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The accuracy in assigning fluorophore identity and abundance,
termed spectral unmixing, in biological fluorescence microscopy
images remains challenging due to the unavoidable and sig-
nificant overlap in emission spectra among fluorophores. In
conventional laser scanning confocal spectral microscopy, flu-
orophore information is acquired by recording emission spec-
tra with a single combination of discrete excitation wavelengths.
As a matter of fact, organic fluorophores have not only unique
emission spectral signatures but also have unique and charac-
teristic excitation spectra. In this paper, we propose a gen-
eralized multi-view machine learning approach, which makes
use of both excitation and emission spectra to greatly improve
the accuracy in differentiating multiple highly overlapping fluo-
rophores in a single image. By recording emission spectra of the
same field with multiple combinations of excitation wavelengths,
we obtain data representing these different views of the under-
lying fluorophore distribution in the sample. We then propose a
framework of multi-view machine learning methods, which al-
lows us to flexibly incorporate noise information and abundance
constraints, to extract the spectral signatures of fluorophores
from their reference images and to efficiently recover their cor-
responding abundances in unknown mixed images. Numerical
experiments on simulated image data demonstrate the method’s
efficacy in improving accuracy, allowing for the discrimination
of 100 fluorophores with highly overlapping spectra. Further-
more, validation on images of mixtures of fluorescently labeled
E. coli demonstrates the power of the proposed multi-view strat-
egy in discriminating fluorophores with spectral overlap in real
biological images.
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Introduction
Numerous biological systems exhibit intricate interactions
among various subcomponents, and fluorescent labels are of-
ten employed to indicate the spatial distribution of these com-
ponents within cells and tissues. Spectral imaging micro-
scopes record fluorescence intensity data in discrete wave-
length bands at each pixel, enabling the creation of a 3-
dimensional data cube that integrates spatial and spectral
information from the sample. While many spectrally vari-

ant fluorescent reporters are suitable for biological imaging,
available fluorophores have broad excitation and emission
spectra which makes distinguishing their individual contri-
butions at every pixel a major challenge.

When there is overlap in the excitation and emission spec-
tra of fluorophores, a single excitation wavelength band may
excite more than one fluorophore and the emitted signals
from different fluorophores can be recorded in the same emis-
sion bands. These phenomena is known as cross-talk and
bleedthrough lead to inaccurate classification and quantifi-
cation of signals from different fluorophores and thus ham-
pers the ability to localize specific biological structures or
molecules within cells and tissues. To overcome these is-
sues, spectral imaging acquisition and analysis techniques,
especially spectral unmixing methods, have been developed.
These approaches aim to extract the spectral signatures of
fluorophores from recorded images and determine the abun-
dance of each fluorophore in every pixel. To tackle unmixing
problems in different scenarios, various regularized learning
methods have been developed in the literature (1–12). From a
machine learning perspective, these methods essentially rep-
resent single-view learning where models are trained and pre-
dictions are made based on a single group of features that
describes the field of interest, i.e., the emitted spectral pro-
file of the fluorophores. However, organic fluorophores have
not only unique emission spectral signatures, but also possess
unique excitation spectral profiles. By recording the emission
spectra with multiple combinations of excitation wavelengths
in the same field, one can obtain multi-view data, each view
of which can be considered as a distinct feature group of
the field. In this study, we propose to address the biological
spectral unmixing problem by developing a framework for a
multi-view machine learning approach to biological spectral
unmixing.

