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Abstract: Technological advances are continually improving our ability to obtain more accurate views
about the inner workings of biological systems. One such rapidly evolving area is single cell biology,
and in particular gene expression and its regulation by transcription factors in response to intrinsic
and extrinsic factors. Regarding the study of transcription factors, we discuss some of the promises
and pitfalls associated with investigating how individual cells regulate gene expression through
modulation of transcription factor activities. Specifically, we discuss four leading experimental
approaches, the data that can be obtained from each, and important considerations that investigators
should be aware of when drawing conclusions from such data.
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1. Introduction

To perform essential biological functions and respond to changes in their microenvironments, cells
systematically change the expression levels of process-relevant genes, while maintaining homeostatic
expression of so-called housekeeping genes. For example, after detecting lipopolysaccharide (LPS),
a bacteria-derived substance and molecular indicator of infection, macrophages alter the expression
levels of several thousand genes, while maintaining baseline expression of other genes [1]. We still
do not fully understand the mechanisms underlying how the cells of different tissues regulate the
expression of such an astounding number of genes in a coordinated manner to respond to changes
in their surroundings. The interaction of transcription factors (TFs) with DNA is fundamental
for the regulation of gene expression [2]. Each of the more than 2600 human TF proteins [3] can
influence transcription by interacting with specific DNA sequence motifs located throughout the
chromatinscape. TFs are thought to not only determine which genes are expressed, but also influence
the degree and timing of gene expression. However, their temporal activity patterns (hereafter
referred to as TF dynamics) can be unexpectedly complex [4–11], which raises questions about their
functional significance, and also complicates efforts to understand the role of TF dynamics in terms of
gene regulation.

In investigations of TF dynamics in single cells, TFs are often expressed as fluorescent fusion
proteins and imaged via live-cell fluorescence microscopy. Imaging enables real-time recording
of stimulus-induced changes in single cell TF abundance, nuclear localization, and residence
time [12–14]. Patterns of signal-induced TF dynamics observed in mammalian cells include single
peak, multiple peaks or oscillations, and sustained activation (Figure 1A–C). Through quantitative
image analysis, specific features which describe various aspects of single cell TF dynamics can be
extracted. For example, TF dynamics features, such as the length of time until TF activity is detected
(time-to-response or onset delay), the amplitude or fold-change, the length of time a TF remains active
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(duration), and time-integrated TF activity (area under the curve (AUC)) [5] (Figure 1D), have been
used to test for correlation with downstream readouts.
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Figure 1. Features of single cell transcription factor (TF) dynamics and their impact on gene 
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Quantitative features that characterize TF dynamics. (E) Assessment of the relationship between a 
feature of TF dynamics (D) and the expression of a target gene across different treatment or 
experimental groups. 

Changes in the population-level expression of specific target genes have been correlated to single 
cell dynamics of TFs, including nuclear factor κB (NF-κB) [13,15–19], SMAD [20], and p53 [21–24] 
(Figure 1E). However, TF dynamics-mediated regulation of mammalian gene expression at the single 
cell level has only been investigated in a limited number of seminal studies [23,25–31], partly due to 
technical constraints. These studies measured TF dynamics and gene expression in the same single 
cells by combining live cell imaging of a TF reporter with one of four experimental approaches: (1) 
single-molecule RNA fluorescence in situ hybridization [23,25,26]; (2) single-cell RNA-seq [27]; (3) 
imaging fluorescent reporter protein expression levels [13,29–31]; or (4) use of microfluidic 
immunoassays to measure levels of secreted proteins encoded by the induced genes [28].  

2. smRNA-FISH 

Single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) is a molecular technique 
characterized by its ability to detect low levels (<5 copies per cell) of endogenous RNA transcripts of 
interest in individual cells [32,33]. It requires incubating fixed cells with fluorescently labeled probes 
which hybridize to complementary RNA transcripts. After hybridization, the abundance (and spatial 
distribution) of the fluorescent probe-RNA complexes are measured by fluorescence microscopy and 
serve as readouts of gene expression levels [32,33]. Although commonly performed to analyze the 
expression of a few genes, smRNA-FISH has been multiplexed to analyze the expression levels of 
tens to thousands of different genes [34–38]. Using this approach, certain dynamic features of NF-κB 
[25], p53 [23], and SMAD [26] have been revealed to correlate with the expression of their target genes 
in the same cells. Specifically, fold changes in the initial peak response of NF-κB [25] and SMAD [26] 
were found to correlate with target gene expression, while the duration of TF activity was important 
for p53-mediated gene expression [23].  

