, only minor 

part remains in bottom ash, while the rest vo-

latilizes and either escapes in gaseous phase 

or, mainly, deposits on fly ash (Yudovich and 

Ketris, 2005). Because it occurs as a surface 

precipitate, arsenic in fly ash is highly leach-

able, thus ending up in soil or water (Mattigod 

et al., 1990). Through technologies as electro-

static precipitators, more than 95 % of fly ash 

is collected before being released from smoke 

stacks, thus decreasing atmospheric emis-

sions, however its subsequent disposal re-

mains a threat to soil and water (Wang et al., 

2018). Metabolites of arsenic were detected in 

the urine of power plants’ workers (Yager et 

al., 1997). Moreover, arsenic release associ-

ated with coal combustion is strongly corre-

lated to the incidence of cancer among these 

workers (Bencko et al., 2009; Pesch et al., 

2002). Combustion of fuels in automotive en-

gines can also contribute to arsenic emissions 

(Pulles et al., 2012; Talebi and Abedi, 2005). 

Establishment of coal-fired power plants 

has resulted in enrichment of arsenic in Wa-

bamun Lake (Alberta) sediments to concen-

trations beyond the lowest effects levels 

(LELs) for toxicity to benthic organisms 
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(Donahue et al., 2006). Compared to back-

ground areas, statistically significant higher 

concentrations of arsenic have been detected 

in Grand Lake (New Brunswick) sediments 

because of coal-combustion ash discharges 

(Lalonde et al., 2011). 

3.2.3. Electronics and batteries 

Arsenic is an important element in various 

industrial applications. It is a common n-type 

dopant in manufacturing semiconductors, 

with gallium arsenide (GaAs) being the sec-

ond, after doped silicon, most commonly used 

semiconductor material in electronics indus-

try such as integrated circuits (ICs), light 

emitting diodes (LEDs), laser diodes (LDs), 

and solar cells (Neamen, 2012). GaAs and 

other arsenic-based III-V semiconductors, 

such as indium arsenide (InAs), may impose 

serious toxic and carcinogenic pulmonary ef-

fects on workers in the semiconductor indus-

try (Tanaka, 2004) who are at high risk of ex-

posure to significant levels of arsenic espe-

cially through inhalation (Ham et al., 2017; 

Park et al., 2010). High levels of urinary arse-

nic metabolites have been reported in workers 

from a manufacturing plant (Byun et al., 

2013), and were correlated to oxidative injury 

(Hu et al., 2006). Because of highly contami-

nated industrial waste effluents from manu-

facturing plants (Torrance et al., 2010), arse-

nic threat is not limited to occupational expo-

sure and can affect the surrounding environ-

ment through water (Chen, 2006) and air 

(Chein et al., 2006). 

On the other hand, the rapid expansion of 

technology with rising demand for consumer 

electronics have resulted in the creation of 

staggering quantities of electronic waste (e-

waste) around the globe. The total e-waste 

generated worldwide was estimated at ap-

proximately 53.6 million tons in 2019, where 

the contribution of Canada was about 757000 

tons (Forti et al., 2020). About 60 chemical 

elements can be found in various disposed 

electronics, and some of which is hazardous 

such as arsenic (Heacock et al., 2016; Yao et 

al., 2008). The environmental threats of e-

waste necessitate efficient recycling, how-

ever, in 2019, only 17.4 % of it was officially 

documented as properly collected and recy-

cled (Forti et al., 2020). Additionally, im-

proper handling of such waste through infor-

mal recycling can aggravate the situation and 

increase the release of toxic substances 

(Ackah, 2019). In Canada, several organiza-

tions are currently working on e-waste recy-

cling through collection, dismantling, hazard-

ous material removal, and recovering of valu-

able elements (Kumar and Holuszko, 2016; 

Kumar et al., 2019). 

Another industrial application of arsenic 

is alloying with lead in the manufacturing of 

lead-acid batteries, which are mostly used as 

car batteries. Secondary lead smelters pro-

duce lead by recovering it from lead-bearing 

scrap materials (most of which are scrap au-

tomobile batteries). Arsenic, among other 

metals, is typically detected in the area sur-

rounding the recycling facilities (Chai et al., 

2015; Eckel et al., 2002; Ettler et al., 2010). 

Interestingly, arsenic was detected in shed de-

ciduous teeth of children who are living near 

a lead-acid battery smelter (Johnston et al., 

2019a). An early study in southern Ontario, 

has reported high levels of arsenic contamina-

tion in soil and vegetation from different lo-

cations in the vicinity of two secondary lead 

smelters (Temple et al., 1977). 

3.2.4. Wood preservatives 

Arsenic-based wood preservatives, such 

as chromated copper arsenate (CCA), were 

developed to prevent its deterioration, espe-

cially when intended for outdoor use, by mi-

croorganisms or insects. The preservative is 

applied by pressure treatment and, typically, 

1 m3 of CCA-treated wood contains about 

1.41 kg of arsenic (Morrell and Huffman, 

2004). From CCA-treated wood, arsenic can 

leach through weathering during normal use 

(Khan et al., 2006b), or through disposal via 

landfilling (Khan et al., 2006a; Moghaddam 

and Mulligan, 2008) or incineration (Wasson 

et al., 2005). 

Zagury et al. have reported high arsenic 

concentrations in samples from the soil adja-

cent to the CCA-treated utility poles in Mont-

réal (Québec) (Zagury et al., 2003). Similarly, 

significant levels of arsenic leaching from 
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CCA-treated utility poles have been detected 

in western Newfoundland and Labrador 

(Coles et al., 2014). In Edmonton (Alberta), 

the average arsenic level on the hands of chil-

dren playing in playgrounds with CCA-

treated wood structures (0.5 μg) was signifi-

cantly higher than that from playgrounds not 

constructed with CCA-treated wood (0.095 

μg) (Kwon et al., 2004). Of note, the maxi-

mum amount of arsenic detected on children 

hands in that study (< 4 μg) was lower than 

the reported children average daily intake of 

total arsenic from food in Canada (14.9 μg) 

(Health Canada, 2006). As of December 31, 

2003, CCA was phased out of residential ap-

plications in Canada, and its use is currently 

restricted to industrial wood products (Wang 

and Mulligan, 2006). 

3.2.5. Pesticides 

The inherent toxicity of arsenic has led to 

its use in wood preservatives as well as agri-

cultural pesticides. Both organic and inor-

ganic arsenic-based compounds were devel-

oped and used as insecticides, rodenticides, 

and herbicides (Bencko and Yan Li Foong, 

2017). Arsenical pesticides have a negative 

impact on the cultivated plants (Quazi et al., 

2011), groundwater and surface water (Li et 

al., 2016; Whitmore et al., 2008), as well as 

applicators and farmers (Boulanger et al., 

2019; Dennis et al., 2010). Additionally, arse-

nic contamination, because of spills and re-

leases, has been also reported at manufactur-

ing sites (Cancès et al., 2005; Keimowitz et 

al., 2005). The threat of arsenic-bearing pesti-

cides still exists despite being banned and 

phased out because of environmental persis-

tence of arsenic residues that resulted from 

extensive long-term application of these pes-

ticides (Hughes et al., 2011; Quazi et al., 

2010). 

In southern Ontario, using lead arsenate in 

apple orchards for over 70 years resulted in 

more than 10 folds elevation (from 7.4 ppm to 

121 ppm) in arsenic level in soil samples 

(Frank et al., 1976). Similar observations 

were reported in Annapolis Valley apple or-

chards (Nova Scotia) (Bishop and Chisholm, 

1962). In addition to high arsenic concentra-

tions in soil samples, significant levels were 

reported in plant tissue from apple orchards 

and potato fields in the same province 

(MacLean and Langille, 1981). In Niagara 

(Ontario), elevated arsenic was detected in 

samples from trees of different fruits, that had 

received repeated applications of lead arse-

nate (Martin et al., 2000). 

3.2.6. Feed additives 

In animal husbandry, especially poultry, 

phenylarsonic compounds, most notably of 

which are roxarsone and nitarsone, have been 

used as feed additives for improving feed ef-

ficiency and protection against parasitic in-

fections. These compounds were originally 

approved on the basis of being harmless or-

ganoarsenicals, however, it has been found 

that they get converted into inorganic arsenic 

within the chicken (Nachman et al., 2013, 

2017). Consequently, their U.S. Food and 

Drug Administration (FDA) approvals were 

withdrawn (Chen et al., 2019). The presence 

of these compounds in poultry litter, which is 

commonly used as an organic fertilizer, re-

sults in soil contamination, where they can 

undergo biotic (Cortinas et al., 2006; 

Garbarino et al., 2003; Han et al., 2017) or 

abiotic (Bednar et al., 2003) conversion into 

more toxic inorganic species. Eventually, ar-

senic in the soil may end up in ground water 

(Rutherford et al., 2003) or the cultivated 

plants (Huang et al., 2014; Yao et al., 2016). 

3.2.7. Drugs 

Arsenic is regarded as a double-edged 

sword, which, despite its toxic nature, has 

proven therapeutic benefits that date back to 

the days of Hippocrates who used arsenic sul-

fides (realgar and orpiment) to treat ulcers and 

abscesses. Arsenic-based pharmaceuticals 

have been employed in various disorders 

throughout history (Henke, 2009), however, a 

detailed description of these agents started in 

late 18th century, by the discovery of Thomas 

Fowler’s solution (1 % potassium arsenite so-

lution formed by dissolving As2O3 in potas-

sium bicarbonate) that was used for a variety 
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of systemic illnesses. In 1878, it was first re-

ported that Fowler’s solution can lower the 

white blood cell counts in leukemia patients, 

and subsequently, it became the mainstay for 

the treatment of chronic myelogenous leuke-

mia (CML) until the advent of, the safer, radi-

ation and chemotherapy by the beginning of 

the 20th century (Waxman and Anderson, 

2001).  

