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Abstract

We use simple models of the costs and benefits of microbial gene expression to show that changing a protein’s expression away from

its optimum by 2-fold should reduce fitness by at least 0:2 � P, where P is the fraction the cell’s protein that the gene accounts for. As

microbial genes areusually expressedat above5 partspermillion, and effective population sizesare likely to be above 106, this implies

that 2-fold changes to gene expression levels are under strong selection, as Ne � s� 1, where Ne is the effective population size and s

is the selection coefficient. Thus, most gene duplications should be selected against. On the other hand, we predict that for most

genes, small changes in the expression will be effectively neutral.
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Introduction

Every cell contains hundreds or thousands of different pro-

teins, and the abundance of these proteins varies by orders

of magnitude (Lu et al. 2007; Ingolia et al. 2009; Li et al.

2014). A recurring question is whether natural selection will

drive these abundances to their optimal levels. Because single-

nucleotide mutations in promoter regions can achieve a wide

range of changes to expression levels (Shultzaberger et al.

2010), optimal expression should evolve rapidly if the selection

of expression levels is strong.

For most genes, 2-fold changes in expression can be toler-

ated. In diploid organisms, loss-of-function mutations are

often recessive, which implies that the loss of one of two

copies of a gene has little consequence. In the budding

yeast Saccharomyces cerevisiae, diploid strains that have just

one functional copy of a gene are almost always viable in rich

or minimal media, and for just 3% of genes does this reduc-

tion in copy number lead to a measurable reduction in growth

rate (Deutschbauer et al. 2005). Testing a larger number of

conditions increases the proportion of haploinsufficient genes

to 20% (Delneri et al. 2007). In contrast, the complete loss of

almost any yeast gene causes a measurable reduction in

growth rate in some laboratory condition (Hillenmeyer et al.

2008).

These screens are only sensitive down to relative changes in

the growth rate of 1% or so, but natural selection will remove

a deleterious allele from a microbial population even if its se-

lective advantage is on the order of 10�6. Under the nearly

neutral theory of molecular evolution, the critical question is

whether Ne � jsj > 1, where Ne is the effective population size

and s is the difference in fitness or the relative change in the

growth rate. (The effective population size describes the im-

portance of genetic drift in an evolving population

(Charlesworth, 2009).) For both yeast and bacteria, we

expect that Ne is around 106 or 107 (Tsai et al. 2008; Price

and Arkin, 2015). Thus, laboratory measurements are not sen-

sitive enough to tell us if there is strong selection on protein

levels.

Another way to test whether a trait is under strong selec-

tion is to look at the variation of the trait within a population

or the divergence of the trait between closely-related species.

Recently, ribosomal profiling has been used to compare the

rates of translation and transcription in various yeasts of the

genus Saccharomyces. A comparison of related yeast species

found a surplus of opposing changes to transcript abundance

and to the efficiency of each transcript’s translation, such that

mRNA levels vary more than protein production does

(McManus et al. 2014). These results are consistent with sta-

bilizing selection on the expression of many proteins.

However, a similar study that compared two different strains

of S. cerevisiae did not find a surplus of opposing changes

(Albert et al. 2014).
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A related approach has been to study the fate of duplicated

genes. For example, in several organisms, the rate of gene

duplications in the laboratory is much higher than was ex-

pected from evolutionary studies, which suggests that most

duplicates are removed by natural selection (Katju and

Bergthorsson, 2013). As another example, a whole-genome

duplication creates two identical copies of all genes. The loss

of one of the paralogs would cut the gene expression in half,

and such a loss is less likely to occur in genes that are highly

expressed (Gout et al. 2010; Gout and Lynch, 2015). This

suggests that the selective disadvantage of a 2-fold change

in expression is stronger for more highly-expressed genes

(Gout et al. 2010). Furthermore, once the expression levels

of the paralogs have diverged, so that one is expressed

more highly than the other, a paralog is more likely to be

lost (Gout and Lynch, 2015). This suggests that smaller

changes in expression levels (due to loss of the more

weakly-expressed paralog) are under weaker selection.

Finally, various theoretical models have been used to pre-

dict the impact of changes to expression levels. First, the

growth rate of a microbial cell can be thought of as the flux

through a complex network of metabolic pathways. Naively,

one might expect a metabolic pathway to have a rate-limiting

step, such that changes in the expression of that enzyme

would have a large impact on the flux through the pathway.

However, metabolic pathways usually do not behave this way

– instead, control is distributed across all of the reactions

(Kacser and Burns, 1981; Fell and Cornish-Bowden, 1997).

Given a large number of reactions, this implies that changing

the expression of any one gene will have small effects (as seen

in studies of haploinsufficiency) – but how small?

Second, Wagner proposed that for most genes in S. cere-

visiae, a 1% increase in relative expression would be selected

against (Wagner, 2005, 2007). However, Wagner’s analysis

considered that an increase in expression would pose a cost,

but did not consider that a small increase in a protein’s ex-

pression would have some benefit (even if less than the cost),

due to the increased activity. So we suspect that selection on

small changes in expression are much weaker.

Third, Gout and colleagues proposed a cost-benefit model

of gene expression. To explain why selection on gene expres-

sion levels seems to be stronger for more highly-expressed

genes, they assumed that the benefit increases linearly with

expression level, while the cost increases more quickly than

linearly (Gout et al. 2010). Their model has free parameters, so

it does not constrain the absolute strength of selection on

gene expression levels. Also, we will show that the linear ben-

efit and the super-linear cost are not realistic for most proteins.

Our approach is to examine the impact of changes in gene

expression levels in simple models of metabolism or growth.

