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Abstract: Polytopic organic ligands with hydrazone moiety are at the forefront of new drug research
among many others due to their unique and versatile functionality and ease of strategic ligand
design. Quantum chemical calculations of these polyfunctional ligands can be carried out in silico
to determine the thermodynamic parameters. In this study two new tritopic dihydrazide ligands,
N’2, N’6-bis[(1E)-1-(thiophen-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L1) and N’2, N’6-
bis[(1E)-1-(1H-pyrrol-2-yl) ethylidene] pyridine-2,6-dicarbohydrazide (L2) were successfully prepared
by the condensation reaction of pyridine-2,6-dicarboxylic hydrazide with 2-acetylthiophene and
2-acetylpyrrole. The FT-IR, 1H, and 13C NMR, as well as mass spectra of both L1 and L2, were
recorded and analyzed. Quantum chemical calculations were performed at the DFT/B3LYP/cc-
pvdz/6-311G+(d,p) level of theory to study the molecular geometry, vibrational frequencies, and
thermodynamic properties including changes of ∆H, ∆S, and ∆G for both the ligands. The opti-
mized vibrational frequency and (1H and 13C) NMR obtained by B3LYP/cc-pvdz/6-311G+(d,p)
showed good agreement with experimental FT-IR and NMR data. Frontier molecular orbital (FMO)
calculations were also conducted to find the HOMO, LUMO, and HOMO–LUMO gaps of the two
synthesized compounds. To investigate the biological activities of the ligands, L1 and L2 were tested
using in vitro bioassays against some Gram-negative and Gram-positive bacteria and fungus strains.
In addition, molecular docking was used to study the molecular behavior of L1 and L2 against tyrosi-
nase from Bacillus megaterium. The outcomes revealed that both L1 and L2 can suppress microbial
growth of bacteria and fungi with variable potency. The antibacterial activity results demonstrated
the compound L2 to be potentially effective against Bacillus megaterium with inhibition zones of 12
mm while the molecular docking study showed the binding energies for L1 and L2 to be −7.7 and
−8.8 kcal mol−1, respectively, with tyrosinase from Bacillus megaterium.

Keywords: DFT; vibrational frequencies; FMO; tritopic; polydentate; molecular docking

1. Introduction

Polytopic ligands containing hydrazide-hydrazone moiety (-CO-NHN=CH-) are im-
portant for new drug development [1–6] because their polyfunctional nature offers mul-
tifarious synthetic ways to derivatize such organic molecules towards suitable and ef-
fective drug–receptor interaction. The derivatives of hydrazide-hydrazone moiety with
heterocyclic systems possess a range of biological activities; namely, anti-microbial, anti-
mycobacterial, antitubercular, anticonvulsant, anticholinesterase [1], antiplatelet, and more
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importantly antitumor [5,7]. Transition metal complexes derived from such types of lig-
ands have been widely studied since they also demonstrate significant biological and
pharmacological properties [8–11]. Self-assembly of transition metals with multifunctional
polydentate ligands has resulted in a successful paradigm of single-step synthesis of a new
class of clusters of well-defined aesthetical architectures bearing spectacular electronic,
catalytic, photophysical, photochemical, and magnetic properties [10–12]. In addition,
depending on the relative orientation of the terminal donor groupings, exotic helicate
structures, self-assembled clusters, and grids can be synthesized [10–19]. Nonetheless, the
foremost synthetic challenge in this field is to design and synthesize new polytopic ligands
with appropriate donor groupings placed strategically in place for metal coordination. In
general, pyrrole, thiophene, and their organic and metal cluster derivatives are recognized
to present a wide range of biological activities [20–33]. Therefore, the design and synthesis
of novel ligands containing the thiophene and pyrrole rings have attracted great interest.

In recent years, computational chemistry along with sophisticated computational
methods have been widely used in solving and modeling chemical reactivity, establishing
structure-reactivity correlations, and in predicting vibrational, electronic, and thermody-
namic properties of the compounds in the biological and chemical environments [34].
The methods are also used as secondary evidence to support analytical and experimental
data [35]. Density functional theory (DFT) has been extensively employed for the calcu-
lation of various molecular properties such as molecular structure, UV-Vis, NMR, FT-IR,
and Raman activities of biological compounds. Often such responses are measured using
harmonic force fields. These methods provide relatively accurate molecular structures
and energies using a suitable basis set compared to the conventional ab initio restricted
Hartree–Fock (RHF) and Moller–Plesset second-order perturbation theory (MP2) calcula-
tions. DFT predicts relatively accurate vibrational wavenumbers for polyatomic molecules
with moderate computational effort [36–38].

In the present study, the design and synthesis of two novel tritopic hydrazone deriva-
tives, L1 and L2, are described with spectroscopic, DFT, and molecular docking studies. The
structural characterization of L1 and L2 were experimentally accomplished by FT-IR, (1H
and 13C) NMR, and mass spectroscopic techniques. Quantum mechanical investigations
were performed in detail by computational methods exploring the optimized molecular
geometries, molecular electrostatic potential (MEP) mapping with atomic charges, IR fre-
quencies, NMR chemical shifts (1H and 13C), HOMO-LUMO energies, and thermodynamic
parameters. Dipole moments of both L1 and L2 were also investigated using the DFT
method at the B3LYP level with the 6-311G+(d,p) basis set. The experimental data obtained
from FT-IR and NMR chemical shifts (1H and 13C) were compared to the calculated results
found from the DFT method. In addition to that, the compounds were tested in vitro
against some Gram-negative and Gram-positive bacteria and two fungi. A molecular
docking methodology was used to study the molecular behavior of L1 and L2 against
tyrosinase from Bacillus megaterium.