In the machine learning literature, it is observed that lever-
aging the complementary information available in different
data views can help build more robust, flexible, and com-
plex learning models with improved generalization ability
(13–17). Such an observation gives birth to the introduction
and development of multi-view machine learning approaches
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(18–20), which have demonstrated successful applications in
various real-world scenarios (21–26). Motivated by the com-
pelling empirical successes of multi-view learning in various
application domains, we develop in this paper a framework
for multi-view learning in the context of biological spectral
unmixing by leveraging complete emission spectra obtained
with various combinations of excitation wavelengths as a rich
source of information on fluorophore distribution. The pur-
pose is to significantly enhance the ability to discriminate
fluorophores with highly overlapping spectra while allowing
for a substantial expansion in the number of different fluo-
rophores that can be employed and discriminated in a single
experiment as their broad spectra lead to crowding and exten-
sive bleed-through in the limited visible wavelength range.
Within the context of biological spectral unmixing, there are
some studies that make use of both excitation spectra and
emission spectra. For instance, the study conducted in (27)
demonstrated that using emission spectra at multiple exci-
tation wavelengths can help distinguish 16 different fluo-
rophores. By assuming that the acquired spectral image ad-
mits a three-way rank-one tensor representation, (7) proposed
a blind source separation approach, which is essentially an
unsupervised learning method, to address unmixing prob-
lems. Put differently, this approach relies on the assumption
that emission spectra across different excitation wavelengths
are scaled variations of each other. However, fluorophores
absorb light energy at specific wavelengths and only emit
light at longer wavelengths (28). As a result, signals with
emission wavelengths shorter than an excitation wavelength
are excluded, which may lead to insufficient exploration of
the multi-view data. (29) used the integration of the emis-
sion spectra with different excitation wavelengths in unmix-
ing. (30) investigated the biological spectral unmixing prob-
lem by specifically focusing on spectral image data acquired
at two excitation wavelengths while assuming that the fluo-
rophores of interest can not be correlated.
In contrast to previously reported work, we propose to make
full use of the acquired multi-view image data to train learn-
ing machines. In particular, our proposed framework for
multi-view learning in biological spectral unmixing is essen-
tially a form of regularized learning that allows us to incor-
porate various noise, spatial, and sparsity constraints or other
types of prior information about the fluorescent image. To
validate the effectiveness of our proposed approach, we con-
ducted experiments using simulated spectral images and real
images of a microbial mixtures. The empirical findings un-
equivocally establish the superior performance of our frame-
work over single-view learning, as demonstrated through
both quantitative and qualitative analyses.

Materials and methods
Sample preparation. E. coli K12 (ATCC 10798) cells were
grown to mid-log phase in Luria-Bertani LB Broth (Difco
Laboratories, Inc.). E. coli cultures were fixed in 2%
paraformaldehyde (EMS Diasum) at room temperature, then
stored in 50% ethanol for at least 24 hours before FISH label-
ing as previously described (31). E. coli cells were labeled

Table 1. The number of channels with different excitation wavelengths. 488/561/639
represents the image recorded with a combination of 488 nm, 561 nm, and 639 nm
laser excitation wavelengths.

Laser (nm) 445 488 514 561 594 639 488/561/639

Channels 28 24 21 15 12 7 24

with the general bacteria probe, EUB338 (GCTGCCTCC-
CGTAGGAGT) conjugated to a fluorescent dye at the 5’ end.

Imaging. Spectral images were acquired on a Zeiss LSM 980
confocal microscope with 32 anode spectral detector and a
63x 1.4 NA objective. Single-view images for comparison
were acquired with a single combination of 488 nm, 561 nm,
and 639 nm laser excitation wavelengths and multi-pass main
beam splitter. The images were collected on the 32-anode
spectral detector with 9.8 nm width spectral resolution in
each channel. Multi-view images were acquired separately
in the descending order of the excitation laser light wave-
lengths: 639 nm, 594 nm, 561 nm, 514 nm, 488 nm, and 445
nm. The number of channels with different excitation wave-
lengths or views are listed in Table 1.
Images were captured in a descending order of excitation
laser light wavelengths, a strategic approach aimed at min-
imizing fluorophore bleaching (27). Because we record both
the reference spectra and the unknown samples in the same
sequence, moving from the longest to the shortest excitation
wavelength, the impact of bleaching artifacts is minimized, as
both the reference spectra and the unknown samples exhibit
similar bleaching dynamics.
To minimize artifacts imposed by acquiring images with dif-
ferent main beam splitters, we align the images into one co-
ordinate system using an intensity-based image registration
algorithm (32). This algorithm optimizes the similarity be-
tween the images of the same field of interest through a 2D
geometric transformation.