We identify a lower bound on the cost of changing a protein’s

expression away from its optimum. For 2-fold changes in ex-

pression, the reduction in fitness is at least 0:2 � P, where P is

the fraction of all protein that the gene accounts for. Although

this effect is small, it is likely to be significant for evolution. On

the other hand, our models suggest that small changes in

expression, such as the 1% relative change that was proposed

to be significant in yeast (Wagner, 2005), may be effectively

neutral for most genes.

Results

We will study the cost of changing a protein’s expression away

from its optimum in several different models. We will start

with the simplest possible model – a linear metabolic pathway

without enzyme saturation, so that growth is equivalent to the

flux through the pathway. We will show that this model is

approximately equivalent to a simple cost-benefit form

(Cherry, 2010), and we will focus our discussion on this

cost-benefit form. Of course, the actual growth of a cell is

far more complicated than this linear pathway, and involves

saturating enzymes, protein synthesis, multiple-input and mul-

tiple-output reactions, metabolic cycles, and metabolic regu-

lation such as end-product inhibition. We will study models

that include saturating enzymes or the assembly of amino

acids into proteins. Finally, we will use metabolic control anal-

ysis (Kacser and Burns, 1981) to show that other complica-

tions in metabolism are not likely to affect our conclusions.

The Cost-Benefit Form

Consider a linear pathway with reversible enzymes and no

enzyme saturation. In the Models section, we show that

given such a pathway, the dependence of the steady-state

flux on a focal protein’s expression level can be decomposed

into the benefit minus the cost. Specifically, assume that the

total protein concentration is held fixed and let P be the frac-

tion of all protein that is the focal protein. If P changes, then

we assume that the expression of the other proteins is multi-

plied by 1� P to compensate. (For a theoretical argument for

why the total concentration of macromolecules within a cell is

kept constant, see Dill et al. (2011).) For example, if the ex-

pression of the focal protein increases from 1% to 2%, then

expression of all other proteins would change by a factor of

0:98=0:99 or roughly a 1% reduction. Then the dependence

of the flux F on P is given by

F!
P

K þ P
1�P

&
P

K þ P
� P

where K is the investment required to obtain the half-maxi-

mum benefit, and the approximation is accurate if P � 1, as is

true for all natural proteins. This equation shows the benefit

minus the cost. Also, since the flux is maximized when

P&
ffiffiffiffi
K
p

, and P � 1, we can assume that the saturation con-

stant K � 1. Then, at optimal P, benefit - cost &1. If we

consider the relative flux as equivalent to fitness, then the

change to benefit - cost is proportionate to and roughly

equal to the selection coefficient.
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To account for nonessential proteins, we scale the benefit

by a new parameter (f) which represents the maximum pos-

sible benefit (fig. 1A). To see why the saturating benefit is

plausible for a nonessential protein, consider a protein that

repairs a rare form of DNA damage that would prevent DNA

replication. A low level of expression of the enzyme will allow

the cell to continue growing and will be highly beneficial

when the damage occurs. Increasing levels of enzyme will

give small decreases in the time that the cell waits for the

damage to be repaired until it can start growing again – still

beneficial, but far less so. The cost-benefit form has been used

to explain why the evolutionary rate of a protein sequence

depends on the protein expression level (P) rather than its

importance for fitness (f) (Cherry, 2010).

The Cost of Microbial Gene Expression

The cost-benefit form implies that the cost (the reduction in

fitness) of expressing a useless protein is roughly the same as

the protein level (as a fraction of all protein). (Note that both

terms are dimensionless.) Similarly, in models of microbial

growth that includes protein synthesis as well as metabolism,

the cost of useless protein is equal to its proportion (Weiße

et al. 2015) or to a small multiple (Scott et al. 2010).

Furthermore, empirical studies are consistent with the simple

theory that the cost of useless protein is roughly the protein

level. In studies of fast-growing cells that overexpress proteins

that do not benefit the organism, the reduction in relative

growth rate is roughly 1-2 times the fraction of all protein

that the useless protein accounts for (Shachrai et al. 2010;

Scott et al. 2010; Tomala and Korona, 2013; Kafri et al. 2016).

In contrast, Gout and colleagues (Gout et al. 2010) as-

sumed a super-linear cost of expressing additional protein.

Metabolic models do imply a super-linear cost for highly-

expressed proteins, but this effect is tiny unless P � 0:1,

where P is the fraction of all protein in the cell that this

gene accounts for (see Models). Such high expression occurs

in few if any genes. For instance, in rich media, essential pro-

teins in the model bacterium Escherichia coli are expressed at

P ¼ 6 � 10�6 to 0.03 (combining Li et al. (2014); Kato and

Hashimoto (2007)). Similarly, essential proteins in S. cerevisiae

are expressed at P ¼ 7 � 10�7 to 0.02 (combining

Deutschbauer et al. (2005); Ingolia et al. (2009)). So we

doubt that the super-linear cost is significant in practice.

The Benefit of Microbial Gene
Expression

The shape of the benefit, as a function of the expression level,

has been studied by using synonymous mutations to alter the

expression level of the lactose-degrading enzyme LacZ in E.

coli and by using a nonmetabolizable inducer to prevent the

metabolism from influencing expression (Eames and

Kortemme, 2012). (To control for the cost of expression,

these experiments compared growth in the presence of lac-

tose to growth in the absence of lactose.) These experiments

show a saturating (Michaelis-Menten like) benefit, which is

consistent with the cost-benefit form.