In early 20th century, the sodium salt of 

arsanilic acid, a compound that was discov-

ered 40 years earlier by reacting arsenic acid 

with aniline, was introduced as the first or-

ganoarsenical medicine. This compound was 

found to be 40 times less toxic than the inor-

ganic Fowler’s solution, hence named atoxyl, 

and was used for the treatment of trypanoso-

miasis (Riethmiller, 2005). Additional exper-

imentations on atoxyl led Paul Ehrlich, the 

founder of chemotherapy, to the discovery of 

arsphenamine, marketed as salvarsan, in 

1910. Salvarsan was the “magic bullet” for 

treating syphilis. Generally, the clinical appli-

cations of arsenicals gradually declined be-

cause of posing greater health threats than the 

diseases that they were supposedly curing. 

Eventually, arsenic medicines have been 

largely replaced by less toxic compounds. For 

instance, salvarsan was replaced by penicillin 

for syphilis treatment (Bosch and Rosich, 

2008). 

However, some arsenicals are still used, 

despite their severe toxicity, for treating dis-

eases that typically result in death if untreated, 

such as the antitrypanosomal melarsoprol 

(atoxyl was the first effective treatment but 

blindness was a serious side effect) (Büscher 

et al., 2017; Steverding, 2010). 

The rebirth of As2O3 therapy occurred in 

the 1970s as a treatment for acute promyelo-

cytic leukemia (APL), and in 2000, it was ap-

proved by FDA as a frontline therapy for this 

disease (Hoonjan et al., 2018). Because of its 

success in APL, As2O3 is currently being in-

vestigated for the treatment of other types of 

cancer (Ally et al., 2016; Huang and Zeng, 

2019; Sadaf et al., 2018; Wu et al., 2018). 

4. ROUTES OF HUMAN EXPOSURE 

TO ARSENIC 

Humans are exposed to arsenic via several 

pathways including ingestion of food, drink-

ing water, inhalation of air, or dermal contact 

(Figure 3). Arsenic exposure is a multifacto-

rial process depending on local geochemistry 

(i.e. natural presence), environmental pollu-

tion, and lifestyles of the population. For in-

stance, occupational exposure in industrial 

environments occurs primarily through inha-

lation (Xue et al., 2010). 

 

4.1. Drinking water 

For general population, exposure is 

mostly oral via ingesting arsenic-contami-

nated food or water. Drinking water is widely 

regarded as the major source of exposure es-

pecially in areas with arsenic concentrations 

exceeding the World Health Organization 

(WHO) guidelines value (10 μg/L) e.g. by liv-

ing near either a natural geological source or 

a contaminated site (Cubadda et al., 2017). 

However, in the presence of water with safe 

arsenic levels below that limit, food may be-

come a greater contributor to total arsenic in-

take than drinking water. Assessment of 

health risks is based on a general understand-

ing that inorganic forms of arsenic are more 

harmful than organic ones, and that most 

cases of arsenic-induced toxicity in humans 

are associated with inorganic arsenic expo-

sure. There is no evidence for the demethyla-

tion of organoarsenicals into inorganic forms 

in mammals (Elshenawy and El-Kadi, 2015). 

Since aqueous arsenic species are almost ex-

clusively inorganic, compared to only 10 % 

iAs in food, drinking water is usually consid-

ered the greatest menace to human health 

(Xue et al., 2010). 

Various sources of drinking water fall into 

two main categories; surface water and 

groundwater. Risk of arsenic exposure may 

vary depending on the source of water. In an-

thropogenically impacted areas, all water 

sources, especially surface water, become 

vulnerable to contamination. However, natu-

rally, groundwater usually poses higher risk 

for exposure (Smedley and Kinniburgh, 
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2002). Extremely high arsenic levels in 

groundwater may result from its presence at 

depths where it is exposed to more naturally 

occurring arsenic sediments. Moreover, 

drinking water supplied from groundwater is 

extracted by pumping wells, and such pump-

ing activity causes disruption of soil sedi-

ments and facilitates arsenic mobilization to 

the groundwater (Raessler, 2018). Addition-

ally, groundwater from wells is often not 

treated before human consumption, because it 

is generally less accessible to treatment meth-

ods than surface water, and its treatment is 

usually more difficult and expensive (Greco 

et al., 2019). 

In 1980s, the Canadian drinking water 

guidelines recommended a maximum ac-

ceptable concentration (MAC) for arsenic of 

50 μg/L (Meranger et al., 1984). However, 

with the growing knowledge about arsenic-

mediated harmful effects as well as the devel-

opment of more sensitive laboratory methods 

for detection, that limit was later changed to 

25 μg/L (Thirunavukkarasu et al., 2002), and 

currently a limit matching the published 

WHO guidelines (10 μg/L) is set by Health 

Canada (Hu et al., 2020). It is worth mention-

ing that this limit doesn’t warrant protection 

against arsenic harm (Saint-Jacques et al., 

2018), and a limit of 0.3 μg/L would be ideal 

for achieving an “essentially negligible” life-

time risk of cancer, but 10 μg/L is the lowest 

concentration that is technically achievable in 

the Canadian drinking water systems. Gener-

ally, arsenic levels in drinking water are less 

than 5 μg/L in most locations across Canada 

(Health Canada, 2006). 

However, the natural occurrence of arse-

nic at high levels in certain locations (Moncur 

et al., 2015) has created “hotspots” for arsenic 

exposure through drinking water beyond 10 

μg/L (Figure 4). This may be a major concern 

especially in provinces and territories that de-

pend partially (as Alberta) or completely (as 

Prince Edward Island) on ground water which 

represent more than 30 % of the population 

(McGuigan et al., 2010). It would be safer to 

rely on the controlled municipal drinking wa-

ter supplies, but approximately 4 million Ca-

nadians obtain their water as groundwater 

through privately-owned domestic wells 

(Kreutzwiser et al., 2011), and in such case, 

water is not subject to regulated testing and 

therefore may contain unknown and possibly 

unsafe arsenic concentrations as reported in 

several studies (Chappells et al., 2014; 

Dummer et al., 2015; Gagnon et al., 2016; 

Pratt et al., 2016). 

 

4.2. Food 

Food is another major source of both or-

ganic and inorganic arsenic for typical indi-

viduals. Arsenic can be found in most diets 

with varying amounts and forms, i.e. organic 

or inorganic, depending on the type of food 

(Uneyama et al., 2007). For instance, seafood 

represents about 90 % of dietary arsenic ex-

posure in the U.S., of which the vast majority 

is in complex organic forms. As mentioned 

earlier, arsenobetaine is the predominant spe-

cies in marine food, which was found to be 

not cytotoxic, mutagenic, immunotoxic, or 

embryotoxic (Borak and Hosgood, 2007; 

Mania et al., 2015). Comprehensive lists 

showing the levels of different arsenic species 

in various food products from different coun-

tries can be found in a number of good review 

articles (Lynch et al., 2014; Upadhyay et al., 

2019). 

Livestock are exposed to arsenic in con-

taminated environment through water, plants, 

incidental soil ingestion, or feed additives. 

Eventually, inevitable human exposure to ar-

senic can occur via consuming such animal 

food products. Studies have reported arsenic 

exposure through different types of meat 

(Nigra et al., 2017; Ruiz-de-Cenzano et al., 

2017) as well as milk (Datta et al., 2012) and 

eggs (Ghosh et al., 2012). Because of their ar-

senic methylation ability, organoarsenicals 

are the main form in animal food products be-

sides an inorganic fraction (Liu et al., 2016; 

Nachman et al., 2013, 2017). Interestingly, ar-

senic excreted in milk was found to be en-

tirely inorganic (Datta et al., 2010).
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Figure 4: Map of Canada showing notable examples of arsenic sources in different provinces 
and territories. 

1- Natural weathering in specific areas has resulted in hotspots (> 10 μg/L arsenic in water) for 
arsenic exposure in drinking water. 

2- Wildfires such as; 2003 wildfires (Okanagan Mountain Park, BC) and 2016 wildfires (Fort 
McMurray, AB). 

3- Mining & smelting operations in Athabasca oil sands (AB), Giant Mine (Yellowknife, NT), Ura-
nium mine (Rabbit Lake, SK), Silver & cobalt mines (Cobalt town, ON), and Gold mines (NS). 

Abbreviations: AB: Alberta, BC: British Columbia, MB: Manitoba, NB: New Brunswick, NL: Newfound-
land and Labrador, NS: Nova Scotia, ON: Ontario, PE: Prince Edward Island, QC: Québec, SK: Sas-
katchewan, NT: Northwest Territories, NU: Nunavut, YT: Yukon. 

 

 

In addition to water, plants are regarded as 

an important gate for arsenic entry to the food 

chain when cultivated in arsenic-rich soil or 

irrigated with arsenic-contaminated water. 

Therefore, plants are mostly exposed to inor-

ganic forms of arsenic (Huang et al., 2011). 

Arsenic is considered non-essential for plants 

and it has no specific uptake system, there-

fore, it relies on adventitious uptake pathways 

via various transporters that are naturally in-

tended for minerals and nutrients. For exam-

ple, iAsV is quite similar to inorganic phos-

phate (Pi) and can compete with it for the up-

take via phosphate transporters. Similarly, the 

uptake of iAsIII, which is the dominant species 

in anaerobic environments, can be achieved 

by silicon (Si) transporters due to structural 

similarity between arsenious acid and silicic 

acid which both exist as neutral species in 

such environments (Zhao et al., 2009). Be-

cause of the competition of iAsV and iAsIII 

with these structurally similar species, plants 

can be protected from arsenic by using phos-

phate and silicon supplements, respectively 

(Kumarathilaka et al., 2020). 