2. Experimental Data

All chemicals were purchased from Sigma-Aldrich and used as received without
further purification. Infrared (IR) spectra were recorded on a Shimadzu (FTIR) Prestige-21
spectrophotometer (Kyoto, Japan) (range: 4000–400/cm, using KBr disk); 1H and 13C-NMR
spectra were recorded on a Bruker DPX-400 spectrophotometer (Bermen, Germany) using
tetramethyl silane as an internal reference. NMR spectra were recorded on DMSO solvent.
Mass spectra were obtained from VG Micro mass 7070HS (EI) and HP1100MSD (LCMS)
spectrometers (Santa Clara, CA, USA).

2.1. Synthesis of Ligands
2.1.1. Synthesis of Ligand (L1)

The synthesis of pyridine-2,6-dicarboxylic dihydrazide was carried out according to
the synthetic procedure reported and published by Thompson et al. [39]. A solution of
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pyridine-2,6-dicarboxylic hydrazide (590.5 mg, 3.03 mmol) in methanol (30 mL) was added
to a solution of 2-acetylthiophene (834.0 mg, 7.64 mmol) in methanol (10 mL) with continu-
ous stirring. The resulting mixtures were stirred at 60 ◦C over a period of 18 h (Scheme 1).
A yellow precipitate was formed during the reaction, which was collected by filtration
and dried under vacuum. (Yield: 92%). IR (KBr disk, cm−1): 3327 (ν NH), 3076 (ν C–H),
1682 (ν C=O), 990 (ν thiophene). 1H-NMR (400 MHz, DMSO-d6, ppm): δ 11.43 (s, 2H),
8.34 (m, 2H), 8.28 (m, 1H), 7.65 (d, 2H, J = 4.8 Hz), 7.61 (d, 2H, J = 3.2 Hz), 7.14 (t, 2H,
J = 8.8 Hz), 2.51 (s, 6H). 13C-NMR (100 MHz, DMSO-d6, ppm): 159.44 (C=O), 154.55 (Ar-C),
148.91 (Ar-C), 143.22 (–C=N–), 140.48 (Ar-C), 130.06 (Ar-C), 129.44 (Ar-C), 128.20 (Ar-C),
125.75 (Ar-C), 15.32 (–CH3). Mass spectrum (m/z): 434.07 (MNa+), 305.41, 217.37.
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2.1.2. Synthesis of Ligand (L2)

L2 was prepared by refluxing the mixtures of a solution containing pyridine-2,6-
dicarboxylic dihydrazide (390.33 mg, 2.0 mmol) in methanol (40 mL) and a solution con-
taining 2-acetylpyrrole (437.43 mg, 4.0 mmol) in methanol (10 mL). The reaction mixture
was stirred for 18 h under reflux and was then cooled to room temperature. A dark
yellow precipitate was formed during the reaction, which was collected after 48 h by
filtration and dried under vacuum. (Yield: 89%). IR (KBr disk, cm−1): 3501 (ν NH
in pyrrole), 3456 (νsym NH), 3416 (νasym NH), 3099 (ν C–H), 1678 (ν C=O), 835 (ν pyr-
role). 1H-NMR (400 MHz, DMSO-d6, ppm): δ 11.41 (s, 2H), 11.34 (s, 2H), 8.35 (m, 2H),
8.27 (m, 1H), 6.93 (m, 2H), 6.67 (m, 2H), 6.15 (m, 2H), 2.39 (s, 6H). 13C-NMR (100 MHz,
DMSO-d6, ppm): 159.11 (C=O), 153.65 (Ar-C), 149.25 (–C=N–), 140.31 (Ar-C), 130.04 (Ar-C),
125.26 (Ar-C), 123.05 (Ar-C), 112.83 (Ar-C), 109.34 (Ar-C), 14.82 (–CH3). Mass spectrum
(m/z): 400.15 (MNa+), 305.36, 217.38.

2.1.3. Antimicrobial Activity Assay

In vitro antimicrobial activity of the synthesized ligands was evaluated by the agar
disc diffusion method [40]. Mueller–Hinton agar (MHA) medium (HIMEDIA, India) was
used as a control medium for testing against bacteria and potato dextrose agar (PDA)
medium (HIMEDIA, India) was used for fungal strains. After preparation, the MHA and
PDA media were incubated for 24 h and contaminations were checked. After incubation,
the test organism was inoculated using sterile cotton bars on media. The sample discs
were put gently on pre-inoculated agar plates and aerobically incubated for 24 h at 37 ◦C
for the antibacterial and for 48 h at 26 ◦C for the antifungal assay. Dimethyl sulfoxide
(DMSO) was used as the control. Each disc was loaded with 25 µL of sample solution in
DMSO containing 300 µg of synthesized compounds. An amount of 10 µL of ceftriaxone
and amphotericin-B solutions containing 50 µg each in DMSO were loaded per disc for
antibacterial and antifungal assays as the positive control, respectively. The diameter of
the inhibition zones in mm circling the disc were measured. Two Gram-positive Staphy-
lococcus aureus (cars-2) and Bacillus megaterium (BTCC-18), two Gram-negative Escherichia
coli (carsgn-2) and Salmonella Typhi (K-323130) bacteria, and two fungal strains Trichoderma
harzianum (carsm-2) and Aspergillus niger (carsm-3) were used in this study.
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3. Computational Details
3.1. Geometry Optimization

Optimized structures for L1 and L2, calculated at the B3LYP/6-311G+(d,p) level of
theory in the gas phase, are presented in Figure 1. All calculations were conducted with the
Gaussian 09 software package [41]. The complete geometry optimization and subsequent
vibrational frequency calculations were performed using DFT employing Becke’s (B) [42]
exchange functional combining Lee, Yang, and Parr’s (LYP) correlation functional [43]
with standard cc-pvdz/6-311G+(d,p) basis sets. The absence of imaginary frequencies
confirmed that the stationary points correspond to minima on the potential energy surface.
All the optimized geometry corresponding to medium on the potential energy surface were
obtained by solving self-consistent field equations iteratively.
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3.2. Protein-Ligand Docking
3.2.1. Ligand and Protein Preparation