Multi-view learning for biological spectral unmixing. A
common assumption in spectral unmixing is that the signals
recorded from various fluorophores within a pixel combine
linearly. Linear spectral unmixing separates each pixel into
its spectral signatures, referred to as endmembers, and their
associated abundances.
Consider multi-view spectral images captured from the same
field of interest, denoted as {Yi}Ii=1 ∈ RCi×N+ . These im-
ages comprise Ci channels and N pixels, obtained at I dif-
ferent combinations of excitation wavelengths. Let Mi ∈
RCi×R+ represent the endmember matrix associated with R
fluorophores for the i-th combination of excitation wave-
lengths or the i-th view, and A∈RR×N+ be the corresponding
abundance matrix.
To accommodate such multi-view data in a linear unmixing
context, we propose the following Multi-View Linear Mix-
ture Model (MV-LMM):

Yi = MiA+Ei, i= 1, . . . , I, (1)

where Ei ∈ RCi×N represents the unknown noise matrix
from the i-th view. It reduces to the commonly used linear
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Fig. 1. 100 endmembers with 32 channels were created through a Gaussian distribution characterized by close means and a standard deviation of 0.5. Each color represents
a distinct endmember.

mixture model when I = 1, which corresponds to the sce-
nario where only single-view data is available.
As is a common strategy in biological spectral imaging, we
assume the availability of reference samples, each of which
consists of a single fluorophore. We propose a two-step pro-
cess of multi-view spectral unmixing, where the first step is
to extract the endmember of each fluorophore from the ref-
erence spectral images recorded at different views, and the
second step is, by using the extracted endmembers, to learn
the abundances in a multi-view spectral image. A mathemat-
ical description of our proposed two-step approach can be
detailed as follows:
Step 1: Multi-view learning for endmember extraction
Denoting the multi-view reference images of a fluorophore
recorded at different views as {Y′i}Ii=1 ∈ RCi×N+ , the end-
member can be extracted through a multi-view machine
learning scheme:

min
mi∈R

Ci
+ ,a∈RN+

I∑
i=1

wi`
(

Y′i,mia>
)
, (2)

where mi represents the endmember at the i-th view, a is the
corresponding abundance vector, {wi}Ii=1 are the weights of
different views, and `(·, ·) is a loss function.
Step 2: Multi-view learning for abundance estimation
Recall that the endmember matrix Mi consists all fluo-
rophores at the i-th view. Based on {Mi}Ii=1 obtained from
Step 1, in this step, we learn the abundances of the fluo-
rophores in a given multi-view image set {Yi}Ii=1 ∈R

Ci×N
+

recorded at I views from the same field of interest. To this
end, we propose the following multi-view machine learning
method for abundance estimation:

min
A<0

I∑
i=1

wi`(Yi,MiA) +λΩ(A), (3)

where λ is a tuning parameter and Ω(A) represents a penalty
term imposed on A. Note that the weights of different views
{wi}Ii=1 and the loss function ` in Eq. (3) can be different
from those for the endmember extraction method Eq. (2).
This framework of multi-view machine learning effectively
accommodates diverse prior information. For instance, the
weights {wi}Ii=1 can be determined based on the varying im-
portance of different views within specific applications. The
choice of the loss function depends on the characteristics of
the data. It can be selected as Poisson loss by assuming the

presence of Poisson noise (7, 10), expectile loss (33) when
dealing with asymmetric noise distribution, or other robust
losses (34–36) for highly noisy data. The penalty term offers
flexibility and can be chosen as the `1 norm and its variants to
promote sparsity, nuclear norm to limit rankness, total vari-
ation for smoothing neighboring pixels, or a combination of
several penalties. The parameter λ serves as the balancing
factor, regulating the trade-off between the fidelity term and
the penalty term.

