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Acute skin wound healing is a multistage process consisting of a plethora of tightly
regulated signaling events in specialized cells. The Thy-1 (CD90) glycoprotein interacts
with integrins and the heparan sulfate proteoglycan syndecan 4, generating a trimolecular
complex that triggers bi-directional signaling to regulate diverse aspects of the wound
healing process. These proteins can act either as ligands or receptors, and they are critical
for the successful progression of wound healing. The expression of Thy-1, integrins, and
syndecan 4 is controlled during the healing process, and the lack of expression of any of
these proteins results in delayed wound healing. Here, we review and discuss the roles and
regulatory events along the stages of wound healing that support the relevance of Thy-1,
integrins, and syndecan 4 as crucial regulators of skin wound healing.
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1 INTRODUCTION

The skin is considered the largest human organ and functions as a natural barrier that protects the
organs from environmental factors, such as light, heat, chemicals, dehydration, and infections
(Yousef et al., 2020). After an acute skin injury, the body initiates a wound repair process, which is
necessary to restore skin integrity and homeostasis. Wound repair consists of a plethora of tightly
regulated biological and molecular processes that can be divided into four continuous and
overlapping phases: hemostasis, inflammatory, proliferative, and remodeling. Hemostasis occurs
immediately after an injury. Platelets aggregate and form a blood clot, which is mainly constituted by
extracellular matrix (ECM) proteins forming the provisional matrix, which acts as a scaffold for cell
migration (Chen and Lopez, 2005). The inflammatory phase involves the migration of cells, such as
phagocytic neutrophils, macrophages, and leukocytes to the wound site. Subsequently, the
phagocytic cells release cytokines and other soluble factors to induce fibroblast migration and
proliferation (Martin and Leibovich, 2005; Nathan, 2006). During the proliferative phase, new blood
vessels are formed (either by angiogenesis or neovascularization), giving rise to the synthesis of ECM
components, as well as re-epithelialization. The final phase comprises collagen deposition and
remodeling (Thiruvoth et al., 2015; Cañedo-Dorantes and Cañedo-Ayala, 2019).

These four phases can be arrested at any point, leading to the formation of a chronic non-healing
wound. Alterations in any mediators, including soluble factors (e.g., inflammatory molecules and
growth factors), proteases (e.g., matrix metalloproteinases), blood elements, the ECM, parenchymal
and inflammatory cells, can also lead to impaired healing. Other comorbidities, such as diabetes,
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immunosuppression, renal failure, infection, and smoking,
negatively affect the wound healing process.

Thy-1 (CD90), a glycosylphosphatidylinositol (GPI)-
anchored protein, has been described as one of the cell
receptors that participates in the acute wound healing process
(Lee et al., 2013). Thy-1 is expressed in a variety of cells, including
fibroblasts, neurons, endothelial, and hematopoietic cells. Thy-1
expression is tightly regulated during development,
inflammation, and fibrosis. Moreover, Thy-1 is considered a
cell marker for fibroblast and mesenchymal stem cells (MSCs),
both of which play a transcendental role during wound repair.
Most importantly, Thy-1 is the ligand/receptor for integrins and
syndecan 4, and their interaction generates a trimolecular
complex that triggers bi-directional signaling pathways to
regulate several cellular processes, including cell adhesion,
differentiation, migration, and proliferation (reviewed in
Leyton et al., 2019).

Here, we review the direct role of Thy-1 and its co-receptors,
integrins and syndecan 4, during the different phases of the acute
skin wound healing process. Moreover, based on previously
published functions related to other pathophysiological
situations, we propose and critically discuss some new putative
roles for the Thy-1/integrin/syndecan 4 trimolecular complex in
the skin healing process, which could translate into potential
therapeutics to improve clinical outcomes.

2 THY-1, INTEGRINS AND SYNDECAN 4
ARE CELL-CELL AND CELL-MATRIX
COMMUNICATION MOLECULES
Thy-1 is a small (25–37 kDa) glycoprotein that possesses two
N-glycosylation sites in humans, and three in mice. Reports
indicate differential Thy-1 expression between tissues and
during development. In adults, Thy-1 protein is highly
expressed in the brain, smooth muscle, kidney, and colon. In
contrast, RNA studies have shown that Thy-1 is transcribed in
many other tissues and cell types, such as the endometrium,
adipose tissue, the urinary bladder, and T cells (Thul et al., 2017).
During development, Thy-1 is undetectable in the neonatal and
developing brain, compared to the higher levels observed in the
adult brain. Thy-1 expression can also vary within the same cell
type, defining cell subpopulations that possess different functions.
For example, lung fibroblasts expressing higher levels of Thy-1
secrete ECM and inflammatory molecules different from those of
fibroblasts expressing lower levels. Thy-1 presence in fibroblasts
can also dictate if they differentiate into myofibroblasts or
lipofibroblasts (Koumas et al., 2003).

Thy-1 localizes in lipid rafts at the cell membrane, but it can
also be shed by specific phospholipases (PI-PLC or PLC-β) and
other proteases not yet identified. Soluble Thy-1 (sThy-1) has
been detected in serum, urine, wound fluid, and synovial fluid. In
vitro, lung fibroblasts treated with IL-1β or TNFα shed Thy-1 into
the culture media. Increased levels of sThy-1 exist in wound fluid
from venous ulcers and synovial fluid from knee punction in
patients with rheumatoid arthritis, as well as in serum from
patients with systemic sclerosis and diabetic kidney disease,

suggesting that sThy-1 exerts a role during inflammation and
some pathological conditions (Freimuth et al., 1978; Saalbach
et al., 1999; Kollert et al., 2013; Wu et al., 2021).

Thy-1 is a very versatile glycoprotein that can act as a receptor,
a ligand, or a cell adhesion molecule. Thy-1 possesses an integrin-
binding domain (RGD-like tripeptide: RLD) and a heparin-
binding domain (HBD: REKRK, in mouse), which allow its
interactions with several integrins and syndecan 4,
respectively. The interaction of Thy-1 with its receptors occurs
within the same cell (in Cis) or between cells (in Trans) to trigger
diverse signaling pathways downstream of Thy-1, integrins, and/
or syndecan 4 (reviewed in Herrera-Molina et al., 2013; Leyton
et al., 2019).

Integrins are transmembrane receptors formed by α and β
heterodimers that bind ECM proteins, cell surface molecules,
and soluble ligands. At least 18 α and 8 β subunits have been
described in humans, generating 24 different heterodimers,
which recognize and interact with specific ligands. Integrins
transduce signals from the ECM into the cell (outside-in), but
the cell can also regulate the integrin affinity for its ligand
(inside-out). To date, Thy-1 has been shown to interact with
the αvβ3, αxβ2, αMβ2, α5β1, and αvβ5 integrins (Table 1)
(Leyton et al., 2001; Wetzel et al., 2004; Saalbach et al., 2005;
Hermosilla et al., 2008; Avalos et al., 2009; Zhou et al., 2010;
Fiore et al., 2014).

The syndecan family is comprised of four members (syndecan
1, 2, 3, and 4), which are timely and spatially expressed across
every cell of the body. Syndecans are transmembrane heparan
sulfate proteoglycans, composed of a divergent ectodomain, a
conserved transmembrane region, and a short cytoplasmic tail.
The ectodomain possesses glycosaminoglycan chains (GAGs) of
heparan sulfate that interact with ECM proteins, cytokines,
chemokines, growth factors, and its receptors. The
ectodomain can also be shed from the cell surface to
sequester soluble factors or compete for binding to the ECM.
The cytoplasmic domain possesses two conserved regions (C1
and C2), flanking a variable (V) region unique to each syndecan,
which triggers specific cell signaling pathways (Simons and
Horowitz, 2001; Bertrand and Bollmann, 2019; Gondelaud
and Ricard-Blum, 2019).

Of interest for this review, integrins act cooperatively with
syndecan 4 to regulate focal adhesion (FA) and actin stress fiber
formation in a RhoA-dependent manner (Avalos et al., 2009;
Fiore et al., 2014). FA turnover is an important event during
directional cell migration. Moreover, Thy-1 has been shown to
directly interact with integrins and syndecan 4 to form a
trimolecular complex that facilitates initial cell adhesion by
enhancing FA formation and subsequently, promoting
migration by regulating contractility and FA turnover (Avalos
et al., 2004; Hermosilla et al., 2008; Avalos et al., 2009; Kong et al.,
2013; Fiore et al., 2014; Fiore et al., 2015; Lagos-Cabre et al., 2017;
Burgos-Bravo et al., 2020; Valdivia et al., 2020). Although the
bidirectional signaling pathways triggered by Thy-1/integrin/
syndecan 4 clustering and activation remain unexplored
during skin injury, the biological significance of each of these
molecules by themselves has been proven important for an
efficient wound healing process.
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Most of the cell types participating in the wound healing
process express integrins, syndecan 4 and Thy-1 (Table 1).
Furthermore, Thy-1, integrins and syndecan 4 are upregulated
after skin injury and in response to inflammation (Table 1)
(Lefcort et al., 1992; Sepp et al., 1994; Gallo et al., 1996; Lee
et al., 1998; Goutebroze et al., 2003). The Thy-1 promoter
becomes active right at the wound area and remains active up
to 36 days after injury (Josvay et al., 2014). Similarly,
transcriptome analysis has shown that human blood vessels in
a wounded area express 24-fold higher Thy-1 levels than normal
tissue vessels (Roy et al., 2007). Additionally, decreasing Thy-1
levels delays the wound healing process by generating abnormal
re-epithelialization and TGFβ secretion (Lee et al., 2013).

Syndecan 4 is also upregulated in the epidermis after injury,
and disruption of the syndecan 4 gene in mice delayed skin
wound healing and impaired angiogenesis (Gallo et al., 1996;
Echtermeyer et al., 2001). Syndecan 4 regulates wound healing
in vitro by controlling the levels of integrins at the membrane to
allow an efficient directional cell migration, and in vivo, by
upregulating its levels within the granulation tissue, implying a
role during wound-related angiogenesis (Fuster and Wang, 2010;
Bass et al., 2011; Brooks et al., 2012; Vuong et al., 2015).