The structures of L1 and L2 were fully optimized using Gaussian 09 software at the
B3LYP/6-311G+(d,p) level. The 3D crystal structure of tyrosinase from Bacillus megaterium
(PDB ID: 4j6u; resolution: 2.5Å, Chain A, B) was obtained in pdb format from the online
RCSB protein data bank (PDB) database. The structure was verified, and an energy mini-
mization was performed with the Swiss-Pdb Viewer software packages (version 4.1.0) [44],
since the crystal structure contains a variety of issues related to improper bond order,
side chain geometry, and missing hydrogen atoms. Prior to docking, all the heteroatoms
and water molecules were removed from the crystal structure using PyMol (version 1.3)
software packages [45]. The active binding pocket of tyrosinase was predicted by CASTp—
the highest pocket area and volume are 95.432 Å2 and 137.877 Å3, respectively [46]. The
binding site residues predicted by CASTp for tyrosinase were used for grid generation.
Both the structures of the proteins and ligands were saved in .pdbqt format by AutoDock
Vina (version 1.1.2, 11 May 2011) for docking analysis [47].

3.2.2. Molecular Docking Analysis

The docking calculations were performed using default parameters and 8 docked con-
formations were generated for both compounds. The energy calculations were performed
by genetic algorithms. Nonpolar hydrogen atoms, Gasteiger partial charges, rotatable
bonds, and grid boxes with dimensions 66.57 × 58.25 × 84.98 Å3 were created on the
tyrosinase with the support of Auto Dock Tools 1.1.2 and spacing of 0.3750 Å. The docked
conformation of the respective protein conformer with the lowest binding free energy and
root-mean-square deviation value (RMSD) 0.0 Å was analyzed using PyMOL Molecular
Graphics System (version 1.7.4) and Accelrys Discovery Studio 4.1 [48].

4. Results and Discussion
4.1. Optimized Geometries

The selected bond distances (Å) and bond angles (◦) of compounds L1 and L2 are
presented in the Supplementary Table S1. Significant changes in bond distances were
observed for specific reaction sites of the products compared to the reactants. Both the
compounds were planar as expected, which was evident from the dihedral angles of
the optimized structures showing that there is no twisting between the benzene ring
and the substituent groups. Furthermore, the structures of the compounds revealed the
preferential existence of both keto-enol forms. According to the optimization result, the
short C–O bond distances indicated the retention of their keto form, and the CO groups
were co-planar with the benzene rings [49]. For instance, the calculated C(10)-O(12) bond
distances were 1.21 and 1.22 Å in L1 and L2, respectively, which were compared to the
C(10)-O(11) bond distances (1.26 Å) in the reactant, pyridine-2,6-dicarboxylic hydrazide
(see Supplementary Figure S1). The calculated C–O bond lengths of reactants and products
are in good agreement with the earlier reported length of 1.23 Å [50,51]. A similar pattern
was observed for N–N bond lengths (N(14)-N(16) (~1.36 Å)) in both L1 and L2 [50,52,53].
The N-N bond length (N(14)-N(16) 1.41 Å) of the unsubstituted thio-semicarbazides is
suggestive of some double-bond character [52,53]. This can be attributed to the presence of
terminal aromatic rings, e.g., thiophene, pyrrole attached to the azomethine nitrogen [52,53].
As reported earlier, the C-S single bond distance is 1.82 Å [52] while the double bond is
1.68 Å [54]. In this study, the calculated C–S bond distance of L1 was found to be 1.75 Å.
Therefore, the shorter C–S bond of L1 implies the partial double-bond character and this
might be due to the resonance involving the thiophene ring. Moreover, the N–H bond
distance in both the ligands was found as 1.02 Å [50,55].

Compared to the C(1)-C(9)-N(14) angle (~120◦) of pyridine-2,6-dicarboxylic dihy-
drazide [35,50,52,56], shortening of the angles were observed with an average distance of
~113.67◦ (C(1)-C(10)-N(14)) in both ligands. However, the increased bond angle (~120.47◦)
at C(10)-N(14)-N(16) in both L1 and L2, compared to the bond angle of pyridine-2,6-
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dicarboxylic dihydrazide elucidated the change in hybridization to the azomethine nitrogen
N(16) for the attachment of an aromatic substituent.

4.2. Mulliken Population Analysis

The atomic charges were obtained by the Mulliken population analysis (Figure S2)
of both L1 and L2 using the B3LYP level of theory with the 6-311G+(d,p) basis set and
the values are tabulated in Table 1. Mulliken population analysis has an important role to
predict the polarizability, dipole moment, geometric structure, and bonding capability of a
molecule depending on the electronic charge on the coordinating atoms [57–60]. The charge
distribution showing more negative charge was concentrated on O(12) and O(13) of both L1
and L2 as illustrated in Table 1. Thus, the presence of a large negative charge concentration
on the oxygen atom is predictive of the oxygen atom to be a primary donor. Additionally,
in L1, the observed charge was -0.006 on the N (16) and N (17) atoms, whereas in L2, the
value was −0.011 Mulliken on the same atoms. The difference indicates the influence of
substituent end groups on the overall ligand charge distribution. The N (44) and N (45) of
the pyrrole ring possessed a similar Mulliken charge of −0.126 in L2 while S (42) and S (43)
of the thiophene ring carried −0.094 Mulliken in L1.

Table 1. Calculated values of Mullikan atomic charges.