In contaminated environments, the over-

whelmingly high arsenic concentrations re-

sult in extensive uptake and accumulation in 

their edible parts. Additionally, while animals 

can metabolize and excrete excess iAs result-

ing in low iAs quantities in their food prod-

ucts (Cubadda et al., 2017), higher plants have 

no methylation ability for iAs because of 

lacking the required genes (Tang et al., 2016). 

Therefore, consumption of plant-derived food 

products, such as fruits and vegetables, may 
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result in exposure to high levels of iAs 

(Cubadda et al., 2017). 

Rice is one of the most severely arsenic-

affected plants because of its special cultiva-

tion method in flooded paddy soils that cre-

ates an ideal anaerobic environment for iAsIII. 

Since it requires large amounts of Si for its 

optimal growth, rice is a very efficient plant 

in accumulating Si (making up to 10 % of the 

shoot biomass) (Chen et al., 2017). Subse-

quently, excessive inadvertent uptake of iAsIII 

takes place, which is then translocated to rice 

grains resulting in about 10 folds of the iAs 

accumulated in other grains such as wheat and 

barley (Davis et al., 2017). The fact that rice 

is a globally important food crop and a pri-

mary daily source of calories for more than 

half the world’s population, renders it a po-

tential source of human exposure to iAs 

(Khush, 2005). Additionally, high concentra-

tions of iAs can be also found in rice-based 

products including baby rice, rice cereals and 

rice crackers consumed by infants and young 

children who are especially vulnerable to the 

adverse health effects (Jackson et al., 2012; 

Signes-Pastor et al., 2016). 

In addition to food products, the presence 

of arsenic in other plant-based products such 

as tobacco leaves imply a significant exposure 

through cigarette smoke (Mierzwa et al., 

1997; Taebunpakul et al., 2011). Arsenic has 

been found to act synergistically with other 

carcinogens in cigarette smoke in the induc-

tion of lung cancer (Hertz-Picciotto et al., 

1992). 

 

4.3. Air 

A relatively much lower arsenic exposure 

can result from inhalation of polluted air in 

which arsenic is mostly present in an inor-

ganic form adsorbed onto particulate matter. 

This kind of exposure is commonly related to 

emissions in industrial environments where 

significant arsenic levels are released to the 

atmosphere (Meacher et al., 2002). Exposure 

to volatile arsines may happen especially in 

the vicinity of their, previously mentioned, re-

leasing sources (Lewis et al., 2012). 

In remote areas away from anthropogenic 

releases, the average atmospheric level of ar-

senic is 0.02-4 ng/m3, while in urban areas 

may reach 200 ng/m3. Concentrations of sev-

eral hundred nanograms per cubic meter have 

been reported in some cities especially in in-

dustrially impacted areas (IARC, 2012). In 

Canada, a significant decline in the levels of 

major air pollutants, including arsenic, have 

been observed over the past four decades 

(IARC, 2016). The mean airborne concentra-

tion of arsenic in 11 Canadian cities and one 

rural site monitored from 1985 to 1990 was 

0.001 µg/m3 (CEPA, 1993). According to the 

Canadian National Air Pollution Surveillance 

(NAPS) monitoring system, the average con-

centration of arsenic measured in outdoor air 

in 2011 was 0.00043 μg/m3 (Setton et al., 

2013). Much higher arsenic concentrations 

have been recorded in industrial zones (Wang 

and Mulligan, 2006). 

 

4.4. Dermal exposure 

Dermal contact is another route of arsenic 

exposure associated with relatively low risk 

of poisoning. Exposure may happen through 

water (Ouypornkochagorn and Feldmann, 

2010; Smith et al., 2016), soil (Lowney et al., 

2007), and arsenic-preserved wood structures 

(Chen and Olsen, 2016; Hemond and Solo-

Gabriele, 2004). Individuals suffering from 

blackfoot disease, a severe vascular disease 

associated with long-term arsenic exposure 

via drinking water, usually have concurrent 

occupational dermal exposure to arsenic-con-

taminated water and soil through farming, 

fishery, or salt production (Irfan, 2012; 

Tseng, 2005). Arsenic in soil occurs primarily 

in inorganic forms (Wang and Mulligan, 

2006), and, besides dermal exposure, inci-

dental ingestion can be a significant exposure 

pathway for soil especially among children 

while playing (Bacigalupo and Hale, 2012; 

Ljung et al., 2006). 

 



EXCLI Journal 2021;20:1184-1242 – ISSN 1611-2156 

Received: May 17, 2021, accepted: July 02, 2021, published: July 12, 2021 

 

 

1204 

5. MODULATION OF CYP ENZY-

MATIC MACHINERY BY ARSENIC 

5.1. CYPs as a key player in metabolic  

biotransformation 

Metabolic biotransformation in biological 

systems aims at maintaining physiological 

homeostasis by generating energy and build-

ing functional and structural molecules (such 

as proteins and lipids) from consumed food, 

as well as eliminating catabolic wastes. This 

process comprises a wide range of enzyme-

catalyzed reactions arranged in well-defined 

metabolic pathways in which a substrate is se-

quentially converted to the desired end-prod-

uct. Human body may encounter a non-nutri-

tious foreign substance that is not expected to 

be naturally present within the system (such 

as environmental pollutants and drugs), 

namely a xenobiotic. In this case, the meta-

bolic machinery acts as a defense system that 

attempts to detoxify the foreign compound by 

modifying its chemical structure to deactivate 

it and facilitate its excretion. However, some-

times, xenobiotic metabolism backfires by 

producing more active intermediates with 

subsequent detrimental effects. In mammals, 

different organs (such as lung, kidney, heart, 

brain, skin, and intestine) contribute to metab-

olism (including xenobiotic biotransfor-

mation) in the body; however, the liver is con-

sidered the major contributor through its di-

verse arsenal of enzymes (De Kanter et al., 

2002). 

CYPs constitute a superfamily of heme-

containing monooxygenase enzymes, a part 

of which represents a major class of xenobi-

otic-metabolizing enzymes involved in the 

oxidative biotransformation of most drugs 

and other lipophilic xenobiotics (Guengerich, 

2008). These enzymes are ubiquitous and 

have been identified in all kingdoms of life 

(Lamb et al., 2009). CYPs are prominent met-

abolic enzymes that are found primarily in he-

patic microsomes in addition to other extrahe-

patic tissues (Ding and Kaminsky, 2003). In 

humans, there are 57 members in CYP super-

family that are grouped into 18 families and 

44 subfamilies based on their sequence ho-

mology. Most of these enzymes have specific 

endogenous metabolic functions including 

the metabolism of fatty acids (such as arachi-

donic acid), cholesterol, bile-acids, steroid 

hormones, vitamin D, and others (Nebert and 

Russell, 2002). Being physiologically in-

volved in metabolizing endogenous sub-

strates, derangements in CYPs function have 

been implicated in several disease states. In 

this case, CYPs can be reversely exploited as 

targets for treating such pathological condi-

tions (Navarro-Mabarak et al., 2018; Wang et 

al., 2019; Xu et al., 2011). 

Besides endogenous substrates, members 

belonging to the CYP1, CYP2, and CYP3 

families are collectively involved in the xeno-

biotic metabolism of the majority of drugs 

and other foreign chemicals (Zanger and 

Schwab, 2013). For instance, it is estimated 

that about 75 % of marketed drugs undergo 

CYP-mediated hepatic elimination, mostly 

through metabolic pathways involving 

CYP3A4/5, CYP2C9, CYP2D6, CYP2C19, 

and CYP1A2 (Guengerich, 2008; Zanger et 

al., 2008). Because of such deep involvement 

in xenobiotic biotransformation, CYPs can 

significantly modulate the overall body expo-

sure to foreign chemicals through either de-

toxification or bioactivation. Therefore, 

CYPs mediating such biotransformation have 

been widely studied for their toxicological 

implications (Guengerich, 2008). 

CYPs activity may reduce the efficacy 

and/or toxicity of a drug by accelerating the 

elimination of its active form. In other cir-

cumstances, such metabolic activity may en-

hance the efficacy or toxicity of a drug by ac-

tivating its inert prodrug or generating toxic 

metabolites, respectively (McDonnell and 

Dang, 2013). Consequently, alteration of 

CYPs activity in relation to certain drug can 

result in crucial modification in its behavior 

inside the body and the ultimate outcome of 

its exposure. That is why induction or inhibi-

tion of CYPs by concomitant medications can 

result in clinically relevant drug interactions 

(Storelli et al., 2018), that may necessitate re-

vising and updating safety profiles of pharma-

ceutical products (Yoshida et al., 2006). 
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The impact of CYPs activity, and the pos-

sible alteration of such activity, is not limited 

to drugs but extends to include all foreign 

chemicals undergoing CYPs-mediated bio-

transformation that may be altered by co-ex-

posure to other xenobiotics capable of modu-

lating CYPs metabolizing activity. Environ-

mental contaminants form a major cluster of 

xenobiotics that are hazardous to humans. 

Additionally, they may accumulate in the en-

vironment, due to their recalcitrant properties 

and long degradation periods, thus aggravat-

ing their threat to human health (Manzetti, 

2013). Polycyclic aromatic hydrocarbons 

(PAHs) represent a notable family of these 

pollutants, which are well-known for their 

toxic and carcinogenic properties. These com-

pounds are mainly produced in the environ-

ment as airborne contaminants resulting from 

incomplete combustion of organic matter 

such as fossil fuels (Kim et al., 2013). 