On the other hand, integrins have been proven transcendental
for the recruitment of leukocytes, keratinocytes, and fibroblasts to
the wound area, as well as for myofibroblast differentiation and
blood vessel sprouting during angiogenesis (Columbo and
Bochner, 2001; Annes et al., 2004; Asano et al., 2005; Asano
et al., 2006; Carracedo et al., 2010; Zarbock et al., 2012; Darby
et al., 2014; Koivisto et al., 2014; Kenny and Connelly, 2015;
DiPersio et al., 2016; Lishko et al., 2018). Aberrant integrin
signaling is associated with defective ECM deposition, which
affects normal fibroblast differentiation and function, and also
generates inefficient cell recruitment and insufficient
angiogenesis, which cause a hypertrophic scar or chronic
wounds (Koivisto et al., 2014).

Substantial evidence supports the importance of Thy-1 and its
counteracting receptors during wound closure. In the next
sections, we review the specific roles that Thy-1, integrins, and
syndecan 4 play in each one of the phases of the acute skin wound
healing process, with a special emphasis on yet unexplored
functions, which may be relevant for future therapeutic
development.

3 HEMOSTASIS PHASE

The immediate response after an acute wound is vasoconstriction
and clot formation to prevent blood loss. Vasoconstriction is
mediated by prostaglandins and endothelin released from
circulating platelets and the damaged endothelial layer
(Menter et al., 2017; Rodrigues et al., 2019). Moreover,
circulating catecholamines and prostanoids, such as
epinephrine, norepinephrine, and thrombocyclin can also
generate vasoconstriction (Feletou et al., 2010). Platelet-derived
growth factor (PDGF) activates smooth muscle cells in the vessel
to cause contraction (Berk et al., 1986). After the initiation of the
coagulation cascade, vasoconstriction resolves the bleeding

through thromboxane A2, bradykinin, serotonin, and
fibrinopeptide (Rodrigues et al., 2019). The clot formation
process is initiated in response to the vascular wall damage,
which exposes the subendothelial collagen to blood
components (Chen and Lopez, 2005). Platelets adhere to
collagen, become activated, and aggregate to form the initial
hemostatic plug. At this point, the coagulation and complement
cascades are activated, mediating the cleavage of prothrombin to
thrombin, which subsequently cleaves fibrinogen to fibrin. Fibrin
strands bind at the hemostatic plug along with platelets and
erythrocytes to form an insoluble clot. Apart from the crosslinked
fibrin strands, the clot also contains other ECM proteins, such as
collagen type I, fibronectin, vitronectin, and thrombospondin
(TSP), which create a provisional ECM that favors fibroblast and
leukocyte migration. The active platelets in the clot will also
undergo degranulation, and release soluble factors to mediate
vasoconstriction, endothelial and fibroblast activators (e.g.,
TGFβ, VEGF, FGF2, and PDGF), and chemoattractant and
inflammatory mediators [e.g., chemokine (C-X-C motif) ligand
4 (CXCL4 or PF4), chemokine (C-C motif) ligand 5 (CCL5),
Interleukin 6 (IL-6), Interleukin 8 (IL-8), and Insulin growth
factor 1 (IGF1)] (Martins-Green et al., 2013; Ridiandries et al.,
2018; Cañedo-Dorantes and Cañedo-Ayala, 2019; Rodrigues
et al., 2019).

Integrin αIIbβ3 is the main integrin on the surface of platelets
and mediates adhesion to fibrinogen, fibronectin, vitronectin, and
the Von Willebrand Factor (vWF). The function of αIIbβ3 is
indispensable for platelet aggregation, clots retraction, and
thrombus stability during wound healing. Platelets also
express, to a lesser extent, α2β1, α5β1, α6β1, and αvβ3
integrins (Table 1) (Bennett, 2005; Bennett et al., 2009; Haling
et al., 2011; Eisinger et al., 2018). Although, α2β1 mediates
adhesion to collagen and αvβ3 to osteopontin, as well as to
vitronectin during in vitro assays, it is uncertain whether they
play a role during hemostasis or if they can interact with Thy-1
expressed on other cell types present in the wounded area
(Bennett et al., 1997; Paul et al., 2003).

Syndecan 4 is ubiquitously expressed in adult human cells.
Particularly in healthy skin, tissue analysis shows medium-to-
high levels of syndecan 4 protein expression in keratinocytes,
Langerhans (tissue-resident macrophages in epidermis),
fibroblasts, and epidermal cells. Single-cell RNA analysis has
also shown that skin endothelial cells, smooth muscle cells,
melanocytes and T cells express syndecan 4 (Thul et al., 2017;
Sole-Boldo et al., 2020; Karlsson et al., 2021; The Human Protein
Atlas, 2021). Platelets themselves express syndecan 4, and
clustering of syndecan 4 using antibodies increases platelet
aggregation, though the role of syndecan 4 in platelet
aggregation has not been described during skin hemostasis
(Kaneider et al., 2005).

Single-cell RNA analysis of healthy skin shows that Thy-1 is
normally expressed in fibroblasts and smooth muscle cells, while
lower levels are observed in endothelial cells, keratinocytes,
melanocytes, resident skin macrophages, and granulocytes (Thul
et al., 2017; Sole-Boldo et al., 2020; Karlsson et al., 2021; The Human
Protein Atlas, 2021). Even though Thy-1 is considered a dermal
fibroblast and dermal mesenchymal stem cell marker, its expression
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levels in healthy skin are very low compared to other tissues, such as
the cerebral cortex (<30-fold) (Thul et al., 2017; Sole-Boldo et al.,
2020; Karlsson et al., 2021; TheHumanProteinAtlas, 2021). To date,
it remains unknown whether Thy-1 basal levels play a relevant role
in skin physiology or during the hemostasis phase. However, Thy-1
levels rapidly increase after skin injury (Figure 1). Indeed, using an
ear injury model on transgenic mice expressing YFP under the
control of the Thy-1 promoter, Jósvay et al., showed that a halo of
fluorescence appears right at the wound edge, as soon as day 1 after
injury. At day 3, the fluorescent area expands to the surrounding
wounded area, and the fluorescence remains up to 2 weeks after the
injury (Josvay et al., 2014). The fluorescent area around the wound
starts decreasing at day 21 and disappears by day 36, indicating that
the activity of the Thy-1 promoter is tightly controlled during the
wound healing process (Freimuth et al., 1978). These changes in
Thy-1 expression presumably occur in response to the inflammatory
molecules and growth factors that are released in the wound area
early during the hemostasis phase. Supporting this idea, cytokines
such as IL-1β, IL-2, and TNFα, and growth factors such as VEGF can
induce Thy-1 synthesis in other systems (Mason et al., 1996; Lee
et al., 1998;Weston et al., 2002; Zhao et al., 2003;Wetzel et al., 2004).
Notably, IL-1β, IL-6, and TNFα levels are elevated in the diabetic
wound healing process. High levels of these chemokines during
hemostasis activates the secretion of acute-phase proteins from the
liver and recruit an excessive number of inflammatory cells to the
wound site, thus affecting the healing process (Strang et al., 2020).
Moreover, Thy-1 levels are also increased during diabetic foot ulcers
(Januszyk et al., 2020). Therefore, we speculate that at least during
diabetic wound healing these cytokines can induce Thy-1

overexpression to mediate the migration of inflammatory cells.
Some of the mechanisms by which Thy-1 can stimulate cell
migration on the surface of inflammatory cells will be discussed
in detail in the description of the inflammatory phase (Section 4).
Similarly, the expression of integrins and syndecan 4 is also regulated
by inflammatory mediators (Herzberg et al., 1996; Werner and
Grose, 2003; Okuyama et al., 2013; Lagos-Cabre et al., 2017;
Schnittert et al., 2018; Gopal, 2020). It is noteworthy that CXCL4,
the main chemokine secreted by platelets during the hemostasis
phase, binds integrin αMβ2 (MAC-1) on leukocytes, as well as
αvβ3 and α5β1 on endothelial cells (Figure 1) (Aidoudi et al.,
2008; Lishko et al., 2018). Therefore, Thy-1 could potentially
modulate the effects of CXCL4 by competing for its integrin
receptor, although this idea needs to be evaluated in the context
of skin wound healing.

The role of syndecans in the activation of chemokines has been
broadly studied. Chemokines such as CCL5 and CXCL4, which
are secreted by activated platelets during the hemostasis phase,
require both chemokine oligomerization and binding to GAGs to
participate in cell recruitment. CCL5 induces syndecan 4
shedding from the surface of HeLa cells, and syndecan 4 can
bind chemokines and induce chemokine oligomerization
(Figure 1) (Charnaux et al., 2005; Dyer et al., 2016).
Nonetheless, further research is necessary to establish a
specific role of syndecan 4 in the oligomerization of
chemokines during the hemostasis phase after acute skin injury.

Thy-1 can also be related to the secretion of ECM in other cell
types not associated with skin. For instance, the induction of Thy-
1 in human ovarian cancer cells enhances the expression of

TABLE 1 | Thy-1 and its integrins/syndecan 4 receptors are expressed in different cell types that participate in the wound healing process.