Experiments and results
We evaluated the effectiveness of our proposed multi-view
learning by comparing it with a commonly used single-view
learning approach, utilizing the combination of 488 nm, 561
nm, and 639 nm laser excitation wavelengths. To maintain
fairness and simplicity in the comparison, we set the weights
in Eq. (2) and Eq. (3) as equal and opt for the least squares
loss function with no penalty term. This choice eliminated
the need for a tuning process. Then Eq. (2) is expressed as

min
mi∈R

Ci
+ ,a∈RN+

I∑
i=1
‖Yi−mia>‖2F , (4)

where ‖ · ‖F represents the Frobenius norm. And Eq. (3) is
formulated as

min
A<0

I∑
i=1
‖Yi−MiA‖2F . (5)

Both optimization problems Eq. (4) and Eq. (5) were ad-
dressed using an Alternating Direction Method of Multipli-
ers (ADMM) technique (37) to ensure efficient and effective
solutions. For single-view learning, we employed the Non-
negative Matrix Factorization (38) algorithm for endmember
extraction and the Nonnegative Least Squares (NLS) unmix-
ing method for abundance estimation (39).

Simulations of 100 endmembers. To assess the perfor-
mance of our proposed methods across varying numbers of
views in the presence of numerous highly overlapping end-
members, we generated 100 endmembers using a Gaussian
distribution with 24 channels, as depicted in Figure 1. The
correlation coefficient between any two adjacent endmem-
bers is 0.973, indicating significant spectral overlap. With
these endmembers, we simulated 1000 spectral images, each
comprising 1000 pixels. Within each pixel, the abundance
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Fig. 2. Boxplots of Root Mean Square Errors (RMSEs) were derived from simu-
lations involving varying numbers of views. Each RMSE was assessed based on
the unmixing results obtained from simulated spectral images, where the number of
views corresponds to the quantity of simulated spectral images.

of one random endmember was generated from a uniform
distribution U(0,1), while the abundances of the remaining
endmembers were set to zero. Additionally, the endmembers
were modified by randomly generated excitation intensities,
which follow a uniform distribution U[0,1]. To simulate real-
world conditions, Poisson noise with a signal-to-noise ratio
(SNR) of 5 and Gaussian noise with an SNR of 40 were in-
troduced into the generated data.
To evaluate the accuracy of unmixing with N pixels and
R endmembers, we employed the Root Mean Square Error
(RMSE) criterion, defined as follows:

RMSEA(Â) =

√
‖A− Â‖2F

NR
,

where A represents the simulated abundance matrix, which
serves as the ground truth, and Â denotes the estimated abun-
dance matrix. The RMSE criterion measures the dissimilarity
between the true abundance matrix and the estimated abun-
dance matrix. Figure 2 presents the boxplots of RMSEs ob-
tained from simulations with varying numbers of views. The
RMSEs exhibit a decreasing trend as the number of views
increases. The average RMSEs show a significantly lower
value with a higher number of views compared to cases with
a lower number of views.

Real biological images. In this section, an assessment of
multi-view learning performance was conducted on real bi-
ological images of fluorescently labeled E. coli cells. E.
coli cells were labeled in a fluorescence in situ hybridization
(FISH) procedure with the general bacterial probe. Twelve
versions of the same oligonucleotide FISH probe were syn-
thesized, each version conjugated to a different fluorophore
endmember, characterized by significant overlapping excita-
tion and emission spectra, as illustrated in Figure 3. End-
member spectral profiles were extracted from their corre-
sponding multi-view reference images through Eq. (4) from
reference images of pure populations of the E. coli, each pop-
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Fig. 3. Standardized overlapping (top) excitation and (bottom) emission spectra of
12 Fluorophores, with AF representing Alexa Fluor and RRX denoting Rhodamine
Red-X.

ulation labeled with only one version of the FISH probe.
Then the abundances of these fluorophores were recon-
structed from an additional set of reference images. It was
assumed, during the unmixing process, that all endmembers
were present in each image, despite only a single endmember
existing in each reference image.