L1 L2

Atoms
Charges (e)

Atoms
Charges (e)

B3LYP/6-311G+(d,p) B3LYP/6-311G+(d,p)

C (1) & C (5) 0.152 C (1) & C (5) 0.191
H (44) & H (45) 0.285 H (42) & H (43) 0.289

N (6) 0.026 N (6) 0.003
C (10) & C (11) −0.124 C (10) & C (11) −0.216
O (12) & O (13) −0.318 O (12) & O (13) −0.342
N (14) & N (15) −0.030 N (14) & N (15) −0.173
N (16) & N (17) −0.006 N (16) & N (17) −0.011
S (42) & S (43) −0.094 N (44) & N (45) −0.126

4.3. Vibrational Frequencies

The experimental (Figures S3 and S4) and computed vibrational frequencies of the
ligands L1 and L2 with their relative intensities are illustrated in Table 2. Computed IR
spectra were calculated using B3LYP/6-311G+(d,p) and B3LYP/cc-pvdz levels of theory
in the gas phase. The B3LYP functional can reproduce the experimental vibrational fre-
quencies; however, scaling factors (0.9613 to 0.9688) are required for different basis sets [61].
Furthermore, the calculated vibrational wavenumbers were scaled down using the scaling
factor 0.9688 to offset the systematic error caused by neglecting anharmonicity and electron
density. The agreement between the experimental and theoretical frequencies is quite good
in this study. Some of the differences between these frequencies result from the use of gas
phase molecules in the DFT calculations.

In general, the C=O stretching vibrations in the FTIR spectrum occur strongly in
the 1870–1540 cm−1 region depending on some effects such as substituent, conjugation,
and inter- or intra-molecular hydrogen bonding [31,62–64]. The strong absorption band
at 1698 cm−1 in the FTIR spectrum was assigned to the C=O stretching vibration of L1
due to the conjugation with the –NH–N= group and the calculated IR frequency for this
vibration was found to be 1760 cm−1 for L1 in B3LYP/6-311G+(d,p). Applying 0.9688 as a
scaling factor, the frequency for the carbonyl band shifted to 1705 cm−1 almost near to the
experimental values. The result is approximately close to the analogous compounds [65].
For L2, experimental FT-IR showed a very strong carbonyl (νCO) band at 1677 cm−1,
similar to L1, and the corresponding scaled stretching vibration was theoretically calculated
at 1658 cm−1.
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Table 2. Experimental and calculated (with and without scaling) vibrational frequencies (cm−1) of L1
and L2 (selected).

Experimental Calculated without Scaling
(Intensity)

Calculated with Scaling a

(Intensity) Assignment b

6-311G+(d,p) cc-pvdz 6-311G+(d,p) cc-pvdz

L1

3318 3533 (75) 3514 (76) 3422 3404 v (N–H hydrazide)
3067 3240–3183 (~11) 3246–3193 (~10) 3139–3084 3145–3093 vasy (=C–H thiophene, pyridine)
1698 1760 (540) 1787 (538) 1705 1731 v (CO) + δ (N–H)
1589 1638 (4) 1651 (3) 1587 1599 vsym (C=N)
1537 1622 (40) 1633 (45.8) 1570 1582 vsym (C=C) + ω (C–H, pyridine)

1504 1576 (243) 1585 (103) 1527 1536
vsym (C=C) + ω (NH) + δ (C–H

thiophene) + θ (sp3 C–H)
994 970 (0.2) 1041 (0.3) 940 1008 π (C–H pyridine)
848 911 (0.02) 913 (0.11) 883 885 π (C–H thiophene)
727 744 (17) 745 (14) 721 722 v (C-S-C)

L2

3469 3617 (127) 3621 (129) 3508 3391 v (NH pyrrole)
3350 3524 (64) 3520 (65) 3414 3410 v (NH hydrazide)
3089 3005 (21) 3021 (28) 2921 2926 vasy (=C–H pyrrole, pyridine)

1677 1712 (526) 1778 (564) 1658 1723 vsym (CO) + ω (NH) + ω (=CH
pyridine)

1550 1619 (16) 1657 (58) 1568 1605 vsym (C=N)
1568 1607 (116) 1633(93) 1557 1582 vsym (C=C) + ω (C–H pyridine)
1519 1593 (44) 1605 (115) 1544 1555 vsym (C=C pyrrole) + ω (=C–H)
999 974 (0.2) 981 (0.1) 944 950 π (C–H pyridine)
834 950 (56) 876 (0.05) 920 848 π (C–H pyrrole)

a Scaling factor of B3LYP is 0.9688. b ν stretching, δ rocking, π twisting, ω scissoring, θ wagging.

The observed band at 1589 cm−1 for L1 in the FTIR spectrum was due to the stretching
vibration of the C=N group. This vibration band was calculated at 1587 cm−1 according
to the B3LYP method with the 6-311G+(d,p) basis set. However, for L2, the experimental
and theoretical C=N stretching vibrations of the azomethine group as experimentally and
theoretically determined appeared at 1550 and 1568 cm−1, respectively. The data agree well
with the values available in the literature [9,66].

The N–H stretching vibration of the secondary amines was obtained in the region
of 3500–3000 cm−1 in the IR absorption spectra [67]. According to this study, the N–H
stretching bands for scaled-B3LYP and experimental FT-IR of L1 were obtained at 3422 and
3318 cm−1, respectively. Similarly, the experimental and scaled theoretical absorption bands
at 3350 and 3414 cm−1 were found for L2. In the FTIR spectrum of L2, the N–H stretching
vibration of pyrrole (vN–H) was observed at 3469 cm−1, whereas it was calculated as
3508 cm−1 (scaled). According to the literature, the peaks from 3300 cm−1 to 3600 cm−1

were assigned to N–H stretching vibrations of the pyrrole ring [68,69].
The characteristic aromatic C–H stretching vibrations appeared in the range