Cell type Integrins/syndecan 4 expression Thy-1 expression Effect

Platelets αIIβ3a, α2β1a (Rodrigues et al., 2019) ND May bind to endothelial cells expressing Thy-1
αvβ1a, α6β1a, αvβ3, αIIbβ3a (Bennett, 2005)
syndecan 4b (Kaneider et al., 2005)

Mast cells α4a, α5a, α6a, β1, β7a (Grodzki et al., 2003) Thy-1 (Draberova et al., 1996) Cell adhesion, stabilization of lipid rafts
syndecan 4b (Higashi et al., 2018)

Monocytes αMβ2 syndecan 4b (Kaneider et al., 2002) ND Adhesion and migration
Macrophages αMβ2 Thy-1 (Thul et al., 2017) Adhesion and migration

syndecan 4b (Hamon et al., 2004)
Leukocytes αMβ2 (Wetzel et al., 2004) ND Extravasation of leukocytes

Secretion of MMP9 and CXCL8syndecan 4b (Gopal, 2020)
MSCs α3a, αv (Lee H. M et al., 2020) Thy-1 (Saalbach and Anderegg,

2019)
Cell differentiation

Keratinocytes αvβ5a, αvβ6a, α5β1a, Thy-1 (Nakamura et al., 2006) Migration and cell proliferation
α3β1a, α6β4a
syndecan 4b (Rousselle et al., 2019)

Endothelial
cells

β3b (Sepp et al., 1994) Thy-1b (Lee et al., 1998) Transendothelial migration of leukocytes
syndecan 4b (Vuong et al., 2015)

Pericytes α6β1a (Reynolds et al., 2017) Thy-1 (Billaud et al., 2017) Angiogenesis and deposition of the ECM
syndecan 4 ND

Fibroblasts αvβ3, αvβ1 (Bates et al., 1991), α5β1 Thy-1 (Koumas et al., 2003) Cell differentiation, latent activation of TGFβ; expression of PDGF, the
ECM and cytokinessyndecan 4b (Fiore et al., 2014)

Schwann αvβ3 (Milner et al., 1997), α5β1b (Lefcort et
al., 1992)

ND May bind to endothelial cells expressing Thy-1

syndecan 4b (Goutebroze et al., 2003)

ND, not determined.
aIntegrin heterodimers or monomers have not been described as a Thy-1 ligand.
bExpression is either triggered or increased after injury or inflammation.
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fibronectin and TSP1 (Figure 1). In addition, pulmonary Thy-1
(+) and Thy-1 (−) fibroblasts synthesize fibronectin, but the
subpopulation of Thy-1 (+) fibroblasts produces two- to three-
fold more collagen than the Thy-1 (−) cells (Derdak et al., 1992;
Abeysinghe et al., 2005). Moreover, TSP1, one of the provisional
ECM components, induces the disassembly of focal adhesions
necessary to induce fibroblast migration in a Thy-1-dependent
manner (Barker et al., 2004). However, it remains unknown
whether Thy-1 can trigger ECM secretion or interact with
TSP1 during skin wound healing.

Therefore, the expression of Thy-1, integrins, and syndecan 4
can potentially be modulated by soluble signals released during
hemostasis, although more research is necessary to elucidate if
Thy-1 and its receptors also exert a role in controlling key events
for hemostasis, such as activation of chemokines, ECM secretion
and early cell migration to the wounded area.

4 INFLAMMATORY PHASE

During the inflammatory phase, neutrophils, macrophages, and
lymphocytes are recruited to the wound site. Bradykinin and
anaphylatoxins (C3a and C5a), generated by the coagulation and
complement cascades, respectively, disrupt cell-cell junctions of
the endothelial cells and increase the permeability of the local
vessels, facilitating the infiltration of inflammatory cells.
Neutrophils are the first to arrive to the wound area, following
a gradient of chemoattractant molecules composed of several
growth factors and chemokines released by activated platelets
in the blood clot, as well as N-formyl peptides released by
bacteria and damaged cells (Mantovani et al., 2011). Within
the wound, neutrophils will decontaminate the wound using
diverse strategies, including phagocytosis, proteases, secretion
of antimicrobial peptides, generation of reactive oxygen

FIGURE 1 | Thy-1 (CD90), integrins, and syndecan 4 could participate in multiple stages of skin wound healing. Based on data obtained in similar cell types from
organs other than skin, we have proposed putative roles for Thy-1, integrins and syndecan 4 during the wound healing process. (*) Shows functions for these molecules
that have already been studied in skin and/or skin wound models. In brief, the acute skin wound healing process consists of four phases that overlap and are tightly
regulated. (1) The hemostasis phase starts immediately after injury. Platelets aggregate and form a blood clot containing ECM proteins and secrete soluble factors,
such as CXCL4, which lead cell migration into the wound area; (2) The inflammatory phase involves the migration of neutrophils, macrophages, and leukocytes to the
wound site. The inflammatory cells release cytokines, chemokines, and growth factors to recruit fibroblasts into the wound; (3) The proliferation phase is characterized by
proliferation of fibroblasts, angiogenesis, formation of granulation tissue, peripheral nerve repair, recruitment of keratinocytes, and re-epithelization; (4) The remodeling
phase is characterized by wound contraction and collagen remodeling. The roles for Thy-1 (CD90) and its co-receptors integrins and syndecan 4 are highlighted in
each phase. Created with Biorender.com.
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species (ROS), and neutrophil extracellular traps (NETs) to
immobilize and kill microorganisms (Brinkmann et al., 2004;
Nathan, 2006; Kolaczkowska and Kubes, 2013). Despite their
relevant role in controlling infection, the absence of
neutrophils does not impair the healing process. Indeed,
wound repair can happen faster in animals deficient in
neutrophils, suggesting that neutrophils can be inhibitory to
some extent during the repair process (Simpson and Ross,
1972; Dovi et al., 2003; Martin and Leibovich, 2005). On the
other hand, the sustained presence of neutrophils in the wound
could be one of the causes of chronic non-healing wounds
(Martin and Leibovich, 2005).

In addition to NET function as a host defense mechanism,
NETs also participate in thrombus formation and metastatic
dissemination of cancer cells. In this context, α9β1 integrin in
the neutrophil plasma membrane promotes thrombosis and
clot formation, and the adhesion of different tumor cells to
NETs is facilitated by high expression of α5β1, αvβ3, and αvβ5
integrins (Martinod and Wagner, 2014; Monti et al., 2018).
Similarly, integrins reportedly regulate neutrophil activation
and NET formation (NETosis). In a mouse model of
ventilator-induced lung injury, blocking integrin-mediated
outside-in signaling decreases NET formation and lung
injury (Rossaint et al., 2014). Alternatively, stimulation of
neutrophils with phorbol 12-myristate 13-acetate (PMA), a
potent protein kinase C (PKC) activator, induces complete
NET formation independent of cell adhesion (Erpenbeck et al.,
2019). Therefore, NET formation could occur in an integrin-
dependent and -independent manner. However, the exact
mechanism by which PMA induces NET formation remains
unclear. Currently, there is no evidence that the Thy-1/
integrin/syndecan 4 trimolecular complex can control
NETosis, although, syndecan 4 can regulate PKC activity,
and PMA can increase Thy-1 expression on endothelial
cells to facilitate wound healing (Oh et al., 1997; Murakami
et al., 2002; Wen et al., 2018). More importantly, increased
NETosis is associated with delayed wound healing in diabetic
skin wounds, which therefore posit NET formation
mechanisms as an attractive subject of study (Wong et al.,
2015; Fadini et al., 2016; Erpenbeck et al., 2019; Lee, Y. S. et al.,
2020).

Following neutrophils, monocytes are recruited to the wound
via C-C chemokines, such as CCL2. These chemokines are
secreted initially by neutrophils and subsequently by
keratinocytes and monocytes themselves (Gillitzer and
Goebeler, 2001; Rees et al., 2015; Ridiandries et al., 2018).
Within the wound, monocytes mature into macrophages,
which initially acquire a pro-inflammatory phenotype (M1),
and subsequently, as the wound heals, they transition to an
anti-inflammatory and pro-regenerative phenotype (M2). As
proposed by Krzyszczyk and other researchers, the M1/M2
definition is oversimplified, since in the wound bed,
macrophages exhibit a different spectrum of M1- or M2-like
characteristics (Martinez and Gordon, 2014; Krzyszczyk et al.,
2018). M1-like macrophages remove dead cells, apoptotic
neutrophils, bacteria, tissue debris, and foreign materials. They
function as antigen-presenting cells, and secrete cytokines and

growth factors, such as TGFα, TGFβ, bFGF, VEGF, and PDGF
(Martins-Green et al., 2013; Krzyszczyk et al., 2018). These
soluble factors attract and activate endothelial cells, fibroblasts,
and keratinocytes. Subsequently, M2-like macrophages favor
wound healing by inducing cell proliferation, angiogenesis,
and ECM synthesis during the proliferative phase, and also by
secreting matrix metalloproteinases (MMPs) in the remodeling
phase, as discussed later (Sections 5 and 6). In a guinea pig
wound model, macrophage depletion using antisera and steroids
results in impaired disposal of damaged tissue and matrix, a
decreased fibroblast count, and delayed wound healing
(Leibovich and Ross, 1975; Martin and Leibovich, 2005).
Surprisingly, antisera depletion of neutrophils does not affect
the healing process (Simpson and Ross, 1972). More recent
research using leukocyte-deficient mice has shown that not
one of the inflammatory cell lineages is absolutely necessary to
favor wound healing. Indeed, the absence of some leukocytes
lineages can cause a faster wound repair and can also diminish
scarring later during remodeling phase, suggesting that
inflammatory cells can have an inhibitory effect during
healing. In this context, neutrophil knockdown mice show
faster wound repair than the control littermates, if the
conditions are sterile (Dovi et al., 2003). Additionally, in PU.1
null mice, which lack macrophages and neutrophils, wound
healing is not impaired; it follows a similar time course as in
their WT littermates and healing occurs in the absence of fibrosis
and scar formation, similarly to embryonic wound healing
(Martin et al., 2003). Cytokines and growth factor levels are
reduced in PU.1 null mice. However, they are not entirely absent,
as observed in wounded embryonic tissue, since these soluble
signals can still be produced in small amounts by keratinocytes
and fibroblasts, suggesting that inflammation and macrophages
are somehow not crucial for healing, although they may play an
essential role in scar formation.

Evidence suggests that Thy-1 might mediate the recruitment
of inflammatory cells to the wound site. As reported, Thy-1
expressed on endothelial cells mediates the binding of neutrophils
and monocytes to activated microvascular endothelial cells
(Figure 1) (Saalbach et al., 2000). Furthermore, αMβ2 integrin
(Mac-1 or CD11b/CD18) expressed in the leukocyte membrane
was identified as the counterreceptor for Thy-1 (Wetzel et al.,
2004). Moreover, Thy-1 mediates the extravasation of monocytes
and neutrophils in a thioglycollate-induced peritonitis model and
the extravasation of eosinophils and monocytes in a lung
inflammation model (Schubert et al., 2011). Additionally, the
interaction between Thy-1 and αMβ2 integrin on neutrophils
triggers effector functions in neutrophils, inducing the secretion
of MMP9 and CXCL8 (Saalbach et al., 2008). Hence, by bringing
together inflammatory cells to the wound bed, Thy-1 may
contribute to modulate the inflammatory microenvironment.