The maximum benefit (f) might range from f ¼ 10�5, for a

protein with very subtle benefits that could still be selected for,

to f = 1, for essential proteins. To see why very low benefits are

possible, consider that a benefit of 10�5 with a low cost and

Ne&106 would imply s&10 � Ne. If mutation rates are equal

in both directions then s > Ne is sufficient to maintain the

preferred allele in the population with high probability. But a

gene is much more likely to be inactivated by mutation than to

revert. Because that the typical protein-coding gene has on

the order of 1,000 coding nucleotides, we expect that the
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FIG. 1.—The cost-benefit form. (A) The net benefit as a function of the protein’s expression level. In this example, the maximum benefit is f =0.2 and the

cost at half-max expression is K ¼ 5 � 10�4. (B) The optimum expression level as a function of f and K. Points are only shown if the optimal expression level is

between 5 � 10�6 and 0.03. Note log axes.
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ratio of the two mutation rates is around 1,000 fold. Then the

selection coefficient necessary to maintain the allele is in-

creased by logð1000Þ&7 fold (Bulmer, 1991), i.e., around

10�5 not 10�6. Also, in very large populations, the frequency

of deleterious alleles would be roughly m=s, where � is the

mutation rate, or about 10�7 for loss of a gene. This again

implies that most members of the population could retain a

gene with a net benefit of around 10�5. Although such subtle

benefits are theoretically possible, in both yeast and bacteria,

most genes have phenotypes in the laboratory (Hillenmeyer

et al. 2008; Deutschbauer et al. 2014), which implies that

most proteins have f> 0.01 at least in some conditions.

The expression level required for half-max benefit (K) must

be at least 1 copy per cell, which is around 2 � 10�7 for E. coli

(Li et al. 2014), so we use this as a lower bound. But it is

possible that proteins in larger microorganisms such as yeast

could have lower costs if they are specific to a small

compartment.

The protein can benefit the cell if f>K, and given this

constraint, a wide range of values of f and K are consistent

with optimal expression levels of 5 � 10�6 < P < 0:01

(fig. 1B). We consider this as the realistic range of expression

levels because it accounts for over 95% of proteins that are

essential or important for fitness in either S. cerevisiae

(Deutschbauer et al. 2005; Ingolia et al. 2009) or E. coli

(Baba et al. 2006; Li et al. 2014; Price et al. 2016). Except

when f and K are of about the same order of magnitude,

the net benefit of the protein is close to the maximum benefit

f. Thus, most parameters show strong selection for the pro-

tein, with s > 10�4 (fig. 2A), which seems realistic.

The Disadvantage of Changing a
Protein’s Expression from Its Optimum

Suppose that a protein is expressed at optimal levels, and then

a mutation alters its expression by a small fraction. In the cost-

benefit form, the selective disadvantage is roughly proportion-

ate to the square of the fraction times the protein’s level Popt

(see Models). For example, a 2-fold reduction in expression

would reduce fitness by roughly 0:5 � Popt , as would a 2-fold

increase in expression. A 1% decrease or a 1% increase would

reduce fitness by roughly 0:0001 � Popt . These approximations

are accurate to within 2-fold as long as the protein’s maxi-

mum benefit is an order of magnitude higher than the cost at

half-max benefit (f > 10 � K). Although proteins with high

relative costs are theoretically possible, most proteins have

modest expression, or P< 0.001 (Ingolia et al. 2009; Li et al.

2014), and have significant effects on fitness in laboratory

conditions (Hillenmeyer et al. 2008; Deutschbauer et al.

2014), which implies that benefit - cost>0.01. These obser-

vations are not compatible with high relative costs. In any

case, exact results for the selective impact of reducing a pro-

tein’s expression by 2-fold or by 1% are shown in figure 2b

and c. Also, as proposed by Gout et al. (2010), the selective

disadvantage of a change in expression does not depend pri-

marily on the importance of the gene for fitness. For example,

the selection against a 2-fold reduction in expression is much

more strongly correlated with the optimal expression level

(r = 0.98) than with the benefit minus the cost (r = 0.48).

Although this model suggests that a 1% change in expres-

sion would reduce fitness by just 0:0001 � Popt , this should be

A. Disadvantage of no expression

Maximum Benefit (f)

C
os

t a
t h

al
f−

m
ax

 b
en

ef
it 

(K
)

10−5 10−4 10−3 10−2 0.01 1

10
−6

10
−5

10
−4

10
−3

10
−2

s < 10−7

s < 10−6

s < 10−5

s < 10−4

s > 10−4

B. Disadvantage of 2x decrease

Maximum Benefit (f)

C
os

t a
t h

al
f−

m
ax

 b
en

ef
it 

(K
)

10−5 10−4 10−3 10−2 0.01 1

10
−6

10
−5

10
−4

10
−3

10
−2

s < 10−7

s < 10−6

s < 10−5

s < 10−4

s > 10−4

C. Disadvantage of 1% decrease

Maximum Benefit (f)

C
os

t a
t h

al
f−

m
ax

 b
en

ef
it 

(K
)

10−5 10−4 10−3 10−2 0.01 1

10
−6

10
−5

10
−4

10
−3

10
−2

s < 10−7

s < 10−6

s < 10−5

s < 10−4

s > 10−4

FIG. 2.—Selection against changes in expression. Using the cost-benefit form, we estimated the selection against a reduction in the protein’s expression

from the optimum level to (A) zero expression, (B) half of optimal expression, or (C) 99% of optimal expression. Only parameter settings where the optimum

protein expression is between 5 � 10�6 and 0.03 are shown.
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viewed as a lower bound. The benefit term in the cost-benefit

form saturates very slowly, which is unrealistically slow for

most genes. To see this, consider the optimal expression of

an essential protein in the model bacterium E. coli. Given our

cost-benefit form, the protein’s optimal expression level is ap-

proximated by Popt&
ffiffiffiffiffiffiffiffiffi
K � f
p

. Given K > 2 � 10�7 and f = 1,

then the optimal expression level would be at least

4:5 � 10�4. But the majority of essential proteins in E. coli

are expressed well below this prediction, with a median ex-

pression of 1:6 � 10�4 (Kato and Hashimoto, 2007; Li et al.