3150–2900 cm−1 [70–72]. In this work, the weak IR band at 3067 cm−1 was identified
experimentally for the stretching vibration of aromatic C–H (for thiophene and benzene) of
L1, and the relevant vibration was calculated in the range 3139–3084 cm−1 for the B3LYP/6-
311G+(d,p) level of theory. The bands observed at 994 and 848 cm−1 for L1 in FT-IR spectra
were assigned to the C–H out-of-plane bending vibration [9,71]. In L2, the observed band
3089 cm−1 was attributed to aromatic C–H stretching vibrations. This stretching frequency
was calculated at 2921 cm−1 using the equivalent calculation method. Likewise, in L1,
a pair of bands was observed at 999 and 834 cm−1, in L2, which were due to the C–H
out-plane skeletal vibration of the pyridine and pyrrole. These are in a good agreement
with computed values of 950 and 848 cm−1, respectively, by B3LYP/cc-pvdz.
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The C=C stretching vibrations of thiophene and pyridine rings appeared experi-
mentally in the range 1540–1505 cm−1 [31,73], while the theoretical values were in the
region of 1580–1520 cm−1 for L1. For L2, the bands observed at 1568 and 1519 cm−1

in the FTIR spectrum have been assigned to C=C stretching vibrations of pyridine and
pyrrole rings, whereas the theoretically computed values were at 1557 and 1544 cm−1 by
B3LYP/6-311G+(d,p), which are almost close to experimental values. The C-S-C stretching
vibration of the thiophene ring was observed at 727 cm−1 experimentally for L1 [31], and
this vibration was calculated at 721 cm−1 using B3LYP with the 6-311G+(d,p) basis set.

4.4. Nuclear Magnetic Resonance (NMR)

NMR is a unique technique to determine the structure of organic compounds. 1H and
13C-NMR chemical shifts of both L1 and L2 calculated using the GIAO method and CPCM
model in DMSO as the solvent are listed in Supplementary Table S2 and shown in Figure 2.
Finally, the calculated results are correlated with the experimental data presented in the
synthesis section.

4.4.1. 1H-NMR

The hydrazone (NHN=C) protons appeared as singlets in the experimental spectra of
L1 and L2 at δ11.43 and 11.42 ppm, respectively, in DMSO-d6, which are consistent with the
values reported for analogous polytopic ligands [74,75]. For the same protons, resonance
signals were computed at δ10.77 and 10.44 ppm, respectively, in DMSO by the B3LYP with
6-311G+(2d,p). The 1H-NMR spectra of L2 showed the presence of a singlet at δ11.34 ppm
for NH protons of pyrrole [74] and validated well with the calculated value at δ10.18 ppm.

Usually, the chemical shifts of aromatic protons in organic molecules appear in the
range δ7.00–8.00 ppm [76,77] and methyl protons (–CH3) attached to -N=CR- resonate
around δ2.50 ppm [9]. The resonance signals for pyridine protons of the ligand L1 were
obtained as a set of multiplets in the range δ8.27–8.35 ppm in the experimental 1H-NMR
spectrum, while the chemical shifts of these protons were theoretically observed between
δ8.85 and 8.43 ppm (in DMSO). The CH protons of the thiophene ring were experimentally
observed as a triplet at δ7.14 ppm and two doublets at δ7.61 and 7.66 ppm, whereas
theoretically the signals were calculated at δ7.30 ppm for 38/40-H, δ7.66 ppm for 39/41-H,
and 7.77 ppm for 22/27-H. For L1, the 1H-NMR chemical shift of the –CH3 appeared as a
singlet at δ2.52 ppm. The calculated chemical shifts of the –CH3 were found at δ2.31 ppm
for 32/36-H, 2.31 ppm for 33/37-H, and 2.79 ppm for 31/35-H.

Likewise, for L2, the chemical shift of the pyridine protons was experimentally observed
as a set of multiplets at δ8.27–8.34 ppm whereas those were computed at δ8.29–8.62 ppm
(in DMSO). Theoretically, the resonance of the signals for 39/41-H, 38/40-H, and 22/27-H
protons of the pyrrole ring were found at δ7.17, 6.49, and 6.89 ppm, respectively, while the
chemical shift values for these protons were noted in the range δ6.16–6.93 ppm by experiment.
Similarly, for L1, the signal observed as a singlet at δ2.39 ppm corresponds to –CH3 protons of
L2 (Figure 2), while the computed values for the same protons were found at δ2.23–2.63 ppm.
Overall, the recorded 1H-NMR chemical shifts of both L1 and L2 demonstrate very good
agreement with the calculated chemical shifts.

4.4.2. 13C-NMR

Ten signals for nineteen carbon atoms are revealed in the experimental 13C-NMR
spectra for the compounds L1 and L2. The 13C-NMR chemical shifts for analogous aromatic
organic compounds are usually greater than δ100 ppm [73]. The calculated chemical shifts
were observed at δ163.51 and 164.23 ppm for L1 and L2, respectively, while the computed
values were at δ159.44 and 159.11 ppm and agree well with the literature [4]. The signals of
the azomethine functionality were detected at δ143.22 and 149.25 ppm in the experimental
spectra of L1 and L2 [4], whereas the calculations demonstrated the signals at δ154.35 and
155.04 ppm, respectively. The –CH3 carbon (30/34-C) showed signals experimentally at
δ15.32 and 14.82 ppm for both the compounds and the calculated shifts were found at
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δ12.36 and 12.05 ppm in DMSO [4,31]. Furthermore, the carbons in pyridine rings of both
L1 and L2 appeared at δ148.91, 125.75, 153.65, 125.26, and 140.31 ppm for 1/5-C, 2/4-C, and
3-C, respectively. The rest of the 13C signals obtained from thiophene and pyrrole moieties
were also detected at the expected regions. In general, the experimental results of both 1H
and 13C-NMR spectra represented a good approximation to the data found theoretically by
DFT/6-311G+(d,p).
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4.5. Thermodynamic Properties of the Reactions

The thermodynamic properties of both the reactions with their dipole moments were
calculated in the gas phase and methanol by employing B3LYP/6-311G+(d,p), and the
results are presented in Table 3. In addition, the optimized geometries of all the reactants
and products involved in chemical reactions are shown graphically in Figure 3. The
positive values of the changes of Gibbs free energy (∆G), enthalpy (∆H), and entropy (∆S)
of reactions show that the reactions were thermodynamically endothermic. Compared to
the changes of ∆G, ∆H, and ∆S profiles in the gas phase, there was a reduction in values
in methanol due to the solvent effect on the stabilization of the products. It can be seen
from Table 3 that the dipole moments of both L1 and L2 increase from the gas phase to
methanol, because the effect of the solvent raises the dipole moments in the molecules
due to the increase in the delocalized charge [31]. In general, a higher value of the dipole
moment indicates the higher polar nature of a molecule. The value of the molecular dipole
moment of L1 seemed to be relatively higher, indicating relatively higher polarity than L2.
This parameter is a good indicator to understand the drug–receptor interaction and plays a
significant role for the formation of the hydrogen bond in biological systems [78].