The innate skin immune system, including neutrophils and
monocyte/macrophages, provides a non-specific first-line
response to pathogens, toxins, and foreign material. The
innate response comprises toll-like receptors (TLRs) and
receptor for advanced glycation end products (RAGE)
receptors that recognize stress signals, such as
lipopolysaccharide (LPS). These receptors then trigger signal
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transduction pathways that culminate with the release of TNF,
IL-1β, IL-6, and NO. On the other hand, B- and T-lymphocytes
complement the innate response more specifically:
B-lymphocytes produce specific antibodies, and T-lymphocytes
secrete cytokines and elicit cytolytic activity (Strbo et al., 2014).
B-lymphocytes are present in the wound area from day 4 to day
17 after injury (Sirbulescu et al., 2017). In splenectomized nude
mice, wound healing is delayed, and this effect is recovered after
the addition of external antibody-producing B cells (Nishio et al.,
2009). Similarly, topical treatment with B cells improves healing
of acute wounds by 2–3 days in wild-type animals and 5–6 days in
obese diabetic mice (Sirbulescu et al., 2017). Thy-1 is expressed on
early B-cells in the thymus and has been related to the
proliferation of B-cell lymphomas (Ritter et al., 1983; Ishiura
et al., 2010). Nonetheless, Thy-1 is not expressed in mature
B-cells. Relatedly, syndecan 4 blocking antibodies inhibit the
directional migration of B-cells in an asthma model, and
B-cells from syndecan 4−/− mice also show impaired
directional cell migration in an arthritis model (Endo et al.,
2015; Polte et al., 2015). Although these results suggest a
possible role of syndecan 4 during B-cell migration, further
experiments are necessary to elucidate its role in skin wound
repair.

T-lymphocytes in the skin consist of regulatory cells, CD4+

helper cells, and CD8+ killer cells, which can be present in the
circulation or be permanent residents of the skin. Regulatory
CD4+ T cells migrate and accumulate in the skin, where they
participate in skin homeostasis and tolerance to normal skin flora
(Ali and Rosenblum, 2017). The role of regulatory T cells in skin
injury was recently reviewed (Boothby et al., 2020). In brief,
regulatory T cells control inflammation and reduce the number of
macrophages and upregulate the expression of EGFR to favor re-
epithelialization and wound closure. As proposed, skin regulatory
T cells play an important role in preventing an immune response
against self-antigens during cutaneous injury (Metzger and
Anderson, 2011). On the other hand, helper CD4+ T cells
contribute to the inflammatory response against pathogens by
releasing cytokines that mediate the secretion of antimicrobial
peptides. Several subsets of helper T cells (Th1, Th2, Th17, and
Th22) secrete unique cytokines, which orchestrate defensins and
antimicrobial peptides to protect the skin from infection. Skin
resident dendritic cells participate in the phagocytosis of
microorganisms and present the antigens to naïve CD8+ cells.
Active CD8+ killer cells differentiate in homing effector memory
(TEM) T cells and central memory (TCM) T cells. TEM cells migrate
to the wound area and release proinflammatory cytokines to
mediate pathogen clearance. After the infection is resolved, most
of the TEM cells die by apoptosis, and the few remaining cells are
known as tissue-resident memory (TRM) T cells. After reinfection,
dendritic cells present the antigen to the TRM cells, which
proliferate and recruit circulating TEM cells to mediate
pathogen clearance. Human hypertrophic scars generated after
a burn injury show a high infiltration of T cells, and murine
models have shown that scar formation is mediated by cytokines
secreted by Th2 helper T cells (Cañedo-Dorantes and Cañedo-
Ayala, 2019; Rodrigues et al., 2019). Interferon γ secreted by Th1
cells can attenuate tissue fibrosis by downregulating collagen

synthesis and decreasing fibroblast proliferation (Harrop et al.,
1995; Wynn, 2004). Similarly, keloid fibroblasts synthetize less
collagen when co-cultured with regulatory T cells (Murao et al.,
2014; Chen et al., 2019). Therefore, regulatory T cells maintain
immune homeostasis.

Thy-1 can also induce T lymphocyte activation. Thy-1 is
abundantly expressed on CD4+ CD8+ double-positive
thymocytes and, to a lesser extent, at the T cell surface
(Haeryfar and Hoskin, 2004). Although early research showed
that Thy-1 expression was restricted to mature mouse T cells and
that mature human T cells did not express Thy-1, more recent
reports have shown that Thy-1 is expressed in specific subsets of
human T cells (Th17/Tc17) (Guillot-Delost et al., 2012).
Differentiation into Th17/Tc17 is enhanced after tissue
damage and the dysregulation of these cells can lead to skin
inflammatory conditions, such as atopic dermatitis, psoriasis, and
Lichen Planus (Baurecht et al., 2015; Brockmann et al., 2017;
Linehan et al., 2018; Norsgaard et al., 2019; Solimani et al., 2019).
Moreover, single-cell RNA data has shown that T cells express
low Thy-1 levels in healthy human skin; nonetheless, the
significance of this observation has not been studied in healthy
skin nor in wound healing models (Thul et al., 2017; Sole-Boldo
et al., 2020; Vorstandlechner et al., 2020; Karlsson et al., 2021; The
Human Protein Atlas, 2021). The role of Thy-1 in T cell function
has been studied primarily on T cells from rodent models. In this
context, it is known that T cells from Thy1−/− mice show
enhanced T cell antigen receptor (TCR) activity. Additionally,
anti-Thy-1 antibodies activate mouse T cell proliferation and
cytokine synthesis in the absence of an antigen-specific signal in
the context of CD28 co-stimulation (Pont, 1987; Hueber et al.,
1994) or a co-stimulatory signal from syngeneic bone marrow-
derived dendritic cells (Haeryfar and Hoskin, 2001). Thus, Thy-1
can regulate the T cell response in the absence of TCR activation
and enhance antigen-induced T cell responses in mouse cells.
Noteworthy, Thy-1-regulated TCR activation has not been shown
in human skin resident T cells during wound healing nor in the
aforementioned skin conditions, where Th17/Tc17 cells are
relevant.

The last leukocytes recruited to the wound area are the mast
cells, which typically reside in the skin. They play an essential role
in innate immunity during the healing process of infected
wounds, where they release TNFα to chemoattract professional
phagocytic cells, such as polymorphonuclear neutrophils (PMN).
Knockout of mast cells in mice impairs wound healing and
reduces the inflammatory response that diminishes fibrosis
and scar formation (Szpaderska et al., 2003; Gallant-Behm
et al., 2008; Shiota et al., 2010). In the activation of mast cells,
Thy-1 membrane microdomains serve as a platform to aggregate
Src-related proteins to induce activation of rat mast cells
(Figure 1) (Draberova, 1989; Draberova et al., 1996). This
activation also involves Thy-1 ligands, such as integrins, and
in this context, the engagement of β1 integrin in mast cells
increases their sensitivity to cellular activation (Ra et al.,
1994). Mast cells can show an adherent or non-adherent
behavior according to the integrin profile, which might include
the expression of α4, α5, α6, β1, and β7 integrin subunits. The
expression of α4 integrin is higher in adherent mast cells (Grodzki
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et al., 2003). β1 and αvβ3 integrin expression have also been
related to mast cell adhesion in human skin (Columbo et al., 1995;
Columbo and Bochner, 2001). Interestingly, α5β1 and αvβ3
integrins are reported Thy-1 receptors/ligands, and therefore,
their interaction in this biological process could potentially
contribute to the adhesive behavior of mast cells.

A role of Thy-1 in recruiting leukocyte cells and regulating
inflammation has been sustained by studies that show that
monocytes and neutrophils expressing αxβ2 and αMβ2
integrins use Thy-1 expressed on the surface of activated
endothelial cells to migrate (Wetzel et al., 2004). The
recruitment of leukocytes and the subsequent increase in
cytokines can exacerbate the expression of Thy-1 in the
endothelial cells at the wound site, as discussed during
angiogenesis in the proliferative phase (Section 5). Thy-1 also
interacts with CD97, an adhesion G-protein coupled receptor
(GPCR) present at the adherent junctions formed between
endothelial cells; such interaction probably mediates the
transmigration of the leukocytes to the wound (Figure 1).
Additionally, Thy-1 regulates the extravasation of leukocytes
during acute lung inflammation, controlling the recruitment of
different cells and preparing the inflammatory environment
(Schubert et al., 2011).

Inflammatory cell recruitment and subsequent secretion of
regenerative factors at the wound bed are tightly coordinated
processes (Cañedo-Dorantes and Cañedo-Ayala, 2019). As
discussed before, changes in the timing and inflammatory
components can both positively and negatively affect the
healing process. Another component reviewed in the literature
is the heparan sulfate proteoglycan syndecan. Its role during
inflammation depends on the degree of sulfation of the heparan
sulfate chains, the rate of ectodomain shedding, the solubility of
the ectodomains, and the expression levels of different syndecan
family members (Gopal, 2020).

On the other hand, integrins mediate leukocyte accumulation
at the sites of inflammation. Inflammatory mediators trigger
integrin activation, and this is a crucial step to initiate
leukocyte migration to inflamed tissues. Subsequently, integrin
deactivation is indispensable for maintaining proper leukocyte
migration (Zarbock et al., 2012; Park et al., 2015). Integrins are
also important for leukocyte adhesion and transmigration
through blood-vessel walls to get access to the site of
inflammation, in neutrophil recruitment, lymphocyte
recirculation, and monocyte trafficking. Specifically, β1 and β2
integrins have been addressed as central players in regulating
leukocyte recruitment and vascular permeability during acute
inflammation (Figure 1) (Rhee et al., 2003; Ley et al., 2007; Ou
et al., 2021). Taken together, Thy-1 and its receptors integrins and
syndecan 4 play a crucial role in recruiting leukocytes and
restraining the immune response in the wound area.
Therefore, further studies are necessary to evaluate if, for
instance, the shedding of Thy-1 and syndecan 4 or changes in
the expression of these receptors are important to clear up
inflammation and lead to the remodeling phase of wound healing.

Lymphocyte-induced inflammation is cleared by a massive
apoptosis process induced by interferon (INFc) and TNFα
production at the wound site (Martins-Green et al., 2013). Liu

et al., demonstrated that Bcl-2 and Bcl-xL synthesis was decreased
in response to Thy-1 expression and could lead to apoptosis by
activating the effector caspase-3 and poly ADP-ribose polymerase
(PARP). In addition, they demonstrated that Thy-1 mediates
apoptotic signaling via both caspase-9- and caspase-8-dependent
pathways (Liu X. et al., 2017). Moreover, Thy-1/β3 integrin-
induced apoptosis of dermal fibroblasts is mediated by
upregulation of Fas ligand (FasL) expression (Figure 1)
(Schmidt et al., 2016). FasL binds to and activates Fas, a cell-
surface death receptor belonging to the TNF receptor
superfamily, to induce apoptosis through the activation of
caspase-8. Therefore, we hypothesize that Thy-1 and β3
integrin could play a vital role in terminating the
inflammatory phase by inducing apoptosis of lymphocytes.