2014). Below, we show that in a growth model, optimal ex-

pression levels are much lower, yet the selection on small

changes in expression remains weak.

Selection on the Expression Levels of
Heteromeric Complexes

A major limitation of our models is that they implicitly assume

that each enzyme is monomeric or homomeric. Our proposed

lower bound will not apply proteins that form stable hetero-

meric complexes. For example, if the two subunits of a hetero-

dimeric enzyme are expressed at optimal and equal levels and

then the expression of one subunit increases, then the con-

centration of active enzyme might not increase at all. (This is

true as long as the two subunits bind each other tightly.) Since

there is no incremental benefit to the increased expression,

the reduction in fitness is the same as the increase in the cost

term, or jsj&j�Pj. This implies that even small increases in

expression might be strongly selected against, as proposed by

Wagner for all proteins in yeast (Wagner, 2005, 2007).

Conversely, if the expression of one subunit drops, then

some of the other subunits will be useless, so again selection

on changes to expression will be stronger. Indeed, in S. cere-

visiae, genes with detectable haploinsufficiency are often

found in heteromeric complexes (Papp et al. 2003;

Deutschbauer et al. 2005), and over half of the ribosomal

proteins are haploinsufficient in rich media (Deutschbauer

et al. 2005).

Although heteromeric complexes are a major exception for

our models, they account for a small fraction of proteins. In a

metabolic model of S. cerevisiae, 12% of the enzymatic reac-

tions or transport reactions that are linked to a gene are as-

sociated with heteromers (Heavner et al. 2013).

In bacteria and archaea, proteins that physically interact are

often found in operons (Dandekar et al. 1998). If the entire

complex is encoded by one operon, then many mutations will

alter the expression of all the components of the complex in

unison (i.e., a mutation to the operon’s promoter, or the du-

plication of the entire operon). In these cases, there is an in-

cremental benefit to the excess expression, our models apply,

and we predict that selection would be relatively weak. In

contrast, mutations to a ribosome binding site for one of

the genes would affect the expression of just one component

and would be under strong selection as envisioned by

Wagner.

We also speculate that the expression levels of heteromeric

complexes might not evolve to their optima if multiple muta-

tions in different promoters are required to see a benefit. In

bacteria and archaea, this could be another reason why op-

erons that are conserved over long spans of evolutionary time

tend to encode proteins that physically interact (Dandekar

et al. 1998).

Disadvantage of Nonoptimal
Expression in Other Metabolic Models

We considered several refinements to our model to make it

more realistic and to see if the effect of small changes in ex-

pression was increased. First, the saturating term in the cost-

benefit form was derived by assuming that the enzymes are

not saturated by their substrates, which is not realistic. So we

considered a simple two-step pathway with reversible

Michaelis-Menten kinetics, of the form S  ! I  ! E,

where S is the substrate, I is an intermediate, and E is the

end product. We assumed that the substrate concentration

is 2 mM, the end product is 1 mM, and that both reactions are

mildly favorable with equilibrium constants of 10. We focused

on the expression of the first protein in the pathway, and so

that its expression is reasonably moderate, we assumed that

the first enzyme is 100 times more active (per unit mass) than

the second enzyme. We set all of the enzyme’s Michaelis con-

stants to be the same (Km), and we varied Km from 0.01 to

100 mM. We found that the cost of a 2-fold change in ex-

pression was roughly 0:5 � P regardless of the choice of Km

(fig. 3a). We found similar results if we focused on the second

step of the pathway instead (not shown).

A second omission in our model is the cost of high concen-

trations of intermediates. Once the benefit term is nearly sat-

urated, increases in enzyme levels still yield increasing benefits

because the build-up of intermediates increases flux through

downstream reactions. (The increased level of enzyme may

also lead to a lower concentration of its substrate and hence

an increase in the net flux of upstream enzymes.) However,

high concentrations of intermediates might be costly because

of dilution, because of the cost of producing this additional

biomass, or because they are toxic. Even if they are not toxic,

we expect that intermediates dilute out other components

because otherwise the concentration of water would drop,

which might cause enzymes to misfold or might reduce dif-

fusion rates (this is similar to the argument of (Dill et al. 2011)).

In the above simulations with Km = 1, the optimal expression

level of the first enzyme is 9.4%, and the concentration of

intermediates is 9.8 mM. Let us suppose that these interme-

diates dilute the enzymes, with the molecular weight of the

intermediate being 100 times less than that of an enzyme. We

also assume that the total concentration of protein monomers

is 4 mM (BioNumbers 104726, Bremer and Dennis (1996);
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Milo et al. (2010)). Then the optimal expression is reduced to

8.8%; the optimal concentration of the intermediate drops to

9.5 mM; and the relative impact of a 2-fold increase (or de-

crease) in expression away from the optimum increases

slightly, from s=Popt ¼ 0:59 (or 0.53) to s=Popt ¼ 0:61 (or

0.57). Even a dramatic increase in cost, corresponding to an

intermediate that weighs 1/10th as much as the enzymes,

only increases the selective disadvantage of a 2-fold change

by about two fold (fig. 3b). Similarly, with the high cost, the

impact on the fitness of a 1% change in expression is about 2-

fold higher than in a model with no cost of intermediates

(roughly 0:0002 � P instead of 0:0001 � P). Varying Km from

0.001 to 10 made little difference to this result

(s=P ¼ 0:00014 to 0.00027).