Benzo[a]pyrene (B[a]P) is a widely studied 

member of this family which is a potent lung 

carcinogen found at high levels in cigarette 

smoke (Hecht, 1999). B[a]P is a procarcino-

gen whose bioactivation into a mutagenic in-

termediate is based on its capacity to stimu-

late its own metabolism. As a PAH, B[a]P in-

duces the production of its metabolizing en-

zymes, most notably CYP1A1, via activating 

its master regulator; the aryl hydrocarbon re-

ceptor (AhR). Through its diol epoxide me-

tabolite, B[a]P form covalent DNA adducts 

by interacting with N2-position of guanine in 

critical genes such as the p53 tumor suppres-

sor, as commonly seen in lung cancer smok-

ers, resulting in initiation of tumorigenesis 

(Badal and Delgoda, 2014; Shimada et al., 

2002). 

In this case, cancer risk evaluation might 

be underestimated if based only on the sole 

exposure to such CYPs-dependent carcino-

gen, because human body is exposed daily to 

various pollutants and co-exposure to com-

plex mixtures of contaminants is inevitable. 

These co-contaminants can enhance the bio-

activation of other contaminants through ma-

nipulating their activating enzymes. These co-

contaminants include heavy metals such as ar-

senic (Anwar-Mohamed et al., 2009). Several 

epidemiological studies have reported signif-

icantly high incidence of lung cancer among 

cigarette smokers who are concurrently ex-

posed to arsenic (Chen et al., 2004; Ferreccio 

et al., 2000; Hertz-Picciotto and Smith, 1993; 

Hertz-Picciotto et al., 1992; Järup and 

Pershagen, 1991; Pershagen et al., 1981; 

Tsuda et al., 1995). Studies on animals have 

also revealed that tumorigenic potential of 

B[a]P in the respiratory tract can be signifi-

cantly enhanced by arsenic co-exposure 

(Ishinishi et al., 1977; Pershagen et al., 1984). 

Considering that arsenic is a well-established 

carcinogen (Wei et al., 2019), the potentiated 

B[a]P effect may be regarded as synergistic 

co-carcinogenesis caused by both of them as 

shown by rat lung cell transformation rate that 

has increased beyond 500- and 200-folds 

compared with arsenic alone or B[a]P alone, 

respectively (Lau and Chiu, 2006). It has been 

also reported that arsenic enhances the 

benzo[a]pyrene diol epoxide (BPDE)-DNA 

adduct-induced mutagenesis in the lung 

(Chiang and Tsou, 2009; Evans et al., 2004). 

Interestingly, CYP1A1, the key activator of 

B[a]P, was found to be induced in the lung by 

arsenic exposure at the levels of mRNA, pro-

tein, and/or catalytic activity in both in vivo 

and in vitro studies (Albores et al., 1995; 

Anwar-Mohamed et al., 2012; Cameron 

Falkner et al., 1993; Elshenawy et al., 2018; 

Elshenawy and El-Kadi, 2015; Seubert et al., 

2002a; Wu et al., 2008). Although some stud-

ies do not support this effect (Cameron 

Falkner et al., 1993; Elshenawy et al., 2018; 

Ho and Lee, 2002; Seubert et al., 2002b), ar-

senic-mediated positive modulation of 

CYP1A1 remains a potential clue to the high 

incidence of lung cancer among cigarette 

smokers.  

 

5.2. Transcriptional regulation of CYPs  

expression 

The expression of different CYP isoforms 

is subject to the control of an intricate network 

of various transcription factors (Omiecinski et 

al., 2011; Zanger and Schwab, 2013), and 
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here we focus on two key regulators involved 

in arsenic studies, the AhR and the pregnane 

X receptor (PXR), because of the significant 

clinical impacts of their associated CYP en-

zymes. 

AhR is a ligand-activated bHLH/Per-

ARNT-Sim transcription factor which is re-

tained in the cytoplasm as an inactive com-

plex with a dimer of the chaperone heat shock 

protein 90 (HSP90), the co-chaperone prosta-

glandin E synthase 3 (p23), and a molecule of 

hepatitis B Virus X-associated protein 2 

(XAP-2) (Figure 5). Upon binding to one of 

its agonists, such as PAHs or halogenated ar-

omatic hydrocarbons (HAHs), AhR molecule 

undergoes a conformational change exposing 

its nuclear localization sequence (NLS). 

Eventually, the activated AhR translocates 

into the nucleus where it dissociates from its 

cytoplasmic complex and dimerizes with the 

aryl hydrocarbon receptor nuclear transloca-

tor (ARNT) to form a heterodimer that binds 

to the xenobiotic response element (XRE), 

also known as dioxin response element 

(DRE), found in the promoter regions of 

AhR-regulated genes (Beischlag et al., 2008; 

Larigot et al., 2018; Soshilov and Denison, 

2008). 

The name of AhR was originally based on 

the assumption that it functions primarily as a 

sensor for xenobiotic chemicals, the most no-

table of which are aromatic (aryl) hydrocar-

bons such as PAHs (e.g. benzo[a]pyrene, 3-

methylcholanthrene, and beta-naphthofla-

vone) and HAHs (e.g. 2,3,7,8-Tetrachlorodi-

benzo-p-dioxin). However, extensive study-

ing of the AhR has revealed its promiscuous 

ligand specificity that allows binding to a 

large number of structurally diverse chemi-

cals. Besides PAHs and HAHs, some natural 

exogenous compounds such as flavonoids 

(e.g. quercetin, kaempferol (Ciolino et al., 

1999), and resveratrol (Casper et al., 1999)) 

and indoles (e.g. indole-3-carbinol (Hammer-

schmidt-Kamper et al., 2017)) have been 

found to act as AhR ligands. Additionally, 

several endogenously formed molecules have 

been identified as AhR ligands, such as the in-

dole amino acid (tryptophan) and its catabo-

lites (e.g. tryptamine, indole acetic acid 

(Heath-Pagliuso et al., 1998; Hubbard et al., 

2015), and kynurenic acid (DiNatale et al., 

2010)), as well as other indoles (e.g. indirubin 

and indigo) (Adachi et al., 2001). Other en-

dogenous ligands include tetrapyrroles (e.g. 

bilirubin (Sinal and Bend, 1997) and biliver-

din (Phelan et al., 1998)) and arachidonic acid 

metabolites (e.g. lipoxin A4 (Schaldach et al., 

1999) and some prostaglandins (Seidel et al., 

2001)). 

AhR is a gene battery that regulates a 

group of phase I as well as phase II enzymes 

(Anwar-Mohamed et al., 2009). The expres-

sion of CYP1A1, CYP1A2, CYP1B1, and 

CYP2S1 genes, which represent phase I 

group, is regulated by AhR response elements 

found in their promoters, therefore they are 

highly inducible by AhR ligands (Jorge-

Nebert et al., 2010; Kerzee and Ramos, 2001; 

Saarikoski et al., 2005; Ueda et al., 2006). In 

humans, CYP1A1, CYP1A2, and CYP1B1 

are constitutively expressed in the liver; how-

ever, only CYP1A2 is detected at much 

higher levels. CYP1A1 and CYP1B1 are pri-

marily extrahepatic enzymes and their hepatic 

levels are very low or undetectable (Zanger 

and Schwab, 2013). Human CYP2S1 levels 

are generally low across the different organs 

in the body (including the liver) (Deb and 

Bandiera, 2009). AhR-regulated CYPs 1A1, 

1A2, and 1B1 have gained significant atten-

tion because of their ability to activate the 

procarcinogenic AhR ligands (Shimada and 

Fujii-Kuriyama, 2004; Shimada and 

Guengerich, 2006). 

Another ligand-activated transcription 

factor is the PXR, also known as steroid and 

xenobiotic receptor (SXR) or NR1I2, which is 

a member of the nuclear receptor (NR) super-

family. Mouse PXR (mPXR) cytosolic local-

ization is maintained through its engagement 

in a multiprotein complex, composed of cyto-

plasmic CAR retention protein (CCRP) and 

HSP90, which gets disassembled through lig-

and-mediated activation, thus allowing the re-

ceptor to translocate into the nucleus (Squires 
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Figure 5: AhR signaling pathway. The unliganded AhR resides in the cytoplasm, complexed with a 
dimer of the chaperone heat shock protein 90 (HSP90), the co-chaperone prostaglandin E synthase 3 
(p23), and a molecule of hepatitis B Virus X-associated protein 2 (XAP-2). Ligand-mediated activation 
of the AhR results in its nuclear translocation where it dissociates from its complex and forms a hetero-
dimer with the aryl hydrocarbon receptor nuclear translocator (ARNT) that binds to the xenobiotic re-
sponse element (XRE) found in the promoter regions of AhR-regulated genes such as CYP1A1. 

 

 

et al., 2004; van de Winkel et al., 2011). Al-

ternatively, human PXR (hPXR) has been re-

ported to be a predominantly nuclear protein 

regardless of ligand binding or activation sta-

tus (Kawana et al., 2003; Koyano et al., 2004; 

Saradhi et al., 2005). Ultimately, the activated 

PXR forms a heterodimer with another nu-

clear receptor, namely, the retinoid X receptor 

alpha (RXRα), also known as NR2B1, which 

binds to the PXR response module located in 

the promoter regions of its target genes 

(Carnahan and Redinbo, 2005). 

PXR name was coined by Kliewer et al. 

after observing that the receptor was activated 

by both natural (e.g. pregnenolone and pro-

gesterone) and synthetic (e.g. dexamethasone 

and pregnenolone 16α-carbonitrile) pregnane 

(21-carbon) steroids (Kliewer et al., 1998). 