Table 3. Thermodynamic properties of both the reactions with dipole moments of L1 and L2 in the
gas phase and methanol.

Name

∆H
(kcal/mol)

∆G
(kcal/mol)

∆S
(cal/mol K)

Dipole Moment
(Debye)

Gas CH3OH Gas CH3OH Gas CH3OH Gas CH3OH

L1 1.63 1.24 2.66 2.36 23.81 6.13 4.73 7.65
L2 3.09 2.88 3.99 3.22 2.16 1.49 2.26 3.79
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Figure 3. The optimized geometries of the reactants and products involved in chemical reactions
calculated at the B3LYP/6-311G+(d,p) level.

4.6. Frontier Molecular Orbital (FMO)

The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) are the terms used to describe FMOs that play a crucial part in predicting
the chemical stability of the molecule. Moreover, the energies of FMOs are important
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to determine chemical reactivity where the HOMO represents the ability to donate an
electron and LUMO to accept. The energy gap between HOMO and LUMO predicts the
kinetics, chemical stability, optical polarizability, and chemical hardness–softness of the
molecule [79,80]. The energy gap between HOMO and LUMO can be a pivotal determinant
to find a relationship between a class of drug’s activity and their electronic configuration,
as reported by Snyder et al. [80]. A larger FO gap corresponds with high kinetic stability,
but low chemical reactivity, as it is energetically unfavorable for an electron to elevate from
a low-energy HOMO to a relatively high-lying LUMO [81].

Molecular orbital calculation was performed with the optimized structure of the
compounds using the B3LYP method with 6-311G+(d,p). The pictographical presentation
of all FMOs is displayed in Figure 4 for the title molecules in a gaseous phase. The results
revealed that L1 contains 107 occupied and 624 unoccupied molecular orbitals, whereas L2
contains 99 occupied and 629 unoccupied virtual molecular orbitals. For L1, the HOMO
of the π-type of the pyrrole moiety lay at -0.226 Hartee (−6.17eV), while the LUMO was
the π*-type lying at -0.087 Hartee (−2.38 eV). As a result, a very small energy gap (3.56 eV)
was observed between the HOMO and LUMO of L1. Hence, the probability of π → π*
electron transition was highly possible in between HOMO and LUMO for the molecule.
A similar result was found for the L2. Thus, the FMO energy gap in L2 was found to be
0.131 Hartee (3.56 eV), which was lower than L1, hence enhanced softness, least hardness,
and high chemical reactivity (Table 4) are expected. Figure 5 shows that the HOMO of both
ligands L1 and L2 was localized on the thiophene/pyrrole ring and the hydrazone group,
while LUMO was concentrated on the pyridine ring and the hydrazone group.

Table 4. Different energies, hardness, and softness of L1 and L2 in the gas phase as well as energies
of FMOs (eV) and orbital gaps (∆E) of L1 and L2.

Energies
(eV) L1 L2 FMOs

(eV) L1 L2

I 6.17 5.79 HOMO-2 −7.21 −7.16
A 2.38 2.23 HOMO-1 −6.18 −5.8
µ −4.27 −4.01 HOMO −6.17 −5.79
ω 4.82 4.52 LUMO −2.38 −2.23

Property LUMO+1 −2.35 −2.22

η 1.89 1.78 LUMO+2 −1.69 −1.27
S 390.7 415.9 Gap (∆E) 3.79 3.56

To predict the chemical reactivity descriptor of the ligands, molecular orbital cal-
culations were performed at the same level of theory. Considering Parr and Pearson
interpretation [82–84] of DFT and Koopmans theorem [85], hardness (η) and softness (S)
of both compounds were calculated and are tabulated in Table 4 from the energies (ε) of
frontier HOMOs and LUMOs according to the following equation [86]:

η = [εLUMO − εHOMO]/2 (1)

S = 1/η (2)

Using the HOMO and LUMO orbital energies, the ionization energy (I), electron
affinity (A), chemical potential (µ), and electrophilicity index (ω) of a compound can be
calculated as:

I = −εHOMO; A = −εLUMO; µ = (εHOMO + εLUMO)/2; ω = µ2/2η (3)

The energies of 6.17 and 5.79 eV were required to ionize an electron from the HOMO of
L1 and L2, respectively (Table 4), whereas the energies of 2.38 and 2.23 eV were required to
form bonds for L1 and L2, respectively, which indicated their electron acceptance property.
The ω values of both ligands were calculated as 4.82 and 4.52 eV, respectively. A good
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electrophile was characterized by a high value of µ, ω [87]. Thus, L1 is a better electrophile
or less nucleophilic in comparison to L2.

Molecules 2022, 27, 1656 14 of 21 
 

 

 
Figure 4. Frontier molecular orbitals (HOMO, HOMO-1, LUMO, and LUMO+1) of L1 and L2. Figure 4. Frontier molecular orbitals (HOMO, HOMO-1, LUMO, and LUMO+1) of L1 and L2.