5 PROLIFERATIVE PHASE

During the proliferative phase, fibroblasts, keratinocytes, and
endothelial cells divide, differentiate, and migrate to the
wound area. This phase overlaps with the inflammatory phase,
starts 2 days after injury with the degradation of the fibrin matrix
and invasion of fibroblasts and endothelial cells, and lasts up to
3 weeks to completely repair the wounded area. The signature
events during this phase include:

a) Fibroplasia, which consists in the formation of fibrous tissue
to fill the wound area. During this phase, fibroblasts are
stimulated by multiple cytokines and growth factors released
by platelets, macrophages, keratinocytes, mast cells and
endothelial cells. The fibroblasts become active, start to
proliferate, and secrete MMPs and other proteases to allow
cell migration through the provisional fibrin matrix. Active
fibroblasts produce fibronectin, hyaluronic acid, proteoglycans,
and collagen to form a new ECM that allows keratinocyte
migration. The provisional fibrin matrix becomes the
granulation tissue formed by a loose ECM, embedding blood
vessels, macrophages, and fibroblasts. The fibroblasts differentiate
in myofibroblasts, which contract to pull the wound together and
decrease its area (Li and Wang, 2011; Darby et al., 2014). The
myofibroblast differentiation process is mediated by TGFβ and
CXCL8 and requires the interaction between fibronectin and
αvβ5 integrin (Asano et al., 2006). Similarly, αvβ3 integrin
upregulation contributes to establish an autocrine TGFβ loop
in scleroderma fibroblasts (Asano et al., 2005). Interestingly, αvβ5
integrin is a reported Thy-1 ligand/receptor, and Thy-1 has been
addressed as a negative regulator of latent TGFβ activation
induced by fibroblast contraction, and as an inhibitor of
myofibroblast differentiation through its interaction with αvβ5
integrin in lung cells (Zhou et al., 2010). TGFβ itself can also be
regulated bymechanical strain.Within the wound, TGFβ is found
inactive, and interacts with the latency-associated peptide (LAP)
and the latent TGFβ binding proteins (LTBP). LTBPs (LTBP1, 3,
and 4) link the TGFβ/LAP complex to the ECM, providing a
dormant TGFβ pool that can be activated as wound healing
progresses. The myofibroblasts express integrins that bind to the
LAP, and mechanical force transduced by these integrins either
from the ECM-bounded LTBP or from the myofibroblast
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contraction can release TGFβ by pulling LAP and allowing the
TGFβ to bind its receptor (Munger et al., 1998; Annes et al., 2002;
Annes et al., 2004; Wipff et al., 2007). The newly released TGFβ
can increase the myofibroblast contractile phenotype and its
ECM synthetic activity. Here, it is possible that Thy-1 in the
same cell (Cis interaction) and through its RLD motif, compete
with LAP and the ECM for integrin binding, maintaining the
inactive state of the integrin and thus, allowing displacement of
the other interactions without inducing myofibroblast
differentiation (Zhou et al., 2010; Herrera-Molina et al., 2013).
Blocking other integrins such as α3β1, α11β1, αvβ5 also inhibits
myofibroblast development (Figure 1), highlighting the
importance of integrin signaling during fibroplasia (Asano
et al., 2006; Kim et al., 2009; Carracedo et al., 2010).

Thy-1 has a crucial role in suppressing proliferation and
promoting differentiation of dermal fibroblasts. The lack of
Thy-1 in dermal fibroblasts increases proliferation rates and
reduces apoptosis by modulating β3 integrin function.
Moreover, Thy-1−/− fibroblasts display reduced expression of
myofibroblast differentiation markers, such as αSMA,
fibronectin, collagen I and III, and a reduced amount of
biologically active TGFβ (Schmidt et al., 2015). Consistently,
increased fibroblast proliferation in the absence of Thy-1
expression has also been described in fibrotic foci in lungs of
patients with pulmonary fibrosis and fibroblasts derived from
patients with hypersensitivity pneumonitis, supporting the idea
that Thy-1 expression is necessary to avoid fibrosis (Ramirez
et al., 2011). Alternatively, syndecan 4 regulates fibroblast
migration during wound healing (Bass et al., 2011; Brooks
et al., 2012). Interestingly, Thy-1-mediated migration and focal
adhesion dynamics in embryonic fibroblasts depend on the
recruitment of Partitioning-defective 3 (PAR3) to the
cytoplasmic tail of syndecan 4. Consequently, PAR3 silencing
inhibits FA disassembly triggered by Thy-1 stimulation, favoring
fibroblast adhesion instead of migration (Valdivia et al., 2020).
Further research is necessary to determine if the Thy-1/syndecan
4 interaction can also modulate fibroblast proliferation,
differentiation, or ECM secretion.

b) Re-epithelialization starts approximately 16–24 h after
injury, and during this phase, keratinocytes and MSCs work
together to resurface the skin wound with new epithelium.
Growth factors, chemokines, and cytokines released in the
wound bed activate the keratinocytes adjacent to the wound
edge to allow migration and proliferation (Peplow and
Chatterjee, 2013). The keratinocyte-activated phenotype is
characterized by changes in the cytoskeleton and membrane
receptors, allowing keratinocytes to migrate. Wound
keratinocytes express at least seven different integrins, which
cooperatively control essential cell functions to promote proper
re-epithelialization, including adhesion, migration, proliferation,
survival, and basal membrane assembly (DiPersio et al., 2016).
Migrating keratinocytes exhibit upregulation of keratins (K6,
K16, and K17), MMPs, ECM proteins (Laminin), integrins
(αvβ5, αvβ6, α5β1), and proteoglycans (perlacan and
syndecans) (Figure 1) (Rousselle et al., 2019). In a porcine
wound model, TGFβ stimulates expression of keratinocyte
integrins during re-epithelialization of cutaneous wounds, and

increases mRNA levels of integrin subunits α5, αv, and β5, with
little effect on β1 in human keratinocytes (Gailit et al., 1994).
Integrins and proteoglycans are essential for the keratinocytes to
interact with the fibronectin-rich provisional matrix and later,
with the collagen-rich matrix (Rousselle et al., 2019). Indeed,
keratinocyte-specific β1 integrin knockout mice show a severe
defect in wound healing. Furthermore, α3β1 integrin has been
related to inhibition of migration and wound re-epithelialization
in the skin, where α3-deficient keratinocytes migrate with an
increased velocity and persistence (Margadant et al., 2009).
Furthermore, the role of α6β4 integrin was determined in a
human three-dimensional wound healing model by blocking
β4 integrin with antibodies, which delay keratinocyte re-
epithelialization (Egles et al., 2010). Additionally, epithelial-
mesenchymal interactions between keratinocytes and
fibroblasts generate a bidirectional signaling, in which
keratinocytes stimulate fibroblasts to release growth factors
that, in return, stimulate keratinocyte proliferation (Werner
et al., 2007). Syndecan expression is increased in proliferating
and migrating keratinocytes at the periphery of wounds in the
skin (Figure 1) (Elenius et al., 1991). Particularly, syndecan 4
protein expression is significantly increased during tissue repair
in the mouse and human dermis and is localized at the site of
injury. Importantly, mice deficient in syndecan 4 experience
delayed healing of excisional dermal wounds (Gallo et al.,
1996; Echtermeyer et al., 2001). In a mouse wound healing
model, Gallo and co-workers studied the upregulation of
syndecan 4 throughout the dermis at the injury site; however,
they observed that expression of syndecan 4 returns to basal levels
in the re-epithelialization stage (Gallo et al., 1996). In addition,
dermal fibroblasts isolated from syndecan 4 null mice exhibit
decreased cell migration in wound healing assays in vitro and the
inability to contract three-dimensional fibrin/fibronectin
matrices during in vitro wound closure experiments (Midwood
et al., 2004). On the other hand, Thy-1 expression in
keratinocytes has been reported as a helpful marker of human
keratinocyte stem cells (Nakamura et al., 2006). However, a role
for Thy-1 in keratinocyte function and re-epithelialization has
not been investigated yet.

The ECM plays a transcendental role not only during re-
epithelialization, but also during every phase of the wound
healing process (reviewed in Olczyk et al., 2014; Maquart,
2015; Xue and Jackson, 2015; Tracy et al., 2016; Rousselle
et al., 2019). The secretion of ECM components occurs in a
coordinated fashion in response to specific inflammatory and
growth factors. The sequential deposition of ECM, along with
cell-specific expression of receptors that interact with the ECM,
are responsible for the synchronized recruitment of specific cell
types to the wound area. Additionally, the ECM retains and
modulates the delivery of growth factors and inflammatory
molecules. Thus, aberrant ECM leads to delayed wound
healing and abnormal scarring. Therefore, both ECM proteins
and their integrin receptors play a key role in the re-
epithelialization phase.

c) Angiogenesis is the formation of new capillaries from pre-
existent blood vessels. This process starts approximately 4 days
after the injury and forms the microvascular network throughout
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the granulation tissue. The granulation tissue is a stroma
composed of connective tissue containing ECM proteins, as
well as the cells necessary to allow the sprouting of blood
vessels and subsequent wound closure. The reduction in blood
supply and the exacerbated metabolism of the cells actively
working in the healing process cause hypoxia, a major
angiogenesis stimulus (Semenza, 2007; Castilla et al., 2012;
Kimmel et al., 2016). This hypoxic environment induces an
increase in the levels of the hypoxia inducible factor 1 (Hif-1)
in macrophages, endothelial cells, fibroblasts, and keratinocytes
(Andrikopoulou et al., 2011). Hif-1 activates the transcription of
the main angiogenic factors, including VEGF, angiopoietin 1,
TSP, and CXCL8. The presence of VEGF and macrophages
induce the differentiation of endothelial cells into three
different phenotypes: tip cells that secrete proteases, which
degrade the basement membrane to allow them to detach
from the vessel wall and migrate; proliferative stalk cells that
elongate the new capillary sprout; and the quiescent phalanx cells
that form the vessel lining. After the new capillaries are formed,
PDGF, along with TGFβ and angiopoietin 1, stimulate
mesenchymal cells to differentiate into pericytes and recruit
other pericytes into the wound area. The pericytes wrap
around immature capillaries and contribute to vessel
maturation (Gaengel et al., 2009).