The human PXR was initially reported as the 

steroid and xenobiotic receptor (SXR) by 

Blumberg et al. because of its ability to inter-

act with natural steroids as well as xenobiotic 

drugs (including synthetic steroids) 

(Blumberg et al., 1998). PXR can recognize 

and accommodate a wide range of structurally 

diverse endogenous and exogenous ligands, 

and this may be attributed to its large and flex-

ible ligand-binding pocket (Watkins et al., 

2001). A myriad of natural (endobiotics and 

xenobiotics) and synthetic compounds have 

been shown to bind with PXR including ster-

oids (e.g. pregnanes, estranes, androstanes 

(Blumberg et al., 1998; Kliewer et al., 1998), 

and bile acid precursors (Goodwin et al., 

2003)), clinically used drugs (e.g. rifampicin 

and nifedipine) (Honkakoski et al., 2003; 

Kliewer et al., 2002; Shukla et al., 2011), 

herbal compounds (e.g. hyperforin; a constit-

uent of St. John's Wort) (Chang, 2009; 

Staudinger et al., 2006), and environmental 

contaminants (e.g. organobromine (Pacyniak 
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et al., 2007) and organochlorine (Coumoul et 

al., 2002) compounds). 

Activation of PXR is associated with a 

broad range of transcriptional targets includ-

ing both phase I and phase II enzymes as well 

as phase III transporters (Iyer et al., 2006; 

Tolson and Wang, 2010). A primary target of 

PXR activation is the induction of CYP3A4 

(Istrate et al., 2010), in addition to other CYPs 

such as CYP3A5 (Burk et al., 2004), CYP3A7 

(Burk et al., 2002), CYP2B6, CYP2C9 

(Drocourt et al., 2001; Goodwin et al., 2001), 

and CYP4F12 (Hariparsad et al., 2009). 

CYP3A subfamily members are constitu-

tively expressed in various tissues especially 

in the liver and intestine where they, espe-

cially CYP3A4, represent the predominant 

CYPs. This subfamily has gained its im-

portance from its contribution to both first-

pass and systemic metabolism of more than 

50 % of the clinically used drugs, thus dictat-

ing their therapeutic outcome, along with 

many other xenobiotics and endobiotics 

(Martignoni et al., 2006; Woodland et al., 

2008). CYP3A enzymes expression is mainly 

regulated by PXR whose activation is predic-

tive of their induction. That is why PXR has 

been significantly detected in the same tissues 

of high CYP3A expression and it has been 

found to be activated by established CYP3A 

inducers. Interestingly, PXR assays are im-

plemented in pharmaceutical industry for 

identification and elimination of CYP3A-in-

ducing candidates at early stages of drug dis-

covery because of the high potential of drug 

interactions (Goodwin et al., 2002; Kliewer, 

2015; Kliewer et al., 2002; LeCluyse, 2001). 

CYP3A4 is the most abundant and exten-

sively studied member of this subfamily 

which is strongly tied to the xenosensor PXR 

as a notable part of its repertoire of xenobiotic 

metabolizing enzymes (Lehmann et al., 1998; 

Martignoni et al., 2006; Zhou et al., 2009). 

The contribution of PXR-regulated 

CYP3A enzymes to the clearance of a wide 

range of xenobiotics, thus diminishing their 

toxicity, has provided a solid explanation of 

steroidal catatoxic effect. The concept of “cat-

atoxic steroids”, first introduced by Hans Se-

lye (Selye, 1969), describes the ability of nat-

ural and synthetic steroids to confer resistance 

against (the Greek cata = down, against) var-

ious xenobiotics and their harmful effects 

(Blumberg et al., 1998). The molecular basis 

of such activity was later attributed to two 

parallel components including the activation 

of PXR by structurally diverse ligands, and 

subsequent upregulation of detoxifying en-

zymes with broad substrate specificity; the 

CYP3A subfamily (Kliewer, 2015; Kliewer et 

al., 1998). 

PXR DNA-binding domain (DBD) in dif-

ferent species is almost 95 % identical, how-

ever, uncommonly in nuclear receptors, PXR 

shows explicit cross-species variation at-

tributed to differences in amino acid se-

quences of its ligand binding domain (LBD) 

across mammalian species. For example; rab-

bit, rodent, and human PXR share only about 

80 % amino acid identity in their LBDs, 

which is strikingly lower than what is typi-

cally exhibited by orthologous nuclear recep-

tors (Iyer et al., 2006; Jones et al., 2000). Sub-

sequently, substantially divergent PXR acti-

vation profiles are observed among these spe-

cies. For instance, rifampicin efficiently acti-

vates human and rabbit PXRs with almost no 

activity in mouse or rat, while pregnenolone 

16α-carbonitrile (PCN) activity on mouse and 

rat PXRs is much more prominent compared 

with that on rabbit and human receptors. Such 

inter-species variability is mirrored into spe-

cies-specific CYP3A induction pattern. Simi-

larly, rifampicin induces human and rabbit 

but not rodent CYP3A, while PCN induces 

rodent CYP3A with little effect on human or 

rabbit CYP3A (Carnahan and Redinbo, 2005; 

Kliewer et al., 2002; LeCluyse, 2001; Östberg 

et al., 2002; Quattrochi and Guzelian, 2001). 

This species‐specific PXR behavior leads 

ultimately to markedly different xenobiotic 

response across species, something that com-

plicates the relevance of experimental animal 

models to hPXR pharmacology. This has led 

to the development of a humanized PXR 

mouse created by introducing hPXR to a 
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PXR-null mouse (mPXR-/-), yielding ulti-

mately a “humanized” CYP3A induction pro-

file. The transgenic mouse, which is deficient 

in mPXR gene while expressing a hPXR 

transgene, will eventually respond to human, 

not rodent, PXR activators. Consequently, the 

activated hPXR, which has almost identical 

DBD as mPXR, can bind at the promoter of 

CYP3A thus inducing the mouse orthologue 

of the human enzyme (Woodland et al., 2008; 

Zhou et al., 2009). CYP3A11, the mouse 

orthologue of human CYP3A4 (Martignoni et 

al., 2006), is induced by rifampicin, but not 

PCN, in this model (Ma et al., 2007; Xie et al., 

2000). Again, this animal model clearly 

proves the deep involvement of PXR in 

CYP3A regulation and that inter-species var-

iability in CYP3A expression is attributed to 

structural variation of PXR. Similarly, this 

principle has been also applied in vitro where 

the rat orthologue of human CYP3A4, 

CYP3A23 (Ma et al., 2007; Willson and 

Kliewer, 2002), was significantly induced by 

rifampicin in hPXR-transfected rat hepato-

cytes (Xie et al., 2000). 

It is worth mentioning that CYP3A induc-

tion has been found to be partly co-regulated 

by the constitutive androstane receptor (CAR; 

NR1I3) (Pascussi et al., 2003; Reschly and 

Krasowski, 2006) in addition to other nuclear 

receptors including the bile acid receptor/far-

nesoid X receptor (BAR/FXR; NR1H4) 

(Gnerre et al., 2004), the glucocorticoid re-

ceptor (GR; NR3C1) (Dvorak et al., 2003), 

and the vitamin D receptor (VDR; NR1I1) 

(Thummel et al., 2001). The xenosensing nu-

clear receptors PXR and CAR are closely re-

lated with overlapping transcriptional targets. 

They share common CYP3A response ele-

ments, therefore a cross-talk between them is 

possibly involved in xenobiotic metabolic re-

sponse (Woodland et al., 2008). 

The early in vitro transfection assays have 

revealed the constitutive transcriptional activ-

ity of the CAR where spontaneous nuclear ac-

cumulation, heterodimerization with the 

RXRα, and subsequent activation of target 

gene transcription take place in the absence of 

a ligand (Qatanani and Moore, 2005; Wang 

and LeCluyse, 2003). However, screening for 

potential ligands has identified the androstane 

metabolites, andostranol and androstanol, as 

endogenous ligands which bind to activated 

CAR and act as inverse-agonists. Reversal of 

the intrinsically high constitutive activity of 

apo-CAR, i.e. unliganded conformation, by 

these compounds can minimize the formation 

of toxic metabolites from some drugs as acet-

aminophen (Qatanani and Moore, 2005; Shan 

et al., 2004). In its native environment such as 

primary hepatocytes or in vivo, unlike the het-

erologous cell types, CAR is sequestered in 

the cytosol not the nucleus (Shan et al., 2004; 

Xu et al., 2005). Similar to PXR, the activated 

CAR is dissociated from its cytoplasmic com-

plex with CCRP and HSP90, then translocates 

into the nucleus to ultimately dimerize with 

the RXRα and bind as a heterodimer to its re-

sponse element in target gene promoter 

(Timsit and Negishi, 2007; Xu et al., 2005). 

Through a classical ligand-binding mecha-

nism, CAR activation and nuclear accumula-

tion is triggered by direct binding to agonist 

ligands that potentiate its constitutive activity. 

Interestingly, CAR can be also indirectly ac-

tivated and translocated in a ligand-independ-

ent manner which seems to be the predomi-

nant mode of its activation (Yang and Wang, 

2014). For instance, phenobarbital is a well-

known CYP3A inducer whose effect is medi-

ated by indirect CAR activation (Sueyoshi 

and Negishi, 2001). 

 

5.3. Arsenicals-mediated alteration of CYPs 

expression in human-based experimental 

models 

For years, different arsenic species have 

been studied for their modulatory effects on 

different CYPs, and have shown species-, tis-

sue-, and/or enzyme-specific effects. Identi-

fying these effects is highly important in un-

derstanding how these compounds affect dif-

ferent tissues in the human body, and this can 

be exploited in either establishing preventive 

measures for arsenic toxicity or developing 

therapeutic strategies for treating certain dis-

eases. Arsenic-mediated alteration of the 

CYPs has been reported at multiple levels of 
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their expression including mRNA, protein, 

and catalytic activity. Some studies have also 

investigated the influence of arsenic on the 

transcriptional regulators of these enzymes. 

These CYPs-regulating transcription factors 

act downstream of signaling cascades related 

to biological/environmental stimuli. 