Molecules 2022, 27, 1656 13 of 20Molecules 2022, 27, 1656 15 of 21 
 

 

 
Figure 5. Calculated electrostatic potential surfaces of L1 and L2 generated by B3LYP/6-311+G (d, 
p). Molecular surfaces were plotted at an electron density of 0.002 e−/bohr3. 

Table 5. Diameter of inhibition zones (mm) of the synthesized compounds, ceftriaxone and 
amphotericin-B against tested bacterial and fungal strains. 

Compound 
Gram (+) Bacteria Gram (−) 

Bacteria 
Fungi 

S. aureus B. megaterium E. coli 
S. 

typhi 
T. 

harzianum A. niger 

L1 10 10 11 9 6 11 
L2 9 12 10 8 6 6 

Ceftriaxone  40.0  50.0 38.0 44.0 -- -- 
Amphotericin-B  -- -- -- -- 17.0  8.0  

Binding Affinity of L1 and L2 
The highest antibacterial activity (zone of inhibition 12 mm) of compound L2 was 

detected with tyrosinase from Bacillus megaterium (PDB ID: 4j6u) bacteria compared to 
L1. The binding energies for L1 and L2 with Bacillus megaterium were −7.7 and −8.8 kcal 
mol−1, respectively, whereas for arbutin-4j6u the value was −9.1 kcal mol−1; the values 
were calculated by AutoDock Vina. The interactions of the 4j6u with compounds L1 and 
L2 are shown in the Figure 6. 

It was observed that arbutin formed six conventional hydrogen bonds-with 4j6u 
(Supplementary Figure S11) by the following residues: ALA40A (one O-H----O-C 
hydrogen bond), Glu141A (four O-H----O-C hydrogen bond), and LYS47B (one O-H----
O-C hydro-gen bond). In addition, several hydrophobic interactions were found with 
ILE139A, ILE39A, and ALA40A. In L1-4j6u, one conventional hydrogen bond (3.04 Å) of 
O-H----O-C was observed between O-H of Tyr267A and O-C group of compounds L1. 
Pi-cation, pi-sulfur, and amide-pi bonds were also noted with LYS47A, PHE48A, 
ILE39A, ALA40A, GLY43B, and ALA44B. Moreover, ALA44A, LYS47A, ALA44B, 
LYS47B, PRO52A, ALA40B, and ILE139B were actively involved in the non-covalent 
interaction (hydrophobic pi-alkyl). L2-4j6u complex was stabilized by four NH….O 
hydrogen bonds and they were LYS47A (2.25 Å), GLY143B (3.04 Å), Tyr267A (3.07 Å), 
and PRO219B (2.91 Å) (Figure 6). Like L1, L2 formed pi-cations and amide-pi bonds with 
LYS47A, ILE39A, and GLY43B, where the distances were 3.73, 4.34, and 3.54 Å. L2 also 
formed seven pi-alkyl bonds with ALA44A (5.19 Å), LYS47A (4.35 Å), ALA44B (3.95 Å), 
LYS47B (4.98 Å), PRO52A (5.04 Å), ALA40B (4.67 Å), and ILE139B (4.24 Å), respectively. 
Results of docking studies revealed that L1 and L2 formed bonds to the active site of 
tyrosinase and showed strong interactions with Tyr267A, Ala40A, Ala44A, ALA44B, and 
Lys47B of the tyrosinase enzyme (PDB ID: 4j6u), which are in close vicinity to the control 
arbutin and support the literature [100–102]. 

Figure 5. Calculated electrostatic potential surfaces of L1 and L2 generated by B3LYP/6-311G+(d,p).
Molecular surfaces were plotted at an electron density of 0.002 e−/bohr3.

4.7. Molecular Electrostatic Potential (MEP)

MEP is related to the total charge distribution of the molecule and is a very useful
descriptor in understanding the reactive sites for the electrophilic and nucleophilic attack
in chemical reactions as well as hydrogen bonding interactions [88,89]. Thus, it provides
a visual understanding of the relative polarity of the molecule. Electrostatic potential
surfaces have been plotted for both L1 and L2 by B3LYP/6-311G+(d,p) and these are
illustrated in Figure 5. The different values of the electrostatic potential increase in the order
red < orange < yellow < green < blue [90,91]. From Figure 5, it was observed that the
negative electrostatic potential was located at a maximum, over the oxygen atoms, of the
hydrazone group (-CO-NH-), indicating a possible site for electrophilic attack. However,
the positive electrostatic potential was crowded over the hydrogen atoms of the same
group, which would predict a preferential attack by a nucleophile at that region of the
title molecule.

4.8. Antimicrobial Activity Using the Agar Disc Diffusion Method

In vitro sensitivities of two Gram-positive and two Gram-negative bacteria including
two fungal strains against the synthesized compounds were evaluated by the agar disc dif-
fusion method. The formation of the diameter of inhibition zones in mm by the synthesized
analogues are shown in Table 5. Compound L2 showed moderate activity against Bacillus
megaterium bacteria while L1 showed promising antifungal activity against Aspergillus niger
fungal strains compared to standard amphotericin-B.

Table 5. Diameter of inhibition zones (mm) of the synthesized compounds, ceftriaxone and
amphotericin-B against tested bacterial and fungal strains.

Compound
Gram (+) Bacteria Gram (−) Bacteria Fungi

S. aureus B. megaterium E. coli S. typhi T. harzianum A. niger

L1 10 10 11 9 6 11
L2 9 12 10 8 6 6

Ceftriaxone 40.0 50.0 38.0 44.0 – –
Amphotericin-B – – – – 17.0 8.0

4.9. Molecular Docking Study

Molecular docking is a powerful tool to investigate and provide a proper understand-
ing for ligand receptor interactions in order to facilitate the design of potential drugs [92–95].
To investigate and compare the antimicrobial activity of the synthesized compounds, dock-
ing analyses of L1 and L2 against tyrosinase from Bacillus megaterium were performed. It is
well-known that the tyrosinase of Bacillus megaterium bacteria is an attractive target for the
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development of antimicrobials or antibiotic adjuvants for the treatment of hyperpigmenta-
tion because of its similarity (33.5%) to the human enzyme [96–99]. The docking results
were compared with well-testified inhibitor arbutin [97].