Even though the Thy-1 promoter lacks hypoxia regulatory
elements, Thy-1 expression can be enhanced by Hif-1
downstream targets, such as cytokines and growth factors, as
observed in the hypoxic-ischemic brain after injury or stroke. In a
model of choroidal neovascularization, Thy-1 expression
increases in primary endothelial cells after VEGF or CCL11
treatment, and after laser-induced injury. Moreover, Thy-1
ablation or inhibition reduces VEGF-induced migration and
proliferation of endothelial cells, as well as VEGFR2, Rac and
β3 integrin activation (Wang et al., 2016). Noteworthy, CCL11—a
CCR3 ligand—is expressed by fibroblasts after the initial
recruitment of lymphocytes during the inflammatory phase
(Section 4). CCL11 positively affects neovascularization and
enhances wound repair in vitro by inducing the migration of
human primary dermal microvascular endothelial cells, dermal
fibroblasts, and epidermal keratinocytes into the wound area
(Salcedo et al., 2001; Park et al., 2017; Bunemann et al., 2018).
Additionally, CCR3 is markedly expressed in dermal fibroblasts,
and it is upregulated after cutaneous injury (Bunemann et al.,
2018). Altogether, these findings suggest that CCL11 and its
receptor CCR3 play a crucial role during the wound healing
process; however, further studies are necessary to relate these
effects to CCL11-CCR3-induced Thy-1 expression enhancement
and to integrin/syndecan 4 signaling during wound closure.

Lee et al., showed that Thy-1 is expressed in newly formed
vessels in four different models of adult angiogenesis: balloon
injury of the carotid, tumor implantation in the cornea, renal
artery ligation, and uterine capillaries formed during pregnancy
(Lee et al., 1998). Accordingly, since embryonic angiogenesis
occurs by different mechanisms than those of adult angiogenesis,
Thy-1 is not detected on blood vessels of rat embryos. Moreover,
cytokines such as IL-1β and TNFα upregulate the expression of
Thy-1 in endothelial cells, and after carotid damage, Thy-1

appears in the newly formed vessels adjacent to zones with
macrophage infiltration, indicating a biological function of
Thy-1 during inflammation (Lee et al., 1998; Wen et al.,
2013). Similarly, Thy-1 is upregulated in the EA.hy926
endothelial cell line when treated with TNFα (Brenet et al.,
2020). Thy-1 expression in glioblastoma vasculature is
associated with endothelial, smooth muscle, and pericyte cells,
supporting Thy-1 function during angiogenesis (Inoue et al.,
2016). Further in vitro studies have shown that Thy-1
overexpression decreases migration and tube formation of
endothelial cells (Wen et al., 2013). Although the effect on
tube formation can sound contradictory for a successful
angiogenesis process, these results cannot be easily
extrapolated to in vivo angiogenesis since they were performed
in cells overexpressing Thy-1 and in Matrigel containing high
amounts of cytokines and growth factors that can overstimulate
the endothelial cells. One possible interpretation of these results is
that the role of Thy-1 is to stabilize the newly formed blood
vessels.

Most importantly, transcriptome analysis of blood vessels from
chronic wound edge tissue showed that Thy-1 expression is 24-fold
higher than in vessels from healthy human skin (Figure 1) (Roy
et al., 2007). The biological significance of Thy-1 expression on the
surface of endothelial cells after a skin wound is still not fully
understood. However, Thy-1 would exert a role in recruiting
lymphocytes and allowing trans-epithelial migration, as discussed
in detail above (Section 4).

One of the essential factors for wound angiogenesis is αvβ3
integrin, a receptor for provisional matrix proteins, including
vitronectin, fibronectin, and fibrin, which is expressed on the tips
of angiogenic capillary sprouts (Figure 1) (Tonnesen et al., 2000).
Blockage of αvβ3 integrin using antibodies or specific cyclic
peptides inhibits the formation of granulation tissue and
wound healing (Clark et al., 1996). Provisional matrix
proteins, such as fibronectin and fibrin, increase αvβ3 integrin
expression in endothelial cells, while a collagen-rich matrix has
the opposite effect (Tonnesen et al., 2000). Noteworthy, the
provisional matrix deposited during the hemostasis phase is
subsequently replaced by collagen type I during the
remodeling phase, suggesting that the distribution of αvβ3 at
the tip of the capillaries is spatially and temporally regulated by
the ECM. On the other hand, β1 integrins are expressed along the
full length of the blood vessels, supporting the growing and
sprouting of the vasculature when the new capillaries are
extending (Yamamoto et al., 2015). β1 integrin expression
increases when endothelial cells are plated on collagen-rich
coated surfaces, suggesting a role in stabilizing the newly
formed blood vessels at the end of the wound healing process
(Tonnesen et al., 2000). Likewise, syndecan 4 is upregulated
throughout the granulation tissue in endothelial cells and
fibroblasts after injury (Gallo et al., 1996). In vitro assays using
endothelial cells have shown that syndecan 4 is regulated by
inflammatory factors, such as TNFα and IL-1β, and that
decreasing syndecan 4 expression in endothelial cells impairs
tube formation (Figure 1) (Vuong et al., 2015). Accordingly, mice
lacking syndecan 4 expression showed reduced angiogenesis and
delayed wound healing (Echtermeyer et al., 2001). The syndecan
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4 cytoplasmic domain has also been described to be important for
the function of FGF2, a potent angiogenesis inducer and signaling
molecule in endothelial cells. Cells transfected with syndecan 4
mutated in the cytoplasmic domain show decreased PKCα
activation, which is associated with impaired migration,
proliferation, and tube formation (Horowitz et al., 2002). Full
activation of FGF2 requires not only its interaction with the FGF
receptor, but also its internalization (Goldfarb, 2001).
Interestingly, FGF2 binds to and activates syndecan 4 (Simons
and Horowitz, 2001). At the same time, active syndecan 4 leads to
FGF2 complete activation by triggering FGF2 internalization
through macropinocytosis in endothelial cells (Tkachenko
et al., 2004). Recent reports indicate that FGF2 also
upregulates syndecan 4 in endothelial cells at a high cell
density, an event which might help repair damaged vascular
endothelial cell layer or that could be related to the regulation of
angiogenesis (Hara et al., 2020).

Thy-1 is also found in pericytes and mesenchymal progenitor
cells that can differentiate into pericytes. A recent study identified
two different pericyte populations associated with brain vessels,
based on Thy-1 expression levels. Pericytes expressing high levels
of Thy-1 exhibit a blunted inflammatory response, produce less
ECM, and express lower levels of pericyte markers (e.g., SMA and
PDGFR-β), when compared with pericytes expressing lower Thy-
1 levels (Park et al., 2016). Although such heterogenicity in
pericytes has not been determined after skin injury, these
results suggest that Thy-1 may play a role in microvessel
maturation and ECM deposition to form the granulation
tissue (Figure 1). Moreover, pericytes expressing Thy-1 appear
to secrete vesicles that exhibit Thy-1 on their surface and localize
in the intercellular area (Bukovsky et al., 2001). Although these
Thy-1 (+) vesicles are present between the epithelial-
mesenchymal interphase, their biological role remains uncertain.

d) Peripheral nerve repair occurs by collateral reinnervation and
nerve regeneration. After an injury, the undamaged axons are
stimulated to produce collateral sprouting to reinnervate the skin.
Severed nerves of the peripheral nervous system (PNS) can regrow
the tips of two myelinated axon stumps and reconnect them to
restore their homeostatic function in the skin (Gaudet et al., 2011).
During this process, Schwann cells (SCs) present at the distal
degenerating stump lose their myelin sheath and dedifferentiate
to a progenitor-like cell to promote axonal regrowth. SCs leave the
damaged nerve stump by directly interacting with fibroblasts
accumulated at the wound bed, migrate, align, and form
columnar bands of Büngner, which provide a substrate for
axonal regeneration. Simultaneously, macrophages help to clean
myelin and axon debris. The hypoxic environment and
chemoattractant molecules released by SCs and other cell types,
recruit macrophages/monocytes, which contribute to angiogenesis,
as discussed above. Subsequently, SCs use the newly formed
vasculature as a scaffold to guide the regrowing axons. Once the
axons reinnervate, SCs differentiate and remyelinate the axons
(Chernousov and Carey, 2000; Gaudet et al., 2011).

SCs express integrins that bind laminin (α2β1, α6β1, α6β4),
collagen (α1β1, α2β1), and fibronectin (αvβ3, α5β1). Following a
peripheral nerve lesion, both α5β1 and syndecan 4 levels are strongly
increased in SCs nearby the wounded nerve (Lefcort et al., 1992;

Milner et al., 1997; Chernousov and Carey, 2000; Goutebroze et al.,
2003). On the other hand, fibroblasts in the wound area overexpress
Thy-1 on their membranes. Since fibroblasts are responsible for
guiding the SCs to the lesion site, this close interaction likely occurs
by engagement of α5β1 integrin and syndecan 4 on the surface of
SCs, with Thy-1 present at the fibroblast membrane (Figure 1).
Similarly, our group has described in other glial cells (astrocytes)
expressing αvβ3 and syndecan 4, that binding to Thy-1 promotes
astrocyte adhesion to the ECM and subsequent cell migration
(Hermosilla et al., 2008; Avalos et al., 2009; Kong et al., 2013;
Valdivia et al., 2020).