Experimental animal models represent a 

major avenue of research especially in the 

field of toxicology where using human sub-

jects is, obviously, impossible. However, ex-

trapolating experimental data from animals to 

humans can be very complex and may result 

in poor prediction of human reactions to dif-

ferent xenobiotics. That is why bridging stud-

ies using human in vitro models constitute an 

indispensable tool for elucidating human re-

sponses (Wrighton et al., 1995). For instance, 

difference in metabolic behavior, resulting 

from species-specific enzyme expression or 

activity, is a hallmark of inter-species varia-

bility in xenobiotic handling that eventually 

complicates the translation of exposure out-

comes in animals to humans (Astashkina et 

al., 2012). Being at the core of the metabolic 

system, CYPs are no exception. Species-re-

lated disparity in catalytic activity/specificity 

of some CYP isoforms may produce different 

induction/inhibition patterns for the enzymes. 

Additionally, inter-species differences can 

also originate from varying expression of spe-

cific isoforms among species (Martignoni et 

al., 2006). Accurate prediction of human met-

abolic response can be achieved by using hu-

man-based in vitro models, especially for the 

liver which is the major metabolic organ, such 

as cellular systems (e.g. primary liver cells 

and derived cell lines), as well as enzymes 

preparations (e.g. tissue homogenates, subcel-

lular fractions, and purified enzymes) (Costa 

et al., 2014; Wrighton et al., 1995; Zhang et 

al., 2012). Because of the reliable in vitro-in 

vivo correlation provided by these human in 

vitro models, FDA can waive clinical drug-

drug interaction studies when a drug candi-

date is tested negative in human in vitro CYP 

induction studies (Zhang et al., 2012).  

Throughout reviewing the literature, we 

have come across a plethora of studies inves-

tigating arsenic-related effects on different 

members of CYP superfamily using various 

animal models, but here we shed light on 

studies based on human in vitro models (Ta-

ble 1). These studies should, to a great extent, 

depict what would happen inside the human 

body upon exposure to this toxicant.

 
Table 1: The effect of different arsenic species on the regulation of different cytochrome P450 enzymes 
(CYPs). 

CYP LEVEL EFFECT 
EXPERIMENTAL 
MODEL 

REFERENCE 

ARSENITE 

CYP1A1 mRNA ↔ CYP1A1 mRNA Human hepatoma 
(HepG2) cells 

Bessette et al., 
2005 

↓ CYP1A1 mRNA Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↑ CYP1A1 mRNA (concentration- 
and time-dependent effect) 

Human lung ade-
nocarcinoma 
(H1355) cells 

Wu et al., 2008 
 

↔ CYP1A1 mRNA stability Human hepatoma 
(HepG2) cells 

Bessette et al., 
2005 

↓ CYP1A1 mRNA induced by 
TCDD (concentration- and time-
dependent effect) 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed and 
El-Kadi, 2010; 
Bonzo et al., 
2005; 
Elshenawy et 
al., 2017 

↔ CYP1A1 mRNA induced by 
TCDD stability 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed and 
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El-Kadi, 2010; 
Elshenawy et 
al., 2017 

↔ CYP1A1 mRNA induced by 
B[k]F 

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells 

Vakharia et al., 
2001a, b 

↓ CYP1A1 mRNA induced by 
B[k]F 

Human hepatoma 
(HepG2) cells 

Bessette et al., 
2005 

↔ CYP1A1 mRNA induced by 
B[k]F stability 

Human hepatoma 
(HepG2) cells 

Bessette et al., 
2005 

↔ CYP1A1 mRNA induced by 
B[a]P 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

Protein ↓ CYP1A protein Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↔ CYP1A1 protein Human lung ade-
nocarcinoma (CL3) 
cells 

Ho and Lee, 
2002 

↓ CYP1A protein induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A1 protein induced by 
TCDD (concentration-dependent 
effect) 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed and 
El-Kadi, 2010; 
Bonzo et al., 
2005 

↔ CYP1A protein induced by 
TCDD stability 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A1 protein induced by 
B[k]F (concentration-dependent ef-
fect) 
 

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells 

Bessette et al., 
2009; Vakharia 
et al., 2001a, b 

↔ CYP1A1 protein induced by 
B[a]P 

Human lung ade-
nocarcinoma (CL3) 
cells 

Ho and Lee, 
2002 

↓ CYP1A1 protein induced by 
B[a]P 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

Activity ↔ CYP1A1 (EROD) activity Human hepatoma 
(HepG2) cells,  
human hepatoma 
(Huh7) cells 

Bessette et al., 
2009; Chao et 
al., 2006 

↓ CYP1A1 (EROD) activity Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A1 (17β-estradiol 2-hy-
droxylation) activity 

CYP1A1 super-
somes 

Spink et al., 
2002 

↓ CYP1A1 (EROD) activity in-
duced by TCDD (concentration-
dependent effect) 

Human hepatoma 
(HepG2) cells,  
human hepatoma 
(Huh7) cells 

Anwar-
Mohamed and 
El-Kadi, 2010; 
Bonzo et al., 
2005; Chao et 
al., 2006; 
Elshenawy et 
al., 2017 

↓ CYP1A1 (17β-estradiol 2-hy-
droxylation) activity induced by 
TCDD (in enzyme induction 
phase) 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 



EXCLI Journal 2021;20:1184-1242 – ISSN 1611-2156 

Received: May 17, 2021, accepted: July 02, 2021, published: July 12, 2021 

 

 

1212 

↔ CYP1A1 (17β-estradiol 2-hy-
droxylation) activity induced by 
TCDD (in metabolism phase) 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

↔ CYP1A1 (EROD) activity in-
duced by TCDD (direct effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A1 (EROD) activity in-
duced by B[k]F 
 

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells 

Bessette et al., 
2009; Vakharia 
et al., 2001a, b 

↓ CYP1A1 (EROD) activity in-
duced by B[a]P 

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells 

Vakharia et al., 
2001a, b 

↓ CYP1A1 (17β-estradiol 2-hy-
droxylation) activity induced by 
B[a]P (concentration-dependent 
effect) 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

↓ CYP1A1 (EROD) activity in-
duced by B[a]A 

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells 

Vakharia et al., 
2001a, b 

↓ CYP1A1 (EROD) activity in-
duced by B[b]F 

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells 

Vakharia et al., 
2001a, b 

↓ CYP1A1 (EROD) activity in-
duced by DB[ah]A 

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells 

Vakharia et al., 
2001a, b 

CYP1A2 mRNA ↓ CYP1A2 mRNA induced by 
B[k]F 

Human hepato-
cytes 

Vakharia et al., 
2001a 

Protein ↓ CYP1A protein Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A protein induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↔ CYP1A protein induced by 
TCDD stability 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A2 protein induced by 
B[k]F (concentration-dependent ef-
fect) 

Human hepato-
cytes 

Vakharia et al., 
2001a 

Activity ↓ CYP1A2 (MROD) activity in-
duced by TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed and 
El-Kadi, 2010 

↓ CYP1A2 (EROD) activity in-
duced by B[k]F 

Human hepato-
cytes 

Vakharia et al., 
2001a 

↓ CYP1A2 (EROD) activity in-
duced by B[a]P 

Human hepato-
cytes 

Vakharia et al., 
2001a 

↓ CYP1A2 (EROD) activity in-
duced by B[a]A 

Human hepato-
cytes 

Vakharia et al., 
2001a 

↓ CYP1A2 (EROD) activity in-
duced by B[b]F 

Human hepato-
cytes 

Vakharia et al., 
2001a 

↓ CYP1A2 (EROD) activity in-
duced by DB[ah]A 

Human hepato-
cytes 

Vakharia et al., 
2001a 

CYP1B1 mRNA ↔ CYP1B1 mRNA induced by 
B[a]P 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

Activity ↓ CYP1B1 (17β-estradiol 4-hy-
droxylation) activity 

CYP1B1 super-
somes 

Spink et al., 
2002 
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↓ CYP1B1 (17β-estradiol 4-hy-
droxylation) activity induced by 
TCDD (in enzyme induction 
phase) 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

↔ CYP1B1 (17β-estradiol 4-hy-
droxylation) activity induced by 
TCDD (in metabolism phase) 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

↓ CYP1B1 (17β-estradiol 4-hy-
droxylation) activity induced by 
B[a]P (concentration-dependent 
effect) 

Human breast can-
cer (T-47D) cells 

Spink et al., 
2002; Wu et al., 
2003 

CYP3A4 mRNA ↓ CYP3A4 mRNA (concentration-
dependent effect) 

Human hepato-
cytes 

Noreault-Conti 
et al., 2012; 
Noreault et al., 
2005 

↓ CYP3A4 mRNA induced by ri-
fampicin (concentration-dependent 
effect) 

Human hepato-
cytes 

Noreault-Conti 
et al., 2012; 
Noreault et al., 
2005 

↓ CYP3A4 mRNA induced by PB Human hepato-
cytes 

Noreault et al., 
2005 

Protein ↓ CYP3A4 protein Human hepato-
cytes 

Noreault et al., 
2005 

↓ CYP3A4 protein induced by ri-
fampicin 

Human hepato-
cytes 

Noreault et al., 
2005 

↓ CYP3A4 protein induced by PB Human hepato-
cytes 

Noreault et al., 
2005 

Activity ↓ CYP3A4 (testosterone 6β-hy-
droxylation) activity 

Human hepato-
cytes 

Noreault et al., 
2005 

↓ CYP3A4 (testosterone 6β-hy-
droxylation) activity induced by ri-
fampicin 

Human hepato-
cytes 

Noreault et al., 
2005 

↓ CYP3A4 (testosterone 6β-hy-
droxylation) activity induced by PB 

Human hepato-
cytes 

Noreault et al., 
2005 

--- --- ↔ AhR mRNA 
 

Human lung ade-
nocarcinoma 
(H1355) cells 

Wu et al., 2008 
 

↔ AhR nuclear accumulation Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↔ AhR nuclear accumulation in-
duced by TCDD 