Our interpretation is that the cost of intermediates can

strengthen the selection on small changes in protein levels,

but only if the intermediates are extremely expensive. Such a

high cost for metabolic intermediates is not realistic given the

cost of biomass or dilution, because metabolites weigh too

little relative to enzymes. But if the intermediate inhibits other

enzymes or are otherwise toxic, then more stringent selection

of protein levels may occur.

Finally, consider the possibility of redundant enzymes. For

example, suppose that after a gene duplication, the two para-

logs have similar expression levels and identical molecular

functions. In this case, altering the expression of one paralog

by 2-fold will alter the total enzyme concentration by 25%,

and will affect the growth rate by roughly

0:252
� Ptot ¼ 0:05 � Ptot ¼ 0:1 � P. A similar argument

shows that selection on the expression of parallel pathways

could be relaxed. Although this is an exception to our pro-

posed lower bound, we expect that most putatively redun-

dant genes are not maintained unless the individual genes

have significant advantages under some conditions.

Disadvantage of Nonoptimal
Expression in a Growth Model

So far we have discussed linear metabolic pathways and the

cost-benefit form that was derived by considering a linear

pathway. We next considered a simple model of the assembly

of amino acids into proteins. This model captures two key

aspects of cells that are missing from a linear metabolic path-

way: proteins that make more proteins, and branches in me-

tabolism. In this model, there are 20 amino acids, each with a

reversible enzyme that synthesizes (or imports) it, and a “ribo-

some” that synthesizes new proteins. This model does not

include RNAs, so this ribosome does not need a template.

The ribosome synthesizes new proteins in the desired propor-

tions and with unequal proportions of the amino acids. We

assume that the incorporation of each amino acid is a first-

order kinetic process, so that the time is inversely proportion-

ate to the concentration of the amino acid. The total time for a

ribosome to translate a protein is then a weighted sum of the

inverse concentrations, and so the rate of protein synthesis is

proportionate to the concentration of ribosomes times the

weighted harmonic mean of the amino acid concentrations.

The rate of protein synthesis is equal to the growth rate.

We studied this model numerically, with a randomly se-

lected range of parameters (see Models). We chose the
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FIG. 3.—The impact of changes in expression levels when enzymes saturate or metabolic intermediates are expensive. For a two-step enzymatic pathway

S$ I$ E, we show how the flux varies with the fraction of protein that is allocated to the first step. The x axis shows the first protein’s level relative to the

optimum level for that protein (x ¼ P=Popt ). The y axis shows the relative reduction in flux divided by the optimum protein fraction (y ¼ s=Popt ). In (A) we

consider a range of values for the enzyme’s Michaelis constant (Km). In (B), we consider the cost of intermediates, with Km = 1 mM. The intermediates reduce

flux by diluting out both enzymes, or in other words the flux is divided by 1þ I � cost.
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parameters so that ribosomes had on average a 5-fold higher

weight per unit activity than the enzymes. For each of 100

parameter settings, we identified the expression levels that

maximized the growth rate. We will focus on the conse-

quences of changing the expression of one of the enzymes

away from this optimum, and we will assume that this enzyme

is homomeric. (It does not matter whether the “ribosome” is

comprised of a single protein or not, see Models.) As shown in

figure 4a, in the growth model, doubling the enzyme’s ex-

pression reduced fitness by between Popt=2 and Popt, which is

similar to the cost-benefit model. In contrast, halving the

enzyme’s expression had a strong effect on fitness (s = -0.02

to -0.32), which is far higher than in the cost-benefit model,

and is closer to the rate-limiting step concept (which implies

s ¼ �0:5). Nevertheless, as shown in figure 4b, the fitness

cost of small changes in relative expression, in either direction,

was roughly quadratic in the fractional change. This quadratic

was roughly three-fold higher than the lower bound that we

obtained from metabolic models. But it was still far less than

the linear relationship, jsj&j�Pj, which was proposed by

Wagner (2005, 2007) as the reduction in fitness due to ex-

pression of excess protein. The fitness disadvantage of a small

decrease in expression was also far less than implied by a rate-

limiting step, which would give an even higher cost than the

linear relationship (i.e., jsj&j�Pj=P).

As we mentioned previously, for linear pathways, the op-

timal expression level seems unrealistically high: Popt&
ffiffiffiffi
K
p

,

where K is the expression level that gives the half-max benefit.

The optimal protein expression was only moderately reduced

in metabolic models with saturated enzymes or expensive in-

termediates (data not shown). In the growth model, we can

define K in an analogous way to be the expression level that is

below Popt and gives the half-max growth rate. We found that

in the growth model, Popt is roughly 3 � K (Supplementary fig.

S1, Supplementary Material online). This is unrealistically low,

as it implies that cutting P in half might have a strong impact

on fitness. Indeed, in the growth model, the median reduction

in fitness for cutting the enzyme level in half was 21%, which

is far too high for most genes (Deutschbauer et al. 2005). A

more realistic model that involved the assembly of multiple

components and multi-step pathways for each component

might yield an intermediate (and plausible) optimal level of

expression.

Disadvantage of Nonoptimal
Expression in Metabolic Control
Analysis

We then considered how to estimate the minimum cost of a

change of expression for metabolic models more broadly. We

used metabolic control analysis, which is based on a local

linear approximation of the log flux or the log growth rate

as a function of the log enzyme levels. This approximation has

been used for a wide range of pathways including pathways

with branches and cycles (Fell and Cornish-Bowden, 1997).