Figure 1. Features of single cell transcription factor (TF) dynamics and their impact on gene
expression. (A–C) Example patterns of single cell TF dynamics observed in response to stimuli. (D)
Quantitative features that characterize TF dynamics. (E) Assessment of the relationship between
a feature of TF dynamics (D) and the expression of a target gene across different treatment or
experimental groups.

Changes in the population-level expression of specific target genes have been correlated to single
cell dynamics of TFs, including nuclear factor κB (NF-κB) [13,15–19], SMAD [20], and p53 [21–24]
(Figure 1E). However, TF dynamics-mediated regulation of mammalian gene expression at the single
cell level has only been investigated in a limited number of seminal studies [23,25–31], partly due to
technical constraints. These studies measured TF dynamics and gene expression in the same single
cells by combining live cell imaging of a TF reporter with one of four experimental approaches:
(1) single-molecule RNA fluorescence in situ hybridization [23,25,26]; (2) single-cell RNA-seq [27];
(3) imaging fluorescent reporter protein expression levels [13,29–31]; or (4) use of microfluidic
immunoassays to measure levels of secreted proteins encoded by the induced genes [28].

2. smRNA-FISH

Single-molecule RNA fluorescence in situ hybridization (smRNA-FISH) is a molecular technique
characterized by its ability to detect low levels (<5 copies per cell) of endogenous RNA transcripts of
interest in individual cells [32,33]. It requires incubating fixed cells with fluorescently labeled probes
which hybridize to complementary RNA transcripts. After hybridization, the abundance (and spatial
distribution) of the fluorescent probe-RNA complexes are measured by fluorescence microscopy and
serve as readouts of gene expression levels [32,33]. Although commonly performed to analyze the
expression of a few genes, smRNA-FISH has been multiplexed to analyze the expression levels of tens
to thousands of different genes [34–38]. Using this approach, certain dynamic features of NF-κB [25],
p53 [23], and SMAD [26] have been revealed to correlate with the expression of their target genes in
the same cells. Specifically, fold changes in the initial peak response of NF-κB [25] and SMAD [26]
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were found to correlate with target gene expression, while the duration of TF activity was important
for p53-mediated gene expression [23].

Despite the high-resolution measurements of transcripts enabled by smRNA-FISH, this approach
has a caveat which must be considered in the interpretation of results. smRNA-FISH cannot be used to
monitor temporal changes in gene expression in the same single cells over time. Instead, only a single
endpoint snapshot measurement of gene expression can be obtained per cell, after TF dynamics have
been continuously imaged in each cell (Figure 2A,B). Therefore, it is difficult to adequately measure
gene expression patterns or dynamics in single cells using smRNA-FISH. If only one snapshot of
gene expression is taken per cell for a specific gene or set of genes, gene expression patterns that
occur before or after the snapshot is taken are unable to be recorded. Subsequently, important data
collection may be missed (Figure 2B), which could impact determinations as to whether TF dynamics
correlate or do not correlate with single cell gene expression (Figure 2C). The use of one endpoint
leaves this approach especially prone to false-negative conclusions (Figure 2C, genes C–D). If two or
more timepoint snapshot measurements are recorded, conclusions may be strengthened incrementally.
However, a negative result, i.e., a lack of correlation between TF dynamics and gene expression, would
still be possible if the correlated behaviors occurred at some other (unsampled) times.
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Figure 2. Continuous measurements of TF dynamics and endpoint measurements of gene
expression in the same single cells using smRNA-FISH or scRNA-seq. (A) Single cell TF dynamic
responses (cells #1–3) imaged continuously (dots) after a hypothetical cell activation. (B) Single-cell
smRNA-FISH or scRNA-seq endpoint measurements (dots) of gene expression levels for hypothetical
genes A–D induced by the TF dynamics in cells #1–3 (A). (C) Graphs depicting positive correlation
(genes A, B) and spurious lack of correlation (genes C, D) (due to incomplete data) between TF dynamics
and single cell gene expression. Dotted lines represent unsampled measurements.
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3. scRNA-seq

Single-cell RNA sequencing (scRNA-seq) offers a uniquely powerful advantage which is
orthogonal to smRNA-FISH, as this approach enables an unbiased profiling of gene expression.
It measures the levels of endogenous RNA transcripts expressed in individual cells in a genome-wide
manner by next-generation sequencing technology [39–43]. Such a wide coverage dataset cannot
be obtained from other single cell approaches. To the best of our knowledge, scRNA-seq has only
recently been used to study the impact of TF dynamics on single cell gene expression [27], where the
investigators also employed smRNA-FISH to verify results for selected genes. This study revealed that
LPS-induced patterns of single cell NF-κB dynamics (single narrow peak, sustained peak, or multiple
peaks) correlate with the expression of distinct genes [27].