Human hepatoma 
(HepG2) cells 

Bonzo et al., 
2005 

↓ AhR nuclear accumulation in-
duced by TCDD 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↔ AhR-dependent CYP1A1-lucif-
erase activity induced by TCDD 

Human hepatoma 
(HepG2) cells 

Bonzo et al., 
2005 

↓ AhR-dependent CYP1A1-lucifer-
ase activity induced by B[k]F 

Human hepatoma 
(HepG2) cells 

Bessette et al., 
2005 

↔ AhR-dependent XRE-luciferase 
activity 

Human hepatoma 
(HepG2) cells 

Bessette et al., 
2005 

↓ AhR-dependent XRE-luciferase 
activity 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed and 
El-Kadi, 2010; 
Elshenawy et 
al., 2017 

↑ AhR-dependent XRE-luciferase 
activity (time-dependent effect) 

Human lung ade-
nocarcinoma 
(H1355) cells 

Wu et al., 2008 
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↓ AhR-dependent XRE-luciferase 
activity induced by TCDD (concen-
tration-dependent effect) 

Human hepatoma 
(HepG2) cells, 
human hepatoma 
(Huh7) cells 

Anwar-
Mohamed and 
El-Kadi, 2010; 
Chao et al., 
2006; 
Elshenawy et 
al., 2017 

↔ AhR-dependent XRE-luciferase 
activity induced by B[k]F 

Human hepatoma 
(HepG2) cells 

Bessette et al., 
2005 

↔ PXR mRNA induced by rifam-
picin 

Human hepato-
cytes 

Noreault et al., 
2005 

↔ PXR protein Human hepato-
cytes 

Noreault et al., 
2005 

↔ PXR protein induced by rifam-
picin 

Human hepato-
cytes 

Noreault et al., 
2005 

↓ Ectopic human PXR-dependent 
rat CYP3A23-luciferase activity in-
duced by rifampicin 

Human hepatoma 
(HepG2) cells 

Noreault-Conti 
et al., 2012 

↓ RXRα mRNA Human hepato-
cytes 

Noreault et al., 
2005 

↓ RXRα mRNA induced by rifam-
picin 

Human hepato-
cytes 

Noreault et al., 
2005 

↓ RXRα protein Human hepato-
cytes 

Noreault et al., 
2005 

↓ RXRα protein induced by rifam-
picin 

Human hepato-
cytes 

Noreault et al., 
2005 

↓ Ectopic human RXRα-dependent 
mouse RARE-luciferase activity in-
duced by 9cRA 

Human hepatoma 
(HepG2) cells 

Noreault-Conti 
et al., 2012 

↔ Sp1 mRNA induced by rifam-
picin 

Human hepato-
cytes 

Noreault et al., 
2005 

↔ Sp1 protein induced by rifam-
picin 

Human hepato-
cytes 

Noreault et al., 
2005 

ARSENIC TRIOXIDE 

CYP1A1 mRNA ↓ CYP1A1 mRNA induced by 3-
MC (concentration-dependent ef-
fect) 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 
 

Protein ↓ CYP1A1 protein induced by 3-
MC (concentration-dependent ef-
fect) 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

Activity ↓ CYP1A1 (EROD) activity in-
duced by TCDD (concentration-
dependent effect) 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

↓ CYP1A1 (EROD) activity in-
duced by 3-MC (concentration-de-
pendent effect)  

Human hepato-
cytes,  
human hepatoma 
(HepG2) cells,  
human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

↔ CYP1A1 (EROD) activity in-
duced by 3-MC (direct effect) 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

↓ CYP1A1 (EROD) activity in-
duced by B[a]P (concentration-de-
pendent effect) 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

CYP1A2 Activity ↔ CYP1A2 (EROD) activity Human hepato-
cytes 

Vernhet et al., 
2003 
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CYP1B1 Protein ↓ CYP1B1 protein (concentration-
dependent effect) 

Human breast epi-
thelial (MCF10A) 
cells 

Mondal et al., 
2018 

--- --- ↔ AhR-dependent CYP1A1-lucif-
erase activity 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

↓ AhR-dependent CYP1A1-lucifer-
ase activity induced by 3-MC (con-
centration-dependent effect) 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

↔ AhR-dependent XRE-luciferase 
activity 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

↔ AhR-dependent XRE-luciferase 
activity induced by 3-MC 

Human hepatoma 
(Hep3B) cells 

Vernhet et al., 
2003 

ARSENATE 

--- --- ↑ AhR-dependent CYP1A1-CAT 
expression (concentration-depend-
ent effect) 

Human hepatoma 
(HepG2) cells 
(CAT-Tox (L)iver 
assay system) 

Tully et al., 2000 

↑ AhR-dependent XRE-CAT ex-
pression (concentration-dependent 
effect) 

Human hepatoma 
(HepG2) cells 
(CAT-Tox (L)iver 
assay system) 

Tully et al., 2000 
 

MONOMETHYLARSONOUS ACID 

CYP1A1 mRNA ↓ CYP1A1 mRNA (concentration-
dependent effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A1 mRNA induced by 
TCDD (concentration- and time-
dependent effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↔ CYP1A1 mRNA induced by 
TCDD stability 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

Protein ↓ CYP1A protein (concentration-
dependent effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A protein induced by 
TCDD (concentration-dependent 
effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A protein induced by 
TCDD stability 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

Activity ↓ CYP1A1 (EROD) activity Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A1 (EROD) activity in-
duced by TCDD (concentration-
dependent effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A1 (EROD) activity in-
duced by TCDD (concentration-
dependent direct effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

CYP1A2 Protein ↓ CYP1A protein (concentration-
dependent effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A protein induced by 
TCDD (concentration-dependent 
effect) 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ CYP1A protein induced by 
TCDD stability 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

--- --- ↔ AhR nuclear accumulation Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ AhR nuclear accumulation in-
duced by TCDD 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

↓ AhR-dependent XRE-luciferase 
activity 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 
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↓ AhR-dependent XRE-luciferase 
activity induced by TCDD 

Human hepatoma 
(HepG2) cells 

Elshenawy et 
al., 2017 

MONOMETHYLARSONIC ACID 

CYP1A1 mRNA ↑ CYP1A1 mRNA  Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 mRNA induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

Protein ↑ CYP1A1 protein  Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 protein induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

Activity ↑ CYP1A1 (EROD) activity Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 (EROD) activity in-
duced by TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

--- --- ↓ AhR protein stability Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR nuclear accumulation Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR-dependent XRE-luciferase 
activity 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR-dependent XRE-luciferase 
activity induced by TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

DIMETHYLARSINIC ACID 

CYP1A1 mRNA ↑ CYP1A1 mRNA  Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 mRNA induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

Protein ↑ CYP1A1 protein  Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 protein induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

Activity ↑ CYP1A1 (EROD) activity Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 (EROD) activity in-
duced by TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

--- --- ↓ AhR protein stability Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR nuclear accumulation Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 
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↑ AhR-dependent XRE-luciferase 
activity 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR-dependent XRE-luciferase 
activity induced by TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

TRIMETHYLARSINE OXIDE 

CYP1A1 mRNA ↑ CYP1A1 mRNA  Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 mRNA induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

Protein ↑ CYP1A1 protein  Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 protein induced by 
TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

Activity ↑ CYP1A1 (EROD) activity Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ CYP1A1 (EROD) activity in-
duced by TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

--- --- ↓ AhR protein stability Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR nuclear accumulation Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR-dependent XRE-luciferase 
activity 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

↑ AhR-dependent XRE-luciferase 
activity induced by TCDD 

Human hepatoma 
(HepG2) cells 

Anwar-
Mohamed et al., 
2014 

Abbreviations:  
↑: increase 
↓: decrease 
↔: no change 
3-MC: 3-methylcholanthrene 
9cRA: 9-cis-retinoic acid 
AhR: Aryl hydrocarbon receptor 
B[a]A: Benzo[a]anthracene 
B[a]P: Benzo[a]pyrene 
B[b]F: Benzo[b]fluoranthene 
B[k]F: Benzo[k]fluoranthene 
CAT-Tox (L)iver: Human hepatoma (HepG2) 
cells-derived recombinant cell lines each contain-
ing a gene promoter/response element fused to 
the chloramphenicol acetyl transferase (CAT) re-
porter gene 
DB[ah]A: Dibenzo[a,h]anthracene 
EROD: 7-ethoxyresorufin O-deethylation 
MROD: 7-methoxyresorufin O-demethylation 
PB: Phenobarbital 

PXR: Pregnane X receptor 
RARE: Retinoic acid response element 
RXRα: Retinoid X receptor alpha 
Sp1: Transcription factor Sp1 
TCDD: 2,3,7,8-tetrachlorodibenzo-p-dioxin 
XRE: Xenobiotic response element 
 
 
 

The most commonly used experimental 

model in these studies was liver cells espe-

cially human hepatoma (HepG2) cells and 

primary human hepatocytes. Out of all arsenic 

species, the trivalent inorganic arsenite has 

drawn most attention from researchers who 

assessed its effect specifically on AhR-regu-

lated CYP1 family as well as PXR-regulated 

CYP3A4. 
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In liver cells, inorganic arsenic species 

and organoarsenicals have opposite effects on 

CYP1A1 mRNA and protein levels. On one 

hand; arsenite (Elshenawy et al., 2017) and 

arsenic trioxide (Vernhet et al., 2003) cause 

reduction in CYP1A1 mRNA transcripts and 

protein produced constitutively and/or in-

duced by well-known inducers as TCDD 

(2,3,7,8-Tetrachlorodibenzo-p-dioxin), B[k]F 

(Benzo[k]fluoranthene), and 3-MC (3-

methylcholanthrene), but on the other hand; 

monomethylarsonic acid, dimethylarsinic 

acid, and trimethylarsine oxide (Anwar-

Mohamed et al., 2014) cause significant in-

crease at both mRNA and protein levels. In-

terestingly, monomethylarsonous acid is the 

only organic species which has effects match-

ing these of arsenite and arsenic trioxide 

(Elshenawy et al., 2017). 