The log-linear approximation might not be accurate, but
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FIG. 4.—— The impact of changes in expression levels in a simple growth model. In (A), we show the impact on fitness of changing a protein’s level by 2-

fold away from its optimum (Popt) for each of 100 parameter settings. The impact on fitness is shown relative to Popt. Note log x and y axes. The two dashed

lines shows our theoretical lower bound and the effect of a 2-fold reduction in the expression of a rate-limiting enzyme (jsj ¼ 0:5). In (B), we show the

impact on fitness (y axis) of small relative changes in protein level (x axis). Again, the impact on fitness is relative to Popt, but the y axis is linear. We also show

our theoretical lower bound (s=Popt ¼ �
2, where � is the relative change in protein levels), 3 times that lower bound, and the linear relationship

(jsj=Popt ¼ j�j).
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intuitively it is hard to see why it would overstate the impact

on fitness. Since we are interested finding a lower bound for

the cost of changes to the expression, the log-linear approx-

imation should be adequate.

We assume that the enzyme levels have evolved to maxi-

mize the flux, relative to a constraint on their total mass.

Under the log-linear approximation, the flux is given by

F!�
i

PCi

i

where F is the flux, Pi is the level of expression of protein i, and

the parameter Ci is referred to as the control coefficient. (The

control coefficient is only approximately constant, and de-

pends on the levels of metabolites and of other enzymes.)

To maximize the flux, given a constrained total level of protein

(
P

Pi ¼ 1), requires that Pi!Ci (Brown, 1991).

For a purely metabolic system in which proteins act on

metabolites but not on each other, and protein synthesis is

ignored, the summation theorem (Kacser and Burns, 1981)

states that
X

i

Ci ¼ 1

To see why, consider that at steady state, you could double

the level of every enzyme and keep the levels of all the me-

tabolites the same. Since the net flux of a reaction is given by

the enzyme concentration times a function of the metabolite

concentrations, this will double all of the fluxes, but the

system will still be at steady state and none of the metabolite

concentrations will change. According to the formula, if every

enzyme level doubles, F will increase by 2ð
P

i Ci Þ. So, this

implies that the sum of the control coefficients Ctot is 1.

Under these assumptions, the selective disadvantage of

doubling a protein’s expression is roughly 0:31 � Popt , the se-

lective disadvantage of halving expression is roughly

0:19 � Popt , and the selective disadvantage of a 1% change

in expression is roughly 0:00005 � P (see Models). These num-

bers are roughly 2-fold lower than in the cost-benefit form,

which gave factors of 0.5, 0.5, and 0.0001, respectively. If the

sum of the control coefficients is a bit higher than one, as

might occur if proteins act on other proteins, then the selective

effects increase proportionately. Overall, the log-linear ap-

proximation suggests that a wide range of metabolic

models are consistent with disadvantages of around 0:2 � P

for 2-fold changes in expression and with tiny disadvantages

for small changes in expression.

Discussion

Selection against Gene Duplications

The fitness disadvantage of changing a protein’s expression by

2-fold, or 0:5 � P, may seem subtle, but this effect is likely to be

significant. In both E. coli and S. cerevisiae, over 95% of

proteins that have a measurable impact on fitness in a specific

condition have P > 5 � 10�6 (Price et al. 2016; Deutschbauer

et al. 2005; Ingolia et al. 2009). Thus, we have

s > 0:5 � 5 � P ¼ 2:5 � 10�6, and if the effective population

size is above 106, then Ne � s > 2.

This also implies that many gene duplications will be se-

lected against, as they will increase the total expression by 2-

fold. One might imagine that gene regulation would adap-

tively correct the expression level of the gene, and reduce the

impact of these changes on fitness. However, in S. cerevisiae,

the expression level of most genes seems to respond directly

to copy number, without any adaptive control (Springer et al.

2010). Because the majority of bacterial genes are not under

direct adaptive control (Price et al. 2013), we expect this to be

true in bacteria as well. For the genes that lack strong adaptive

control, if the gene’s promoter region is duplicated along with

the coding region, we expect that the duplication will usually

be selected against.

Gene duplications are sometimes discussed as being ben-

eficial because they improve tolerance to mutations, but the

benefit is small, perhaps equal to the mutation rate (Walsh,

2003). For example, for a typical gene in E. coli of 1 kilobase,

the total rate of mutations would be about 1,000 times the

per-nucleotide mutation rate or 2 � 10�7 (Lee et al. 2012),

which is much less than the disadvantage of 2 � 10�6 that

we predict for duplicating a gene.

If selection on gene dosage is widespread, this will con-

strain the evolution of new gene functions. Genes’ functions

often diverge after gene duplication, as one of the paralogs

develops a new function or a new expression pattern, or the

original function is subdivided between the two paralogs.

Although the initial stage of this process is often described

as being neutral, paralogs do not seem to evolve neutrally

(Kondrashov et al. 2002). We propose that in microorganisms,

gene duplications will only persist over evolutionary time if

they support adaptation to a new environment

(Kondrashov, 2012), for example by allowing the gene to be

expressed in a new subset of conditions. This constraint could

be part of why in bacteria, new protein functions usually

evolve by horizontal gene transfer rather than by gene dupli-

cation within a lineage (Treangen and Rocha, 2011).

Our argument that gene duplications are selected against

might seem paradoxical given that paralogs are widespread in

microbial eukaryotes. However, in yeast, the rate of gene du-

plications is over 100-fold higher than had been estimated

from evolutionary studies of retained paralogs (Lynch et al.

2008). This is consistent with the view that most duplications

are selected against (Katju and Bergthorsson, 2013). We also

note that, unlike prokaryotes, eukaryotes can undergo whole-

genome duplication (WGD), as has occurred in

Saccharomyces and in Paramecium. Because WGD does not

alter the relative dosage of any gene, these duplications are

neutral under our models. A final reason why paralogs might

be more widespread in microbial eukaryotes than in bacteria,
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despite the selection against duplicated genes in both types of

organisms, might relate to the cost of excess DNA. The reduc-

tion in fitness due to excess DNA is much smaller for larger

cells (Lynch and Marinov, 2015), so that gene duplicates that

are not expressed may persist in eukaryotes. In contrast, in

bacteria, pseudogenes are removed by natural selection

(Kuo and Ochman, 2010). If weakly-expressed paralogs are

not selected against in eukaryotes, they would be more likely

evolve a new and an adaptive expression pattern before they

are lost by neutral decay.