Unfortunately, scRNA-seq possesses the same pitfall as smRNA-FISH because it is also limited
to providing only one single static snapshot of gene expression per cell (Figure 2B). scRNA-seq does
not measure changes in gene expression in individual cells or capture transient or long-term gene
expression events that take place before or after a snapshot measurement is obtained. Therefore,
interpreting whether TF dynamics and single cell gene expression correlate with each other can also be
problematic when using scRNA-seq (Figure 2A–C). Moreover, use of scRNA-seq currently requires
that single cells be cultured and imaged for TF dynamics in isolation of each other, so that each cell can
later be harvested for RNA analysis [27]. This blocks any naturally occurring exchange of paracrine
signals between cells. Lastly, scRNA-seq comes with commonly acknowledged technical issues such
as sparse data, noisy signals, amplification bias, and drop-outs [44].

4. Fluorescent Reporters

Measuring the expression of fluorescent reporter proteins in single cells is arguably the most
information-rich approach for investigating the impact of TF dynamics on gene expression. Fluorescent
reporter proteins, typically enhanced green fluorescent protein (EGFP) or alternatives, are expressed
from customized gene expression cassettes introduced into cells by various means. The cassettes can be
integrated into chromatin in cell lines and in vivo systems at random [45] or at specific locations [46],
and their expression can be driven by a variety of TF-responsive promoters [47–51]. The abundance
of the reporter protein is not an immediate readout of transcription, due to the time it takes for the
translation of mRNAs, protein folding, and maturation of fluorescent proteins. The delay in the
detection by microscopy can be minimized with careful reporter construct design and a fast-maturing
fluorophore. After imaging data are collected, gene induction or repression can be quantified by the
rate of change in the fluorescent intensity of the reporter [30,52,53].

There are several advantages of using fluorescent reporter proteins to investigate single cell gene
expression, especially as it relates to TF dynamics. First, expression levels of fluorescent reporter
proteins can be measured in real-time at high temporal resolution, over many hours or even days
(Figure 3B), without major disruptions to cell physiology or viability under optimal imaging conditions.
A variety of unsynchronized expression patterns, including single or multiple bursts, can be captured,
which are commonly missed by endpoint snapshot measurements (Figure 2B). Second, TF dynamics
and gene expression can be imaged simultaneously in the same single cells by using fluorescent
proteins with distinct excitation and emission wavelengths for the TF fusion protein and the reporter
(Figure 3A,B). Capturing both gene expression dynamics and TF dynamics in the same single cells
is critical to determining whether and which TF dynamic parameters impact gene expression at the
single cell level. Third, the approach does not require culturing individual cells in isolated wells.
Furthermore, through protein engineering, the stability and degradation rates of fluorescent reporter
proteins can be modulated and characterized to calculate rates of reporter synthesis. Such calculations
enhance the assessment of correlations between TF dynamics and single cell gene expression, and
facilitate mathematical modeling of gene expression in single cells. An additional benefit of using
fluorescent reporters is the ability to quantify absolute numbers of fluorescent TF proteins (and
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other important signaling molecules) through use of approaches including Fluorescent Correlation
Spectroscopy [45,54,55].
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Figure 3. Use of fluorescent reporter proteins enables continuous measurements of TF dynamics
and gene expression in the same single cells. (A). Single cell TF dynamic responses imaged
continuously (dots) after hypothetical cell activation. (B). Continuous measurements (dots) of single
cell gene expression levels for hypothetical genes A and D. (C). Graphs depicting correlation, due
to sufficient data, between TF dynamics (A) and single cell expression levels of genes A and D (B).
Positive correlation between TF dynamics and hypothetical genes B and C are not shown.