Actinomycin D chase studies assessing 

CYP1A1 mRNA stability have revealed no 

effect exerted by either arsenite (Anwar-

Mohamed and El-Kadi, 2010) or 

monomethylarsonous acid (Elshenawy et al., 

2017). However, monomethylarsonous acid, 

but not arsenite, decreases the protein stability 

of CYP1A1 as shown by cycloheximide chase 

experiments (Elshenawy et al., 2017). 

The effect of the mentioned arsenicals on 

EROD (7-ethoxyresorufin O-deethylation) 

activity of CYP1A1 follows the same pattern 

as what has been observed with mRNA and 

protein. Additionally, incubation of arsenite 

with human recombinant CYP1A1 (super-

somes) results in a significant decrease in its 

17β-estradiol 2-hydroxylation activity (Spink 

et al., 2002). Also, monomethylarsonous acid 

has a direct inhibitory effect on EROD activ-

ity of TCDD-induced CYP1A1 (Elshenawy et 

al., 2017). 

Arsenite has organ-specific effects on 

CYP1A1 as shown from studies on the cells 

derived from extrahepatic tissues. For in-

stance, arsenite potentiates CYP1A1 mRNA 

basal level in human lung adenocarcinoma 

(H1355) cells (Wu et al., 2008), but has no ef-

fect on its basal or inducible protein levels in 

human lung adenocarcinoma (CL3) cells (Ho 

and Lee, 2002). In human breast cancer (T-

47D) cells, arsenite doesn’t alter B[a]P-in-

duced CYP1A1 mRNA but causes significant 

reduction in its inducible protein levels as 

well as 17β-estradiol 2-hydroxylation activity 

(Spink et al., 2002; Wu et al., 2003). 

Because of being subjected to the same 

transcriptional regulation via AhR, it is not 

surprising that CYP1A2 is similarly affected 

by arsenicals as CYP1A1. Arsenite causes 

significant reduction in inducible CYP1A2 

mRNA, protein, as well as EROD (Vakharia 

et al., 2001a) and MROD (7-methoxyresoru-

fin O-demethylation) (Anwar-Mohamed and 

El-Kadi, 2010) activities. Besides decreasing 

the inducible level of CYP1A protein, 

monomethylarsonous acid reduces its stabil-

ity as well (Elshenawy et al., 2017). CYP1B1 

is another AhR-regulated enzyme whose ba-

sal protein level, in human breast epithelial 

(MCF10A) cells (Mondal et al., 2018), and in-

duced 17β-estradiol 4-hydroxylation activity, 

in T-47D cells (Spink et al., 2002), signifi-

cantly decrease in response to arsenic trioxide 

and arsenite treatments, respectively. Also, 

incubation of arsenite with human recombi-

nant CYP1B1 (supersomes) causes signifi-

cant reduction in its 17β-estradiol 4-hydrox-

ylation activity (Spink et al., 2002). 

The above-mentioned findings about 

CYP1A1, CYP1A2, and CYP1B1 have been 

further elucidated by studies investigating 

their upstream transcriptional control by the 

AhR. Immunocytochemical analysis of AhR 

localization have revealed significant reduc-

tion in TCDD-stimulated nuclear localization 

of the AhR in HepG2 cells co-treated with ei-

ther arsenite or monomethylarsonous acid 

(Elshenawy et al., 2017). On the other hand, 

the methylated arsenicals; monomethylar-

sonic acid, dimethylarsinic acid, and trime-

thylarsine oxide cause significant increase in 

AhR nuclear accumulation (Anwar-

Mohamed et al., 2014). AhR transcriptional 

activity has been assessed through luciferase-

based reporter assays. HepG2 cells and hu-

man hepatoma (Hep3B) cells transfected with 

reporter constructs, carrying CYP1A1 gene 

promoter sequence located upstream of the 

firefly luciferase reporter gene, have shown 
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AhR-dependent induction of firefly luciferase 

activity (normalized using Renilla luciferase 

activity in a dual-luciferase reporter assay) af-

ter being treated with B[k]F and 3-MC, re-

spectively. However, arsenite (Bessette et al., 

2005) and arsenic trioxide (Vernhet et al., 

2003) significantly decrease B[k]F and 3-

MC-induced activity, respectively. Arsenite 

and monomethylarsonous acid (Elshenawy et 

al., 2017), but not arsenic trioxide (Vernhet et 

al., 2003), reduce both basal and inducible 

AhR-dependent XRE-driven firefly luciferase 

reporter activity. In case of monomethylar-

sonic acid, dimethylarsinic acid, and trime-

thylarsine oxide; an opposite effect on XRE-

mediated luciferase activity has been ob-

served in both absence and presence of TCDD 

(Anwar-Mohamed et al., 2014). 

H1355 cells transfected with XRE-lucif-

erase genetic construct have shown signifi-

cant increase in reporter activity in response 

to arsenite treatment, i.e. opposing its effect in 

liver cells (Wu et al., 2008). Also, contrary to 

what has been observed with inorganic arse-

nic species, Tully et al. have reported that ar-

senate causes increase in AhR-dependent re-

porter signal (Tully et al., 2000). This study 

used CAT-Tox (L)iver assay system which is 

a recombinant cell line derived from HepG2 

cells and contains either CYP1A1 gene pro-

moter or XRE fused to the chloramphenicol 

acetyl transferase (CAT) reporter gene (Todd 

et al., 1995). 

Arsenite has been found to be negatively 

affecting CYP3A4 in primary human hepato-

cytes at the levels of mRNA, protein, and en-

zymatic activity. Both constitutively ex-

pressed and induced, by either rifampicin or 

phenobarbital, CYP3A4 mRNA and protein 

decrease in response to arsenite treatment. 

CYP3A4 testosterone 6β-hydroxylation is 

similarly affected by arsenite (Noreault-Conti 

et al., 2012; Noreault et al., 2005). 

PXR, the key regulator of CYP3A4, has 

not exhibited any alteration in its mRNA or 

protein in arsenite-treated primary human 

hepatocytes. However, when primary cultures 

of rat hepatocytes, prepared from mature male 

Fisher 344 rats, were co-transfected with a 

construct of CYP3A4 rat orthologue 

(CYP3A23) promoter-luciferase reporter as 

well as a plasmid containing the complete 

protein-coding region of human PXR, the re-

porter activity was induced by rifampicin, a 

known activator of human but not rat PXR (in 

this case, it acts upon the ectopically ex-

pressed human PXR), but such activity was 

significantly reduced by arsenite treatment 

(Noreault et al., 2005). Similarly, arsenite de-

creases rifampicin-induced luciferase activity 

in HepG2 cells co-transfected with 

CYP3A23-luciferase reporter and ectopic hu-

man PXR (Noreault-Conti et al., 2012). Inter-

estingly, both constitutive and rifampicin-in-

duced RXRα, a transcription factor that regu-

lates CYP3A4 gene transcription as a hetero-

dimer with PXR, mRNA and protein are sig-

nificantly reduced by arsenite (Noreault et al., 

2005). Also, arsenite decreases luciferase ac-

tivity induced by 9-cis-retinoic acid (9cRA), 

a known RXR ligand, in HepG2 cells loaded 

with mouse RAR/RXRα heterodimer-de-

pendent retinoic acid response element 

(RARE)-luciferase reporter as well as ectopic 

human RXRα (Noreault-Conti et al., 2012). 

 

6. CONCLUDING REMARKS 

The ubiquitous nature of arsenic through-

out the environmental ecosystem combined 

with its powerful toxic properties has ren-

dered it one of the most serious health threats 

that affects millions of people around the 

globe. 

Arsenic is not confined to its natural min-

eralogic reservoirs and is inevitably and con-

tinuously liberated to the environment both 

naturally and via several anthropogenic activ-

ities. Because the later accounts for much 

higher rates of release, implementing rigorous 

regulatory restrictions on such activities is a 

necessity.  

Initially, arsenic mobilization takes place 

in the form of water-soluble arsenite and ar-

senate, and because this is mediated by water, 

these inorganic species can easily reach dif-

ferent life forms, including humans, where 

they get biotransformed into more complex 
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organic species. Several arsenic-based com-

pounds and metabolites have been identified 

with varying toxicity profiles; therefore, arse-

nic speciation in the potential sources of ex-

posure is required for a meaningful risk as-

sessment. 

The fact that the released arsenic cannot 

be destroyed and just gets transformed from 

one chemical form to the other may make it 

more challenging to evade the exposure to its 

chemical forms which can happen from dif-

ferent sources and through multiple routes.  

Disrupting the metabolic system through 

interfering with its network of enzymes is one 

of arsenic multifaceted impacts on the physi-

ological ecosystem throughout the human 

body. Being a vital component of that system, 

the impact on the CYPs should have signifi-

cant consequences especially on xenobiotic 

activation and/or clearance. The differential 

toxic behavior of different arsenic compounds 

entails varying cellular and molecular effects. 

Studies on different arsenicals have revealed 

varying species-, tissue-, and/or enzyme- spe-

cific effects on the regulation of different 

CYPs. Further research including interaction 

between additional arsenic species with more 

CYP isoforms will absolutely contribute to 

better understanding of arsenic toxicity, 

which can then be exploited for developing 

preventive strategies or serving therapeutic 

purposes. 
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