An early investigation showed that Thy-1 expression in the PNS
is restricted to the nodes of Ranvier within the sciatic nerve and that
it colocalizes with laminin at the SC membranes (Liesi et al., 1990).
Further research using transgenic rodents expressing fluorescent
proteins under the control of the Thy-1 promoter (Thy-1-YFP)
revealed that most of the neurons in the PNS were fluorescent,
suggesting that Thy-1 is broadly expressed in the axons of adult
peripheral neurons (Morris et al., 1983). Noteworthy, this kind of
evidence is not functional and does not discard the possibility of a
differential Thy-1 distribution in microdomains within the axon.
Perhaps the area closer to the wound has a different density or less
active Thy-1 than the rest of the axon, in order to favor the extension
of the axon during repair. Indeed, experiments using the saphenous
nerve crush model in Thy-1-YFP mice, followed by transcutaneous
imaging to evaluate nerve generation, implied that the Thy-1
promoter is timely and spatially regulated after nerve damage.
YFP expression driven by the Thy-1 promoter decreased nearby
the crush injury. After 7 days, a second crush injury prompted a
decrease in YFP levels distal to the crush site, up to complete
disappearance 24 h later. After 2 days, YFP expression started
increasing proximal to the crush site, to fully recover 7 days post-
injury. Moreover, YFP expression at the crush site is exceptionally
high compared with distal areas (Yan et al., 2011). This study
suggests that the Thy-1 promoter is active in healthy and
fully regenerated axons and at the site of nerve injury. Even
though these cell-specific fluorescent reporters are highly
popular to study peripheral nerve repair, very few studies
have focused on the role of Thy-1 during this type of nerve
repair in wounded skin (Feng et al., 2000; Pan et al., 2003; Kemp
et al., 2013). For example, Thy-1 expressed on the axons of PNS
facilitates the regeneration of peripheral nerves, such as the
sciatic nerve (Kemp et al., 2013).

6 REMODELING PHASE

The remodeling phase, also known as the maturation phase, is the
final and longest phase of the wound healing process. It can last
from 21 days to 2 years and occurs concurrently with granulation
tissue formation. During remodeling, all the tissues formed in the
previous phases, including the epidermis, vasculature, nerves, and
myofibers, are mature and functional. In parallel, there is a
decreased tissue cellularity due to apoptosis of fibroblasts,
myofibroblasts, endothelial cells, pericytes, and inflammatory
cells present within the granulation tissue. Additionally, the
number of proteoglycans and glycosaminoglycans diminished,
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reducing the amount of water in the wound. The remodeling
phase is characterized by wound contraction and ECM turnover.
Myofibroblasts direct wound contraction, in which wound tensile
strength increases as the collagen fibers are cross-linked by lysyl
oxidase. The scar tissue has a tensile strength that is never greater
than 80% of the unwounded skin, but this can be improved using
MMP inhibitors. Throughout matrix turnover, MMPs released by
fibroblasts and macrophages break down collagen type III and
replace it with collagen type I, which is organized into parallel
fibers (Toriseva and Kahari, 2009). As the remodeling process
progresses, the ECM is reorganized and later suffers degradation,
which is controlled by the balance of MMPs and tissue inhibitors
of MMPs (TIMPs).

Remodeling is also regulated by growth factors such as TGFβ,
PDGF, and FGF. TGFβ can increase collagen deposition by
enhancing the synthesis of TIMPs. In contrast, PDGF and
FGF increase the expression of collagenase. The balance
between these growth factors controls the rate of remodeling.
Importantly, PDGF also mediates fibroblast differentiation into
myofibroblasts, which participate in wound contraction (Jinnin
et al., 2005; Barrientos et al., 2008).

Macrophages are also crucial during remodeling since they adopt
a fibrolytic phenotype to help engulf the ECM and cell debris. The
removal of fibrous tissue is an important step during remodeling.
When myofibroblasts express the CD47 on their surface (a “don’t-
eat-me-signal”), they are not phagocyted by macrophages, resulting
in excessive matrix deposition and hypertrophic scarring (Lech
and Anders, 2013). As proposed, activation of the fibrolytic
phenotype on macrophages and blockade of CD47 are
relevant factors in reversing tissue fibrosis (Wernig et al.,
2017). Interestingly, CD47, integrins, and syndecan 4 can bind
and activate TSP1 and TSP2. Although controversial, TSP can
regulate tissue remodeling and act as a negative regulator of
wound healing (Kyriakides et al., 1999; Streit et al., 2000;
Kyriakides et al., 2001; Agah et al., 2002; Kyriakides and
Maclauchlan, 2009; Soto-Pantoja et al., 2014). Indeed, blocking
of CD47/TSP signaling is effective in promoting wound closure
and preventing necrosis of skin graft (Isenberg et al., 2008; Soto-
Pantoja et al., 2014; Kale et al., 2021). However, the role of Thy-1/
integrin/syndecan 4 trimolecular complex has not been studied in
the context of CD47/TSP signaling in wounded skin.

Scar formation is the final step of wound repair. Occasionally,
an imbalance may occur during ECM turnover, resulting in
abnormal scar formation, such as hypertrophic or keloid
scarring. Keloid scars are characterized and differentiated from
hypertrophic scars by an excess of connective tissue forming a
firm and raised scar that extends beyond the original wound
limits and does not regress over time. A TGFβ signaling
dysregulation, in which overexpression of TGFβ1 and β2, and
blunted expression of β3, is believed to cause hyperactivation of
fibroblasts, leading to increased ECM production. Consequently,
collagen production is increased 3-fold in hypertrophic scars and
20-fold in keloids (Carswell and Borger, 2021). Likewise, a change
in the expression of pro-inflammatory (IL-6 and IL-8) and anti-
inflammatory (IL-10) cytokines have been associated with
increased incidence of hypertrophic and keloid scarring
(Berman et al., 2017). Despite this knowledge, the etiology of

hypertrophic and keloid scarring is not fully understood yet;
however, mechanical tension seems to be relevant, among
other pathological factors (Butler et al., 2008). Physical
tension has been proposed as a guide in keloid growth
patterns, and skin areas subject to stretching have an
increased incidence of keloid formation due to high
mechanical stimulation (Akaishi et al., 2008; Carswell and
Borger, 2021). Therefore, mechanical tension could play an
important role during wound remodeling.

Every phase of the wound healing process is influenced by
mechanical forces (Agha et al., 2011). Mechanical strain can alter
the microenvironment of a healing wound, causing changes in
cellular function, motility, and signaling (Kuehlmann et al., 2020).
Fibroblasts are essential in supporting wound healing, and the
signaling between the ECM-integrin-cytoskeleton is the classical
pathway of mechanotransduction that regulates fibroblast viability,
collagen production, and myofibroblast transformation during the
remodeling phase (Bainbridge, 2013; Sun et al., 2016; Tschumperlin
et al., 2018). Integrins are the main mechanotransducers of
bidirectional information between cells and the ECM, and
fibroblasts transduce mechanical strain predominantly through β1
integrins (Table 1) (Katsumi et al., 2004). Other important cells
participating in wound healing that are affected bymechanical forces
are keratinocytes, endothelial cells, and adipocytes (Fu et al., 2021).
Cultured human keratinocytes and fibroblasts on a collagen
membrane in a tensile device show asymmetric keratinocyte
migration regulated by growth factors secreted by fibroblasts (Lu
et al., 2016). Keratinocyte proliferation is regulated by mechanical
strain through matrix-integrin signaling, epithelial-mesenchymal
interactions, and Ca2+ channels, which transduce mechanical
signals to PKC, PLC, and mitogen-activated protein (MAP)
kinase pathways (Reichelt, 2007; Fu et al., 2021). Additionally,
keratinocyte migration requires integrins to facilitate wound
closure, as previously described during re-epithelialization
(Section 5, c) (Kenny and Connelly, 2015). Indeed, β1 integrin
can sense collagen and fibronectin ECM stiffness, and β1-null
keratinocytes show a severe defect in skin wound healing
(Figure 1) (Grose et al., 2002; Reynolds et al., 2008). Moreover,
keratinocytes and fibroblasts rearrange their cytoskeleton in
response to matrix stiffness, and the scar hardness and elevation
observed in hypertrophic/keloid scarring can be influenced by
rigidity-induced collagen production and cell proliferation
(Hossain et al., 2005; Solon et al., 2007; Hadjipanayi et al., 2009).
Focal adhesion kinase (FAK) is the most studied signaling pathway
in skin mechanotransduction. FAK is activated downstream of
integrins in fibroblasts and keratinocytes, and mechanical strain
during wound healing leads to FAK hyperactivation, which
correlates with hypertrophic scarring and fibrosis (Aarabi et al.,
2007; Kuehlmann et al., 2020). In contrast, blunted FAK activation
has been related to nonhealing wounds and delayed healing (e.g.,
diabetic wounds) (Wong et al., 2014; LiuW. et al., 2017). These data
support the idea that the cell-centric view of wound remodeling is
incomplete and suggests that tissue stiffness and mechanical strain
within the wound may significantly influence the healing process.
More investigations are necessary to unravel themechanotransducer
proteins that communicate internal with external forces in cells and
their microenvironment.
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The role of Thy-1 in integrin-mediated mechanotransduction
has been mainly studied in Trans interactions, and little is known
about Cis interactions (Hu and Barker, 2019). Thy-1, as well as
integrins and syndecan 4, have been described as
mechanotransducer proteins (Figure 1). Barker and co-
workers showed that Thy-1 regulates fibroblast
mechanotransduction. Thy-1 binding to αvβ3 integrin
modulates rigidity-dependent Rho signaling, cytoskeleton
remodeling, focal adhesion formation, and substrate rigidity
sensing (Fiore et al., 2015). Furthermore, syndecan 4 is also
considered a mechanotransducer protein (Bellin et al., 2009;
Ross et al., 2013). Remarkably, integrins and syndecan 4 form
a trimolecular complex with Thy-1, where two triads have been
reported: α5β1/Thy-1/syndecan 4 in melanoma/endothelial cells
and αvβ3/Thy-1/syndecan 4 in a neuron/astrocyte model (Fiore
et al., 2014; Burgos-Bravo et al., 2020). However, further
investigation is necessary to assess the specific role of Thy-1
and its binding partners during force transduction in cells
involved in every phase of the skin wound healing process.

Additionally, tissue stiffness has been posited to drive stromal
cells to differentiate into active myofibroblasts, which remodel the
tissue, leading to fibrosis progression. Interestingly, fibroblasts
show reduced Thy-1 expression in areas of active fibrogenesis in
human idiopathic pulmonary fibrosis, and in vitro experiments
have shown that the lack of Thy-1 expression in fibroblasts is
enough to induce myofibroblast differentiation on soft matrix
substrates (Hagood et al., 2005; Fiore et al., 2015; Fiore et al.,
2018). Thus, Thy-1 expression in fibroblasts may represent a
physiological mechanism relevant to fibrosis.

7 MESENCHYMAL STEM CELLS

MSCs are multipotent stromal cells with the potential to
differentiate into a variety of cell types, including adipocytes,
chondrocytes, osteoblasts, myocytes, and stromal cells. MSCs can
promote angiogenesis, granulation tissue formation, and
epithelialization, which result in accelerated wound healing
(Hu et al., 2018). MSCs have an anti-inflammatory effect
during the inflammatory phase and can also stimulate
fibroblasts, keratinocytes, and endothelial cells during the
proliferative phase of wound healing.