Binding Affinity of L1 and L2

The highest antibacterial activity (zone of inhibition 12 mm) of compound L2 was
detected with tyrosinase from Bacillus megaterium (PDB ID: 4j6u) bacteria compared to L1.
The binding energies for L1 and L2 with Bacillus megaterium were−7.7 and −8.8 kcal mol−1,
respectively, whereas for arbutin-4j6u the value was −9.1 kcal mol−1; the values were
calculated by AutoDock Vina. The interactions of the 4j6u with compounds L1 and L2 are
shown in the Figure 6.
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It was observed that arbutin formed six conventional hydrogen bonds-with 4j6u
(Supplementary Figure S11) by the following residues: ALA40A (one O-H—-O-C hydrogen
bond), Glu141A (four O-H—-O-C hydrogen bond), and LYS47B (one O-H—-O-C hydro-gen
bond). In addition, several hydrophobic interactions were found with ILE139A, ILE39A,
and ALA40A. In L1-4j6u, one conventional hydrogen bond (3.04 Å) of O-H—-O-C was
observed between O-H of Tyr267A and O-C group of compounds L1. Pi-cation, pi-sulfur,
and amide-pi bonds were also noted with LYS47A, PHE48A, ILE39A, ALA40A, GLY43B,
and ALA44B. Moreover, ALA44A, LYS47A, ALA44B, LYS47B, PRO52A, ALA40B, and
ILE139B were actively involved in the non-covalent interaction (hydrophobic pi-alkyl).
L2-4j6u complex was stabilized by four NH . . . .O hydrogen bonds and they were LYS47A
(2.25 Å), GLY143B (3.04 Å), Tyr267A (3.07 Å), and PRO219B (2.91 Å) (Figure 6). Like L1,
L2 formed pi-cations and amide-pi bonds with LYS47A, ILE39A, and GLY43B, where the
distances were 3.73, 4.34, and 3.54 Å. L2 also formed seven pi-alkyl bonds with ALA44A
(5.19 Å), LYS47A (4.35 Å), ALA44B (3.95 Å), LYS47B (4.98 Å), PRO52A (5.04 Å), ALA40B
(4.67 Å), and ILE139B (4.24 Å), respectively. Results of docking studies revealed that L1
and L2 formed bonds to the active site of tyrosinase and showed strong interactions with
Tyr267A, Ala40A, Ala44A, ALA44B, and Lys47B of the tyrosinase enzyme (PDB ID: 4j6u),
which are in close vicinity to the control arbutin and support the literature [100–102].

Thus, computational results are in good agreement with the in vitro antibacterial
behavior of our compounds for novel antibacterial drug design.

5. Conclusions

Pyrrole and thiophene as organic molecules and their metal cluster derivatives have
been recognized to present a wide range of biological activities in recent years. In the
present study we synthesized two tritopic dihydrazide-based ligands bearing pyrrole
and thiophene as end groupings and characterized them successfully by FT-IR, 1H, and
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13C-NMR and mass spectrometry. Based on the DFT calculations, a complete structural
detail, vibrational, electrostatic potential, Mulliken population, HOMO-LUMO, and ther-
modynamic analysis was also performed. The computed FT-IR analysis as well as the
1H and 13C-NMR using the B3LYP/CC-PVDZ/6-311G+(d,p) method agreed satisfactorily
with the experimental results. We further evaluated the thermodynamic parameters ∆H,
∆S, and ∆G of the ligands. The geometry optimization revealed the planarity of the L1
and L2 molecules. Further, it was seen from the HOMO-LUMO energy values that the
chemical potentials were negative and the frontier orbital gap of the molecule under in-
vestigation was small, and hence both compounds are reactive and polarizable. To further
showcase the biological activity of the ligands against organic pathogens, the antimicrobial
assay was performed and revealed significant inhibition of L2 against Bacillus megaterium
Gram-positive bacteria, and L1 against Escherichia coli and Aspergillus niger, although to
a lesser extent. The moderate activity of the L2 molecule against Bacillus megaterium was
substantiated by a molecular docking study against tyrosinase from Bacillus megaterium
and was found to be significant with a binding energy of -8.8 kcal/mol and three hydrogen
bond interactions, which might suggest the antimicrobial activity of the molecule. Overall,
L1 and L2 compounds have spurred significant interest for us from the synthetic, compu-
tational, and biological points of view. We anticipate continued research regarding these
classes of exciting organic ligands.

Supplementary Materials: The following are available online, Figure S1: Optimized structures of
the reactant 2,6-picolinic dihydrazone, Figure S2: Partial atomic charge (Mulliken) on L1 where red
represent negative, and green represent positive charge, Figure S3: Experimental and computed
Infrared Spectrum of L1 ligand in KBr, Figure S4: Experimental and computed Infrared Spectrum of
L2 ligand in KBr, Figure S5: Computed 1H NMR spectrum of L1 in DMSO, Figure S6: Computed 1H
NMR spectrum of L2 in DMSO, Figure S7: Computed 13C NMR spectrum of L1, Figure S8: Com-
puted 13C NMR spectrum of L2, Figure S9: Mass spectrum of L1, Figure S10: Mass spectrum of L2,
Figure S11: 3D Non-covalent interaction maps of (a) Arbutin-4j6u (b) L1-4j6u and (c) L2-4j6u com-
plexes, Table S1: Selected bond distances (Å) and bond angles (◦) of reactant pyridine-2,6-dicarboxylic
dihydrazide, Table S2: Theoretical and experimental 1H and 13C NMR chemical shifts (with respect
to TMS, all values in ppm) for the title compounds.
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