Selection on Small Changes to Expression

Our models suggest that, except for proteins in a tightly-

bound heteromeric complexes, small changes in expression

may not be under selection. Our metabolic models gave a

lower bound of jsj&�2 � P, where � is the fractional change

in the protein expression. In contrast, Wagner (2005, 2007)

proposed that for an unnecessary increase in expression,

jsj&� � P, which is dramatically higher. This high cost was

derived by ignoring the incremental benefit of extra protein,

and we propose that it is not appropriate for most genes. In

our growth model, the fitness cost of a small change in ex-

pression was several times higher than in our metabolic

models, but this is still far less than the high cost. For example,

our models suggest that a small change in expression of 1%

would have a selective disadvantage of between 0:0001 � P

and 0:0003 � P. For a moderately expressed protein with

P ¼ 10�4, we estimate s ¼ 10�8 to 3 � 10�8, which would

be effectively neutral if Ne < 107. However, the linear cost

may be more appropriate for proteins that form stable hetero-

meric complexes. Also, it is easy to imagine that for regulatory

proteins or signalling proteins, small changes in the expression

could have larger effects than in our metabolic models. To

better predict how sensitively fitness depends on expression

levels, it would be interesting to build a kinetic model of a cell

that included a realistic model of metabolism (Khodayari et al.

2014) as well as protein synthesis.

Possible Relevance to Multi-Cellular Organisms

Although our models were developed with microorganisms in

mind, our results may apply to some multi-cellular organisms.

In larger organisms, selection can occur on fluxes such as the

rate of carbon fixation (in plants) or the rate of energy pro-

duction for movement (in animals), and the efficiency of these

processes is analogous to our simple metabolic models. On

the other hand, for many pathways, fitness might depend

more on the efficiency of converting substrates into biomass,

rather than the exact rate. It is not clear how perturbing

enzyme levels would affect this sort of efficiency or whether

the cost-benefit model would apply. However, the cost of a

protein should be at least P if efficient production of useful

biomass remains important. Given the metabolic control

theory approach, this implies that a 2-fold change in expres-

sion will still have a fitness cost of at least 0:2 � P.

If this is the case, then our models may explain why dupli-

cations of moderately-expressed genes are selected against in

multi-cellular organisms that have relatively high effective pop-

ulation sizes. For example, the effective population size of

Drosophila melanogaster is estimated to be around 106

(Charlesworth, 2009), so the duplication of a gene that ac-

counts for just 10�5 of the organism’s dry mass would be

selected against (Ne � jsj > 2). Indeed, in D. melanogaster,

gene duplications occur in the laboratory over 100 times

faster than was expected from evolutionary comparisons

(Katju and Bergthorsson, 2013).

Conclusions

We predict that the selective disadvantage of changing a pro-

tein expression level by 2-fold should be at least 0:2 � P, where

P is that protein fraction of protein mass. This implies strong

selection against the duplication of most microbial genes.

Conversely, for most proteins, our models suggest that a

small change in expression may be effectively neutral.

Although the models of growth or metabolism that we con-

sidered are very simple, our prediction should be robust to

complications such as saturating enzymes, branching path-

ways, multi-product reactions, or metabolic cycles. We did

identify some exceptions. First, if the proteins are redundant,

then selection on each individual protein expression will be

weaker. Second, small changes in gene expression might

not be neutral for proteins that form stable heteromeric com-

plexes, or that produce or consume toxic metabolites, or for

regulatory proteins.

Models

Derivation of the Cost-Benefit Form from a Linear
Metabolic Pathway

The cost-benefit form can be justified by considering the op-

timization of a linear metabolic pathway that converts a sub-

strate to a product (Waley, 1964; Heinrich and Schuster,

1998). Given parameters that describe the activities of the

enzymes, and assuming that enzymes are not saturated by

their substrates, the steady-state flux F can be written as

F!
1X

i

Ci=Pi

where Pi is the concentration of each enzyme and Ci is related

to the mass, per unit of activity, of each enzyme, or how costly

that enzyme is (see equation 8 of (Heinrich and Schuster,

1998)).

We focus on the expression of one enzyme at level P and

assume that the expression of all the other enzymes varies in

proportion to 1� P. If we choose appropriate parameters,
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then we obtain a steady-state growth rate of

F!
1

C1=P þ C2=ð1� PÞ
!

P

K þ P=ð1� PÞ

where K ¼ C1=C2. (For simplicity, we show the derivation for

a 2-step pathway, but it holds for longer linear pathways as

well.) This “metabolic” form is approximately the same as the

cost-benefit form with f = 1 when K � 1, as is the case for

virtually all genes. (At the optimal expression, an essential

gene with K = 0.01 would be 9% of cellular protein.)

The optimal values under this “metabolic” form are

Popt ¼

ffiffiffiffi
K
p

1þ
ffiffiffiffi
K
p

sopt ¼
1

ð1þ
ffiffiffiffi
K
p
Þ
2

while the cost-benefit form gives

Popt ¼
ffiffiffiffiffiffiffiffiffi
K � f
p

� K

sopt ¼ ð
ffiffiffi
f
p
�

ffiffiffiffi
K
p
Þ
2

Setting f = 1 and using a Taylor expansion in terms of
ffiffiffiffi
K
p

around zero shows that the two forms give very similar results.