Thy-1 (CD90) is a marker of MSCs and has a role regulating
the fate of cells during cell differentiation. For instance, Thy-1
positive-MSCs follow osteogenic differentiation, while MSCs
expressing reduced Thy-1 levels can promote adipogenic
differentiation in cells isolated from dental pulp, adipose
tissue, and amniotic fluid (Moraes et al., 2016; Picke et al.,
2018). Additionally, strong evidence indicates that resident
MSCs are activated to differentiate into other cell types, such
as pericytes, myofibroblasts, and endothelial cells during wound
healing and fibrosis (Yamaguchi et al., 2005; Wu et al., 2007;
Sasaki et al., 2008; Lozito et al., 2009; Jeon et al., 2010; Nie et al.,
2011; Ojeh and Navsaria, 2014; Park et al., 2016; Michelis et al.,
2018). However, it is still unknown whether Thy-1 participates in
MSC differentiation into these cell types in the skin. In addition,
the mechanisms by which Thy-1 promotes MSCs differentiation

are still controversial and need further investigation (Yang et al.,
2020).

8 CURRENT THERAPEUTIC STRATEGIES
TARGETING THY-1, INTEGRINS AND
SYNDECAN 4
Different therapeutic approaches to promote wound healing have
been reported. Among these, ECM-based skin substitutes and
cell-based therapies, such as implantation of MSCs, hydrocolloid
pads, and chitosan dressing have shown promising results
(Dreifke et al., 2015). In view of the important role that
integrins, syndecan 4 and Thy-1 play in the wound healing
process, we summarize and discuss here some of the current
therapeutic efforts to modify these molecules and their
interactions in order to improve wound healing outcomes and
design potential future applications.

Integrins have been related with important roles along most of
the wound healing stages (Figure 1). Impaired wound healing by
overhealing (hypertrophic scar) or failure to heal (chronic
wound) can result from aberrant integrin signaling. Many
clinical studies in cancer and fibrosis have used integrin
antagonists, such as blocking peptides, antibodies, and small
molecules, to inhibit angiogenesis, cell migration, and
proliferation (Silva et al., 2008; Lasinska and Mackiewicz,
2019; Su et al., 2020; Zhang et al., 2021). However, less is
known about the advantages of these therapeutical approaches
during wound healing of the skin.

To date, several pre-clinical studies in skin models have shown
that integrin antagonists can potentially improve wound
healing. For example, the antibody P1F6 (against αvβ5) and
LM609 (against αvβ3) are effective in decreasing myofibroblast
differentiation markers and TGFβ-induced gel contractility in
human dermal fibroblasts (Lygoe et al., 2004). Similarly, both
anti αvβ5 antibodies and RGD synthetic peptides have been
used for blocking the interaction of this integrin with LAP-β1
and small latent complex (SLC) binding during the activation of
latent TGFβ in dermal fibroblasts (Asano et al., 2006).
Furthermore, blockade of other integrins, such as α3β1 and
α11β1, also inhibits myofibroblast development (Kim et al.,
2009; Carracedo et al., 2010). Thus, integrins related to TGFβ
activation are biological targets for preventing fibrosis
(Nishimura, 2009).

Integrins can also be targeted by creating substrates that
mimic ECM components or binding peptides. The conjugation
of integrin-targeting peptides to biomaterials has been shown
transcendental for therapeutic success and has been recently
reviewed (Zhao et al., 2020). In this context, for example, a
thermoresponsive hydrogel formulated with laminin-derived
peptides (PPCN-A5G81) that activate α3β1 and α6β1
integrins, has been tested in a diabetic mouse model,
showing significant acceleration of wound closure (Zhu
et al., 2018). During in vitro assays, the PPCN-A5G81
hydrogel induces cell spreading and migration of
keratinocytes and dermal fibroblasts and controls the
integrin α3- and α6-dependent proliferation of human
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dermal fibroblasts. As found in in vivo assays, the PPCN-
A5G81 hydrogel accelerates the closure of excisional splinted
wounds in diabetic mice by enhancing the granulation tissue
formation and re-epithelialization (Zhu et al., 2018). Similarly,
a peptide derived from angiopoietin 1 (QHREDGS), delivered
as a soluble peptide, or collagen-chitosan hydrogel, or covering
nanosheets of silk fibroin, positively influences re-
epithelialization, angiogenesis, and granulation tissue
formation to accelerate wound healing by binding αvβ3 and
α5β1 integrins (Miklas et al., 2013; Xiao et al., 2016; Zhao et al.,
2020). Moreover, a clinical trial indicated that the topical
application of RGD peptide matrix scaffold, on partial-
thickness scald burns in pediatric patients accelerates
wound healing (Hansbrough et al., 1995). Therefore, to
positively influence wound healing, the efforts to develop
therapeutic tools can be focused on the activation or
inhibition of specific integrins.

Some yet unexplored roles of syndecan 4 during wound
healing include its function in regulating oligomerization and
activation of chemokines, shedding from the cell surface in
response to inflammatory molecules, and acting as a co-
receptor for growth factors to enhance the signaling
downstream of the growth factor receptor. In diabetic and
obese mouse models, proteoliposomes containing syndecan 4
and PDGF-BB enhance PDGF-BB activity, improving wound
healing. These proteoliposomes increase re-epithelialization and
angiogenesis, compared to the treatment with PDGF-BB alone.
The proportion of M1/M2 macrophages also improves,
suggesting that the syndecan 4 proteoliposomes improve
PDGF-BB efficacy in wound healing (Das et al., 2016). Most
of syndecan 4 functions are mediated by their extracellular HS
moiety (Bernfield et al., 1999; Tumova et al., 2000). Alternatively,
heparanase, an endoglycosidase that cleaves HS from the cell
surface and ECM, leads to the release and activation of HS-bound
growth factors and cytokines that participate in the wound
healing process. Heparanase itself is expressed in the
granulation tissue and transgenic mice overexpressing
heparanase show increased wound angiogenesis (Zcharia et al.,
2005). Remarkably, topical application of heparanase enhances
wound healing, vessel maturation and skin survival, suggesting
that syndecan and other HS-proteoglycans can be important
therapeutic targets (Zcharia et al., 2005; Fuster and Wang, 2010).

Thus far, the potential of Thy-1 as a therapeutic target has not
been studied in skin wound healing. Some pre-clinical studies
have provided some clues about the delivery of recombinant Thy-
1 being beneficial in reversing fibrosis in biological systems other
than skin. For instance, during idiopathic pulmonary fibrosis,
fibroblasts lacking Thy-1 have increased proliferation and
decreased myofibroblast differentiation markers. Similarly,
Thy-1 deficit in an in vivo lung fibrosis mouse model is
restored by administrating soluble Thy-1, showing that
treatment with soluble Thy-1 therapeutically inhibits integrin-
mediated fibrosis (Tan et al., 2019). Even though fibrosis
mechanisms are considered to be similar between different
tissues, the fibroblast heterogenicity within and between tissues
suggest that these observations need to be carefully evaluated in
skin wound healing fibrosis models.

9 CONCLUDING REMARKS

Here, we have reviewed diverse instances where either Thy-1,
integrins or syndecan 4 are biologically relevant during wound
healing. Specifically, we described that each of these proteins are
upregulated during wound healing and that wound closure is
delayed after decreasing the expression of any of these proteins.
Our revision also pointed out to some putative functions of Thy-
1, integrins and syndecan 4, based in observations performed in
similar cell types in different biological systems. However, the
effect of the Thy-1/integrin/syndecan 4 trimolecular complex
remains mostly unexplored during skin injury.

Integrin or syndecan 4modulation by itself has been shown to be
effective in improving wound outcomes during pre-clinical assays.
However, most of the successful treatments currently used in the
clinic consist of complex skin substitutes or allographs composed of
numerous ECM proteins, GAGs, growth factors, and cytokines,
suggesting that a simplistic approach of modulating only one
molecule may not be ideal.

Much less is known regarding the role of Thy-1 during skin
wound and its potential as a therapeutic agent. Nonetheless, the
fact that Thy-1 can act as the ligand of several integrins and
syndecan 4, expressed by diverse cell types, highlights the
importance of this glycoprotein as a broad modulator of cell
function, and posits Thy-1 as an adequate biological target to
develop future therapeutics for wound healing.

Wound healing is a complex process that involves an
orchestrated plethora of events and requires the participation of
many molecules and cells. An altered balance of these events results
in aberrant wound phenotypes, where too little (chronic wounds) or
too much (scarring and fibrosis) leads to unwanted outcomes. The
trilogy of Thy-1/integrin/syndecan 4 proteins and its interaction as a
trimolecular complex, either in Cis or Trans, offers an interesting
window of opportunity for the development of new combined
therapies to control the process of wound healing.
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GLOSSARY

αSMA α smooth muscle actin

bFGF basic fibroblast growth factor

CD90 cluster of differentiation 90

ECM extracellular matrix

FA focal adhesion

FAK focal adhesion kinase

Fas TNF receptor superfamily, member 6

FasL Fas ligand

FGF2 fibroblast growth factor 2

GAGs glycosaminoglycans

GPCR G-protein coupled receptor

HBD heparin-binding domain

Hif-1 hypoxia inducible factor 1

IGF1 insulin growth factor 1

INFc interferon c

LAP latency-associated peptide

LPS lipopolysaccharide

LTBP latent TGF-β binding protein

MAPK mitogen-activated protein kinase

MMPs matrix metalloproteinases

MSCs mesenchymal stem cells

NETs neutrophil extracellular traps

NO nitric oxide

PARP poly ADP-ribose polymerase

PDGF platelet-derived growth factor

PI-PLC phosphoinositide-specific phospholipase C

PMA phorbol 12-myristate 13-acetate

PMN polymorphonuclear neutrophils

RAGE receptor for advanced glycation end products

ROS reactive oxygen species

SCs Schwann cells

TCR T-cell antigen receptor

TGFβ transforming growth factor subunit β

Thy-1 thymus cell antigen 1

TIMPs tissue inhibitors of matrix metalloproteinases

TLR toll-like receptor

VEGF vascular endothelial growth factor

YFP yellow fluorescent protein
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