To evaluate the unmixing results, a pixel in a reference im-
age is correctly identified if the estimated abundance of the
corresponding fluorophore is more than that of all other flu-
orophores. To visually represent the performance of the
unmixing results, each of the twelve fluorophores was as-
signed a distinct color. For every pixel, the color of the flu-
orophore with the highest calculated abundance among all
fluorophores was assigned to that pixel. This color assign-
ment scheme facilitated a clear and intuitive depiction of the
dominant fluorophore in each pixel, thereby providing a vi-
sual representation of the unmixing results. The estimated
abundances of the twelve reference images, obtained through
our proposed multi-view learning and the single-view learn-
ing, are presented in Figure 4, respectively. As depicted in the
figures, our proposed method exhibits superior accuracy, with
a greater number of correctly identified pixels compared to
the single-view learning. Notably, in Figure 4(c), the multi-
view learning for AF532 demonstrates a significantly better
outcome than the corresponding single-view learning. This
improvement is attributed to the substantial excitation inten-
sity of AF532 at wavelengths 488 nm, 514 nm, and 532 nm.
Despite the reduction in number of channels with increasing
wavelength, the rich information from multi-view learning
aids in effectively distinguishing AF532 from other highly
overlapping fluorophores. Despite the utilization of six ex-
citation wavelengths respectively, the number of views for
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Fig. 4. Abundances of reference images of (a) AF488, (b) AF514, (c) AF532, (d) ATTO542, (e) AF555, (f) RRX, (g) AF594 (h) AF610, (i) ATTO620, (j) AF633, (k) AF647, (l)
ATTO655, and (m) AF660 estimated by (left of all pairs) single-view learning and (right of all pairs) multi-view learning. The white rectangular bar in the lower right corner of
the right image of (m) represents a scale of 1 µm. Each pixel’s color corresponds to the fluorophore with the highest estimated abundance, as indicated by the legend with
AF representing Alexa Fluor and RRX denoting Rhodamine Red-X.

each fluorophore is not as extensive due to the limited range
of nonzero excitation spectra and the reduction in number of
channels. Consequently, in Figure 4(k), multi-view learning
for the very long wavelength ATTO655 yields a result similar
to that of single-view learning.

We proceeded to reconstruct the abundances of the fluo-
rophores in a mixture sample of E. coli cells, characterized
by similar morphology as the reference samples. The esti-
mated abundances obtained through multi-view learning and
single-view learning are visualized in Figure 5. Notably, the
abundance matrix derived from multi-view learning reveals
distinct oval shapes, each corresponding to the same color or
the highest abundance of a specific fluorophore. This con-
trasts with the abundance matrix obtained through single-

view learning.

Conclusion
We designed a multi-view machine learning framework to
effectively differentiate fluorophores with significant spec-
tral overlap. The multi-view data was acquired by record-
ing the emission spectra with various combinations of excita-
tion wavelengths. Through our proposed multi-view machine
learning approach, one can perform endmember extraction
and abundance estimation using Eq. (2) and Eq. (3).
Our approach demonstrated exceptional accuracy in esti-
mating fluorophore abundances, particularly for those with
highly overlapping emission spectra, through the application
of multi-view learning. Simulated data results highlighted
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Fig. 5. Abundances of mixed E. coli spectral image estimated by (A) single-view learning and (B) multi-view learning. (A1)–(A4) are magnified views of the regions within
the four white boxes in (A) and (B1)–(B4) are magnified views of the regions within the four white boxes in (B). The white rectangular bar in the lower right corner of (B4)
represents a scale of 2 µm. Each pixel’s color corresponds to the fluorophore with the highest estimated abundance, as indicated by the legend with AF representing Alexa
Fluor and RRX denoting Rhodamine Red-X.
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that incorporating more views led to more accurate unmix-
ing outcomes. The unmixed real biological spectral images
further underscored the efficacy of our proposed approach.
Note that the simulation utilized only 100 endmembers as an
example, and the approach can handle a variable number of
endmembers as required.
It is important to note that we opted for least squares un-
mixing methods Eq. (4) and Eq. (5) for their simplicity and
computational efficiency. However, other data fidelity terms
tailored to the specific dataset could be considered. Addition-
ally, the constraints in Eq. (3) on abundances may be applied
based on the particular requirements of the application. As a
first approach, our multi-view framework incorporates multi-
ple discrete wavelength excitations as different views of the
data, because it is well appreciated that organic fluorophores
have unique excitation and emission spectra. As a frame-
work the approach presented here could, in future, incorpo-
rate other types of data as different views of the endmembers
including fluorescence lifetime information and other charac-
teristics that are unique to each endmember used in any single
biological fluorescence imaging experiment.
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