Studies utilizing fluorescent reporter proteins to quantify gene expression and TF dynamics
in the same single cells [13,29–31] have revealed the features of NF-κB dynamics which influence
gene regulation. In macrophages, the nuclear intensity (abundance of NF-κB in the nucleus) was
correlated with expression of a NF-κB-responsive tumor necrosis factor alpha (TNFα) promoter-driven
mCherry reporter [30]. In HeLa cells, nuclear fold-change correlated with human immunodeficiency
virus (HIV) long-terminal repeat (LTR) promoter-driven EGFP induction [29]. The number of
peaks, i.e., the persistence of oscillations, correlated with the expression of IκBα-EGFP, driven by
a 5X-κB-consensus-site promoter [13]. The time-to-response of interferon regulatory factor 7 (IRF7) has
also been demonstrated to regulate the single cell expression of interferon beta (IFN-β) [31].

The use of fluorescent reporter proteins to measure single cell gene expression does have
limitations. Unlike smRNA-FISH and scRNA-seq, the fluorescent proteins do not report expression
of endogenous RNA transcripts. To date, we are unaware of studies that have investigated TF
dynamics-mediated regulation of endogenous gene loci using this approach. In addition, due to
constraints associated with the overlap of fluorescent protein excitation and emission spectra, only
a few reporter proteins can be simultaneously imaged as readouts for expression of different genes.
Detection of signals from fluorescent reporters is likely to be not as sensitive as smRNA-FISH for
low-abundance transcripts. Imaging very low-abundance fluorescent reporters may require using an
increased laser power, which can result in cellular toxicity if not addressed by adjusting other image
acquisition parameters.
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5. Microfluidic Immunoassays

A marked alternative to assessing gene expression through measurements of RNA transcripts
or intracellular protein abundance is measuring the amount of induced proteins that are secreted
from single cells. Different research groups have engineered microfluidic devices capable of culturing
single cells in isolation, stimulating them individually, and then capturing and quantifying the levels
of specific proteins that are secreted by each single cell via antibody-based immunoassays [56–59],
even up to once every minute for extended time-courses [60]. When coupled with imaging systems,
microfluidic immunoassays enable real-time measurements of single cell TF dynamics and protein
secretion as a readout of single cell gene expression [56,59]. A major benefit of microfluidics is the
throughput of data acquisition; the devices often contain tens or hundreds of individual cell culture
and treatment channels, enabling multiplex treatments of individual cells with different ligands, ligand
concentrations, and stimulus patterns. This multiplexed stimulation and detection capability vastly
expands the capacity to study TF dynamics and single cell gene expression responses in a variety
of different conditions. Moreover, microfluidics (combined with immunoassays or other single cell
gene expression methods) enable studies of TF dynamics and gene expression in non-adherent cells,
a feat not easily achieved using other approaches. A recent study combined imaging TF dynamics
with microfluidic immunoassay of single cell protein secretion to study the impact of TF dynamics on
single cell gene expression, and reported that NF-κB dynamics did not correlate with the expression of
TNF-α protein [28]. This finding was contrary to what was observed for expression of a fluorescent
reporter protein driven by the TNFα promoter [30], suggesting that the secretion of cytokines may be
governed by additional regulatory steps regarding their release into the extracellular space.

The fact that separate biochemical processes underlie the regulation of gene expression and
protein secretion is probably the most significant pitfall associated with utilizing secreted proteins as
measures of gene expression. It is not difficult to envision a case where single cell gene expression
correlates with the dynamics of a TF, but the kinetics and extent of single cell protein secretion do not.
Another caveat of the approach, which is shared by scRNA-seq, is the requirement for strict isolation
of single cells in individual culture wells or channels. When interpreting data or comparing results
with those of other studies, these points should be taken into consideration.

6. Conclusions

Advances in microscopy, high-throughput sequencing, and microfluidics are steadily making
the study of single cell TF dynamics more tractable. However, many unresolved and technically
challenging issues remain regarding the fundamental aspects of TF dynamics and their role in gene
regulation. Each of the approaches to measuring single cell gene expression discussed here, when
coupled with imaging TF dynamics, has its own benefits and pitfalls. Any of the given methods may
be the most appropriate depending on specific research needs. Nonetheless, we argue that the use of
fluorescent reporter proteins is the technique which may well be the best option currently, being the
only approach that provides real-time data in the same single cells. Such information-rich data can be
used to determine per-cell correlations between TF dynamics and gene expression, which provides
critical information for mechanistic modeling of the relevant regulatory processes. We look forward to
improvements in existing technologies and the development of new methods that will facilitate our
abilities to simultaneously measure real-time TF dynamics as well as expression of many endogenous
genes in the same cells, in vitro and in vivo.
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