At P&0:1 and K = 0.01, sopt and Popt have fractional differ-

ences of just 1-2%. We also verified that the impact of chang-

ing a protein’s expression away from the optimum is similar to

the metabolic form as for the cost-benefit form with f = 1.

In the cost-benefit form, if the expression level changes

away from its optimum by a small fraction �, so that

P ¼ Popt � ð1þ �Þ, then the change in fitness is roughly

s�&� �2 � Popt=ð1þ �Þ

Simulations of Reversible Michaelis-Menten Kinetics

For each parameter setting in figure 3, we considered P ¼

5 � 10�4 to 0.5, stepping by 5 � 10�4. For each value of P,

we solved numerically for the steady state concentration of

the intermediate I (so that the flux from S to I equals the flux

from I to E). We used reversible Michaelis-Menten kinetics, in

which the flux from S to I is

ðS � I=Keq1Þ � ðV1=K1f Þ

ð1þ S=K1f þ I=K1rÞ

where Keq1 is the equilibrium constant for S !I, K1f and K1r

are saturation constants, and V1 is the enzyme activity. We

used V1 ¼ 100 � P and, for the second step, V2 ¼ 1� P.

Simulations of a Growth Model

For simulations with 20 amino acids being assembled into

proteins by a “ribosome”, we assumed that the growth rate

is the same as the rate at which the ribosome makes new

proteins:

g ¼
RX

i

fi=Ai

where R is the concentration of ribosomes, fi is the fraction of

amino acid i in proteins, and Ai is the concentration of amino

acid i. Notice that the rate of the ribosome is implicitly set to 1

and that each amino acid is incorporated at the same rate

relative to its concentration. The rates for the other enzymes

are assumed to be scaled relative to the rate of the ribosome.

We assumed unsaturated reversible kinetics of the enzymes

for synthesizing amino acids, with a substrate concentration of

1, an equilibrium constant of 10, a rate constant ri, and a

concentration Ei.

To simplify the fitting of this model, we focused on the

enzyme for making one amino acid, and we gave the other

19 amino acids equal values for the parameters fi and ri. We

considered 100 random settings of the parameters fi and ii.

The amino acid usage of the focal amino acid (f1) was distrib-

uted as 2N1=
P

2Ni , where Ni are 20 standard normal vari-

ables. f1 ranged from 0.011 to 0.407 (median 0.043). For

i > 1; fi ¼ ð1� f1Þ=19. The enzyme rates followed the

same distribution, but were scaled so that the average value

was 5, so that the enzymes were typically faster (or lighter)

than the ribosome.

At steady-state, the production and consumption of each

amino acid is constant, so g � fi ¼ Ei � ri � ð1� Ai=10Þ. Given

the protein concentrations, we solved numerically for the

steady-state amino acid concentrations and hence the

growth rate. Specifically, we used the nlm function in R to

minimize the square root of the total squared deviation from

equal consumption and production. We used multiple starting

points to ensure convergence to very low deviation. We used

a higher-level numerical optimization (again with nlm) to max-

imize the growth rate, subject to the constraint that the total

protein concentration Rþ
P

i Ei ¼ 1. Because of the symme-

try in the parameters for amino acids 2 through 20, we as-

sumed that E2 ¼ E3 ¼ . . . ¼ E20. The optimal expression level

of the focal enzyme ranged from 0.002 to 0.197 (median

0.026). Given the optimal protein levels, we then calculated

the selective disadvantage (the reduction in the relative

growth rate) of changes in protein levels.

Given that we focused on deviations in the expression of

one (homomeric) enzyme, it makes no difference if the other

enzymes or the ribosome have multiple subunits. This is be-

cause the expression of all other proteins is assumed to

change proportionately as the focal enzyme’s expression

changes. Because all subunits’ expression would change in

unison, the concentration of active enzyme or ribosome

would change in the expected way. Although this assumption

is plausible, it might not be accurate if some subunits’
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transcripts have a stronger affinity for the ribosome than do

other transcripts.

The Disadvantage of Nonoptimal Expression in a
Metabolic Control Analysis Model

Given the log-linear approximation, the flux F is given by

F!�
i

PCi

i

where Pi is the concentration of each protein and Ci are the

control coefficients. We also assume the summation theorem:
X

i

Ci ¼ 1

If some of the proteins are replaced by useless proteins, so that

every protein is reduced in concentration by a small fraction fU,

then the new growth rate is given by

gðfUÞ ¼ gðfU ¼ 0Þ � ð1� fUÞ
Ctot ¼ gðfU ¼ 0Þ � ð1� fUÞ

so that the cost of expressing a useless protein equals the

fraction of protein that it accounts for. If the total control

coefficient is greater than one, as might occur if proteins act

on other proteins, the cost will be a power of 1� fU but the

trend will be similar. Also note that if the cost of useless pro-

tein is at least equal to its expression level, then the total

control coefficient must be at least one.

Now, let us vary the expression of one protein, and assume

that the expression of the other proteins varies proportionately

to keep the total level of protein constant. In that case, the

above formulation of the growth rate simplifies to

F!PC � ð1� PÞCtot�C . If the total control coefficient is 1,

then the optimal expression level is P = C. For P � 1, the

effect on fitness of a change in expression from P to ð1þ �Þ

�P is very close to

s�&ð��þ log ð1þ �ÞÞ � Popt

which yields a selective disadvantage of 0:31 � Popt for dou-

bling expression, 0:19 � Popt for halving expression, and

roughly 0:5 � �2 for small changes in expression. If Ctot>1,

then the selective disadvantage of higher-than-optimal ex-

pression is increased in proportion to Ctot, so modest devia-

tions from the assumption that
P

i Ci ¼ 1 will not make much

difference.
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